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Abstract

It is established that [¢/2] = [n/2] -1 vertex w-lights
suffice to cover a monotone mountain polygon of t =
n — 2 triangles. A monotone mountain is a monotone
polygon one of whose chains is a single segment, and
a vertex w-light is a floodlight of aperture @ whose
apex is a vertex.

Keywords. art gallery theorems, floodlights. mono-
tone polygons.

1 Introduction

It was established in [ECOUX95] that for any o < ,
there is a polygon that cannot be illuminated with
an a-floodlight at each vertex. An a-floodlight (or
a-light) is a light with aperture no more than a. A
vertex a-light is one whose apex is placed at a vertex,
aiming a cone of light of up to a into the polygon.
Each vertex may be assigned at most one light. The
result of [ECOUX95] is then that n vertex a-lights
do not always suffice when o < w. Let a polygon
P have t triangles in any triangulation, ¢ = n — 2;
we will phrase bounds in terms of t. For a = m,
an easy argument shows that ¢ vertex w-lights always
suffice: place a light at an ear tip, cut off the ear,
and recurse. This raises the question of finding a
better upper bound. Urritia phrased the problem this
way [Urr97]: is there a ¢ < 1 such that en vertex
m-lights always suffice? The largest lower bound is
c= f via an example of F. Santos.

In this paper we pursue this question, but only in
special cases. In particular, we show that ¢ = % for
spirals and, more interestingly, for monotone moun-
tains. A monotone mountain is a monotone polygon
one of whose chains is a single segment. More pre-
cisely, a monotone chain is a polygonal chain whose
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intersection with any vertical line is at most one
point. A monotone mountain consists of one mono-
tone chain, whose extreme (left and right) vertices are
connected by a single segment. Note this base edge
need not be horizontal.! TFig. 5 shows a monotone
mountain with base edge zy.

Although this is a severely restricted class of
polygouns, it deserves attention for three reasons:
the examples establishing the results of [ECOUX95]
(and [OX94]) are “nearly” monotone mountains; the
problem is already not completely trivial for mono-
tone mountains; and there is some reason to hope
similar techniques will apply to the unrestricted prob-
lem.

We start with a result on spiral polygons, where
the problem is trivial.

2 Spiral Polygons

A spiral polygon counsists of two joined polygonal
chains: a chain of reflex vertices, and a chain of con-
vex vertices.

Theorem 1 A spiral polygon S of t = n—2 triangles
may be covered by [t/2] = [n/2] — 1 vertex w-lights;
some spirals require this many.

Proof: If S has no reflex vertices, S is convex and
can be covered with one vertex m-light at any vertex.
So assume S has at least one reflex vertex.

Let x, y, and z be three consecutive vertices of S,
with @ reflex, y convex, and z convex. Such a triple
always exists, because any polygon has at least three
convex vertices. The segment zz must be an internal
diagonal of the polygon. Therefore at least two trian-
gles are incident to z in any triangulation of S. Plac-
ing a light at z, as shown in Fig. 1, therefore covers
at least two triangles; because z is convex, the light
covers the entire angle at z. Removing the covered

IThis definition differs in this respect from that introduced
in [0OX94], which demanded a horizontal base edge.
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triangles leaves a smaller spiral polygon. Repeating
this process covers S with at most [#/2] lights.

Generalizing the polygon shown in Fig. 1 estab-
lishes that the bound is tight. |

Figure 1: Placing a w-light at z covers at least two tri-
angles. The light is shown as a full #-light, although
only the angle interior to the polygon is relevant.

Notice that the procedure implied by this proof
places lights only on convex vertices. One reason spi-
ral polygons are so easy is that lights never need be
placed on reflex vertices, and so the potentially dif-
ficult decision of how to orient a m-light at a reflex
vertex need not be confronted.

3 Non-Locality

Monotone mountains are more difficult than spirals
for two reasons: reflex vertices cannot be avoided,
and the decision of how of orient a light at reflex
vertex cannot be made locally. Many art gallery the-
orems can be proved inductively as follows: cut off a
small piece, illuminate that piece, and recurse on the
remainder [O’R87]. The reason this paradigm works
is that decisions can be made locally: what happens
in the small piece is independent of the shape of the
remainder of the polygon.

This is not the case with the vertex 7-light problem,
even for monotone mountains. Consider the polygon
shown in Fig. 2, and imagine trying to decide whether
to shine the light at z left or right, basing the decision
only on the portion of the polygon to the left of z.
One can see that no ¢ < 1 can be achieved without
looking at the structure of the right portion: if the
“wrong” decision is made at z (asillustrated), then an
arbitrarily large fraction of all remaining vertices will
need lights. Although the decision is obvious in this
case, as it can be based on the number of triangles
incident to z, the effect might be more subtle.

Figure 2: A wrong orienting decision at z can lead to
suboptimal coverage.

4 Worst Case

It is clear that if the number of triangles incident to
z in Fig. 2 from the left is £ and from right is also
k, then a lower bound of ¢ = 1; is attained: t =
2k + 1, and k + 1 = [t/2] lights are necessary, one
at z and k on the opposite reflex chain. The same
bound is acheived by the shape shown in Fig. 3. In
this polygon, the extension of vjvy meets vsvg; the
extension of vov3 meets v4vs: and so on.

Figure 3: [t/2] lights are necessary: ¢ = 5 and

[5/2] = 3 are needed.

We prove this simple fact for later reference:

Lemma 1 The generalization of the polygon M in
Fig. 8 requires [t/2] = [n/2] — 1 vertex m-lights.

Proof: Each vertex on the left chain can only see two
vertices on the right chain, and vice versa: v5 can see
ve and vz, because the extensions of vivy and vovg
straddle vs; etc. Thus at most (in fact exactly) three
triangles are incident to v in a triangulation of M. A
w-light at v can only fully cover two of these three
triangles, because v is reflex. So each light covers at
most two triangles, and [¢/2] are needed overall. O
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5 Duality

One way to view the phenomenon illustrated in Fig. 2
is as follows: the polygon naturally partitions into
two monotone mountain subpolygons at z. If at light
is placed at z and aimed left, then in the right sub-
polygon, placing a light at z is forbidden (as that
would place two lights at one vertex). Moreover, that
example shows that a (sub)polygon with one vertex
forbidden a light could in fact require one light per
triangle.

However, there is an interesting “duality” at play
here, in the following sense: if a polygon with one
forbidden vertex requires many lights, then placing a
light at the forbidden vertex permits it to be covered
with few lights. In other words, there is no polygon
structure that is both bad with a forbidden vertex
and bad without that vertex forbidden.

If M is a monotone mountain with extreme left and
right vertices z and y, let Lm(JW) be the number of
vertex w-lights needed to cover M when vertex x is
assigned a light and y is forbidden to have a light; and
let Lo1 (M) be the number needed when y is assigned
a light and z is forbidden. Note that, in these defi-
nitions, not only is one vertex forbidden a light, but
the other extreme vertex must be assigned a light.
The precise statement of duality is captured in the
following lemma:

Lemma 2 For any monotone mountain M of t tri-
angles, Lio(M)+ Loy (M) <t+1.

The generalization of Fig. 4 establishes that the sum
is sometimes as large as t+1: here L1o(M) = 1 (vo as-
signed) and Loy (M) = t (v, forbidden, as illustrated).

Figure 4: Duality: Lig(M)+ Lo1(M)=1t+1.

Lemma 2 is the key to the main theorem in the
next section. We now prove it via induction.

Proof: Let M be a monotone mountain of ¢ tri-
angles. The induction hypothesis is that Lio(M’) +
Lon(M’) < ¢ 4+ 1 for any monotone mountain M’
of #/ < t triangles. The base case is a single trian-
gle T. t = 1, when L1o(T) = Lo (T) = 1, and so
Lio(T)+ Ly (T)=2=1t+ 1.

Let the base edge of M be zy, and let z he the
vertex first encountered by sweeping the line contain-
ing zy vertically; see Fig. 5. It must be the case that
both 2z and yz are internal diagonals. This provides
a natural partition of M into three pieces: Axyz, a
subpolygon A sharing diagonal z:z, and a subpolygon
B sharing diagonal yz. Note that it may well be that
either A or B is the empty polygon @: if both are
empty, t = 1 and we fall into the base case of the
induction.

Figure 5: Induction partition of M into A, B, and
Axyz.

It is clear that A and B are monotone mountains.
In particular, the angle at z in A is convex, as is the
angle at z in B: for the monotone chain enters z from
the left and leaves it from the right (Fig. 6), as do the
diagonals xz and zy respectively.

We prove the lemma in two cases.

Case 1: Neither 4 nor B is empty.

We compute a bound on Lig(M), which places a
light at  but forbids a light at y. Because the angle
at x in M is convex, the light at & covers Azyz. This
light also serves as a light at 2 in A. It makes sense in
this situation to place a light at z and aim it into B.
Doing this gives us an upper bound on Lyo(M), upper
because this sensible light placement and orientation
at z might not optimal. This strategy yields

Lio(M) < Lig(A) + Lio(B). (1)
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A

Figure 6: The monotone chain enters each vertex
from the left halfplane and leaves in the right half-
plane.

Analogous reasoning (again the light at y (illustrated
in Fig. 5) covers Axyz) yields

Lot(M) < Lot (A) + Loy (B). (2)

Adding Egs. 1 and 2 yields

Lio(M)+Lot (M) < [L1o(A)+Lo1 (A)]+[L1o(B)+Lo1 (B)].

Suppose A contains a triangles and B contains b tri-
angles, so that ¢ = a + b + 1. Then applying the
induction hypothesis to each yields

Lio(M) + Loy (M)
L1()(A{) + L(]] (A[)

[a+1]+[p+1]

<
< t+1.

This is the claim to be proved.

It only remains to handle the case where one of 4
or B is empty.

Case 2: A =0 but B is not empty.

This case is illustrated in Fig. 7: the case with
B = () is symmetric and need not be considered. If a
light is placed at z, it serves to cover Azyz, and the
reasoning is just as before:

Lig(M) <1+ Ly(B).

If a light is placed at y, then it covers Azyz (as illus-
trated in Fig. 7), and there is no need to an additional
light to cover the empty A:

L(]] (AI) S L[]] (B) .
Adding yields

L](](ZV[) + L[]] (AI) S 1 + [L](](B) + L[]] (B)]
Lio(M)+ Lo(M) < 1+[b+1]
Lio(M) 4+ Loy (M) < t+41.

Figure 7: A = (.

6 Main Result

With Lemma 2 in hand, the final step is easy:

Theorem 2 A monotone mountain polygon M of
t = n—2 triangles may be covered by [t/2] = [n/2]-1
vertex w-lights; some monotone mountains require
this many.

Proof: We know from Lemma 2 that

Lig(M)+ Loy (M) < t+1.

Let
L(M) = min{Lio(M),Lo1(M)}.

By the pigeonhole principle,
LOM) < |6+ 1)/2] = [1/2].

Lemma 1 established that this bound can be at-
tained (Fig. 3). O

The proofs of Lemma 2 and Theorem 2 imply a
simple algorithm: compute a bound on Lyo(M) by
placing lights at the left corners of A and of B and
recursing, and compute a bound on Loy (M) similarly.
Use the light placement of whichever is smaller. The
algorithm is easily seen to be O(nlogn): spend lin-
ear time finding z, and recursively process the pieces.
This leads to the familiar divide-and-conquer recur-
rence.

An example is shown in Fig. 8. Here M has t = 14
triangles, and Lig(M) + Loy (M) < 5410 = ¢ + 1.
This example illustrates a number of features of the
light placements implied by the bound computation
on Lyy and Lg1:

1. Every vertex that is not a local maximum is as-
signed a light in either the Lip or Lg; compu-
tation. (Some vertices are assigned a light in

both.)

2. All the lights in the Ly placement aim to the
right; and all those in the Ly placement aim to
the left.
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Figure 8 Example: ¢t = 14, Lo = 5 (top), Loy = 10
(bottom).

3. The sum Lyo(M) + Loi1 (M) achieved is always
exactly t 4+ 1, because blindly following the pro-
cedure places lights even if they might not be
needed (e.g., when M is convex).

4. Lights at reflex vertices are turned either fully
counterclockwise (in Lig) or clockwise (in Lyg):
intermediate positions are never needed.

7 Discussion

Many of the features present in monotone mountains
hold for the problem for general simple polygons as
well: for example, non-locality. For other features,
it remains unclear: for example, whether every light
may be fully turned (observation 4 above). In any
case, I believe that a version of the duality described
in Lemma 2 holds and will be a key to solving Urru-

tia’s problem. I conjecture ¢ = é is achievable.
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