## PETROLOGY OF BANDED IRON FORMATION AND PHYLLITE IN THE STANDARD CREEK CONTACT AUREOLE, SOUTHERN GRAVELLY MOUNTAINS, MONTANA

Alyssa E. Doody

Submitted to the Department of Geology of Smith College in partial fulfillment of the requirements for the degree of Bachelor of Arts with Honors

John B. Brady, Faculty Advisor

May 2006

This thesis is dedicated to the memory of my dad, Daniel A. Doody

| LIST OF FIGURES                                                                                                                  | ii  |
|----------------------------------------------------------------------------------------------------------------------------------|-----|
| List of Tables &<br>Appendices                                                                                                   | iv  |
| Abstract                                                                                                                         | v   |
| ACKNOWLEDGEMENTS                                                                                                                 | vii |
| CHAPTER 1:<br>Introduction of the Standard Creek Contact<br>Aureole and Southern Gravelly Mountains                              | 1   |
| <b>Chapter 2:</b><br>Geologic Setting of the Tobacco Root and<br>Surrounding Mountain Ranges in the Northern<br>Wyoming Province | 7   |
| <b>Chapter 3:</b><br>Field Observations & Methods                                                                                | 19  |
| Chapter 4:<br>Petrography                                                                                                        | 35  |
| Chapter 5:<br>Results                                                                                                            | 52  |
| CHAPTER 6:<br>Discussion & Conclusion                                                                                            | 64  |
| References                                                                                                                       | 74  |
| Appendices                                                                                                                       | 76  |

## TABLE OF CONTENTS

# LIST OF FIGURES

| Fig  | URE                                                                     | PAGE |
|------|-------------------------------------------------------------------------|------|
| 1-1  | GEOLOGIC MAP OF STANDARD CREEK CONTACT AUREOLE                          | 2    |
| 1-2  | TOPOGRAPHIC RELIEF MAP OF SOUTHERN GRAVELLY RANGE                       | 3    |
| 2-1  | MAP OF ARCHEAN EXPOSURES IN THE WYOMING PROVINCE                        | 7    |
| 2-2  | MAP INDICATION LOCATION OF WYOMING SUB-PROVINCES                        | 9    |
| 2-3  | ARCHITECTURE OF THE BIG SKY OROGEN AND GREAT FALLS TECTONIC ZONE        | 11   |
| 2-4  | TIMELINE OF PRECAMBRIAN TECTONIC EVOLUTION                              | 14   |
| 2-5  | PRESSURE-TEMPERATURE-TIME PATH FOR BIG SKY OROGENY                      | 16   |
| 3-1  | TOPOGRAPHIC MAP OF GRAVELLY RANGE AND SURROUNDING MOUNTAIN RANGES       | 21   |
| 3-2  | GEOLOGIC MAP OF STANDARD CREEK CONTACT AUREOLE                          | 24   |
| 3-3  | OUTCROP OF BANDED IRON FORMATION                                        | 25   |
| 3-4  | QUARTZ AND MAGNETITE LAYERS- SHARP CONTACTS                             | 26   |
| 3-5  | LARGE FOLDS IN AN OUTCROP OF BANDED IRON FORMATION                      | 26   |
| 3-6  | TIGHTLY FOLDED BANDED IRON FORMATION                                    | 27   |
| 3-7  | LARGE QUARTZ BOUDIN                                                     | 27   |
| 3-8  | SMALL BOUDIN IN BIF                                                     | 28   |
| 3-9  | HUMMOCKY TEXTURE IN BIF OUTCROP                                         | 29   |
| 3-10 | ANDALUSITE PORPHYROBLASTS IN PHYLLITE                                   | 30   |
| 3-11 | ANDALUSITE PORPHYROBLASTS IN PHYLLITE END-ON VIEW                       | 31   |
| 3-12 | WOLVERINE CREEK GABBRO                                                  | 32   |
| 3-13 | WOLVERINE CREEK GABBRO IN HAND SAMPLE                                   | 32   |
| 4-1  | THIN SECTION PHOTOS- CHANGE IN METAMORPHIC MINERAL GROWTH IN BIF        | 37   |
| 4-2  | THIN SECTION PHOTO - VARIABILITY OF MAGNETITE LAYERS                    | 37   |
| 4-3  | THIN SECTION PHOTOMICROGRAPH OF ACICULAR GRUNERITE                      | 39   |
| 4-4  | THIN SECTION PHOTOMICROGRAPH-MEDIUM TO FINE-GRAINED FERROHORNBLENDE     | 40   |
| 4-5  | FERROHORNBLENDE WITHIN THE MAGNETITE LAYER                              | 45   |
| 4-6  | FERROHORNBLENDE WITHIN THE MAGNETITE LAYER                              | 41   |
| 4-7  | THIN SECTION PHOTOMICROGRAPH (PPL) OF GRUNERITE SPRAY IN A QUARTZ LAYER | x 43 |
| 4-8  | THIN SECTION PHOTOMICROGRAPH (XPL) OF GRUNERITE SPRAY IN A QUARTZ LAYER | r 43 |
| 4-9  | THIN SECTION PHOTOMICROGRAPH (XPL) OF COARSE-GRAINED BLADED GRUNERITH   | e 44 |

| 4-10 THIN SECTION PHOTOMICROGRAPH (PPL) OF COARSE-GRAINED BLADED GRUNERITE | 44 |
|----------------------------------------------------------------------------|----|
| 4-11 ANDALUSITE PORPHYROBLASTS WITH MUSCOVITE RIMS                         | 47 |
| 4-12 PHYLLITE SAMPLE 12C- GRAPHITE DISPLAYS CRENULATED FABRIC              | 48 |
| 4-13 GRAPHITE BANDS BEND AROUND THE CONTOURS OF THE PORPHYROBLAST          | 48 |
| 4-14 STAUROLITE PORPHYROBLASTS WITH SERICITE RIMS                          | 49 |
| 4-15 STAUROLITE-ANDALUSITE PORPHYROBLAST                                   | 51 |
| 4-16 PORPHYROBLAST HAS OVERGROWN A PRE-EXISTING CRENULATED FABRI           | 51 |
| 5-1 MODAL PERCENTAGE VS. DISTANCE IN METERS THE STANDARD CREEK GABBRO      | 53 |
| 5-2 MODAL PERCENTAGE VS.DISTANCE IN METERS FROM THE STANDARD CREEK GABBRO  | 54 |
| 5-3 MOLE PERCENT RATIO OF MAGNEIUM TO FERROUS IRON                         | 58 |
| 5-4 Mg/Ce maps and monazite locations                                      | 60 |
| 5-5 CHEMICAL MAPS FOR CORES AND RIMS                                       | 61 |
| 5-6 GAUSSIAN DISTRIBUTION PLOT (ALL DATA)                                  | 62 |
| 5-7 GAUSSIAN DISTRIBUTION MONATITES M3 AND M5                              | 63 |

## LIST OF TABLES APPENDICES

| TABLE 3-1    | SAMPLE ROCK TYPE ORIENTATION, LOCATION           | 22  |
|--------------|--------------------------------------------------|-----|
| APPENDIX 4-1 | PETROGRAPHIC SAMPLE DESCRIPTIONS: BIF & PHYLLITE | 77  |
| APPENDIX 5-1 | SEM ANALYSES                                     | 83  |
| APPENDIX 5-2 | MONAZITE ANALYSES                                | 108 |

#### ABSTRACT

The Wyoming Province is an area of Precambrian rocks that underlie much of SW Montana and Wyoming today (Harms et al., 2004). The Gravelly Mountains are a north-south trending exposure of the Precambrian basement in the Wyoming Province in southwest Montana. Giletti's (1966) Line divides the Gravelly Range into a northern part, where the effect of the Big Sky orogeny at 1.8 Ga is recorded in upper amphibolite facies metamorphic rocks, and a southern part, in which lower-grade metamorphic rocks reveal only older Ar-Ar ages (2.4-2.7 Ga). The Standard Creek contact aureole, located in the southern Gravelly Range, represents a sequence of sedimentary units that have experienced both low-grade regional metamorphism and contact metamorphism as a result of the intrusion of a gabbro into banded iron formation and phyllite. The time of the intrusion in relation to the regional metamorphism is unknown.

It is hypothesized here that the regional metamorphism was concurrent with the intrusion of the gabbro. The degree of deformation of iron formation increases with proximity to the gabbro. Samples from close proximity to the gabbro exhibit larger grain size, increased reaction band thickness, and diverse mineral assemblages, which can include quartz, magnetite, ferrohornblende, grunerite, and ferroactinolite. The mode and coarseness of grunerite increases with proximity to the gabbro. Quartz and magnetite dominate rocks at the periphery of the aureole. Grunerite, ferrohornblende, and ferroactinolite dominate rocks closest to the gabbro. These features suggest that the rocks were still experiencing the effects of the regional metamorphism and had increased temperature and ductility at the time of the intrusion.

V

The lack of minnesotaite, which is unstable above 350° C and the presence of grunerite, which is unstable above 600° C, places the metamorphic temperature experienced by the banded iron formation between these bounds.

The porphyroblast-rich, blue-gray phyllite is composed of muscovite, quartz, graphite staurolite, chlorite and subhedral porphyroblasts of andalusite ranging in size from 1 to 3 cm and surrounded by muscovite rims 2-3 mm wide. The rock fabric is crenulated and contains refolded-folds. In one sample staurolite porphyroblasts with muscovite rims have overgrown and preserved a pre-existing crenulated graphitic-muscovitic fabric. In other samples graphite bows around the andalusite crystals suggesting that the rock was deformed after or simultaneously with the growth of andalusite. The mineral assemblage staurolite + andalusite + chlorite + muscovite + quartz + graphite from the phyllite places pressure temperature constraints for this rock between 2 and 4 kb and between 460° C and 540° C (Spear, 1993). A sample of phyllite from near the Standard Creek gabbro was sent to the University of Massachusetts for Th/Pb dating. Monazites from the matrix of this sample give a preliminary metamorphic age of 2548± 30 Ma.

#### ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor John Brady, for his continuous support, guidance, patience, and encouragement with this project. Thank you for giving me the knowledge and confidence to undertake and complete my thesis and make it through my senior year. Thank you especially for being dedicated to my success as a geologist and teaching me how to think like a true scientist. I will forever utilize the skills you have taught me over the past four years.

Thank you to Jack Cheney for providing me with lovely field photos and Tekla Harms for all your guidance in Montana and help since I have been back at Smith. To my fellow Montana Keck participants, you helped make my summer in Montana amazing. Thank you for being great field assistants and great friends.

I would like to thank the Keck Geology Consortium, without which, I would have never had the amazing opportunity to do research in Montana.

The geology department at Smith College has been incredible and I am truly grateful. Thanks to Bob Burger, Bosiljka Glumac, Al Curran, Marc Brandriss, Amy Rhodes, Bob Newton, Jon Caris and Tony Caldanaro for all your help.

To all the Smithies in the geology department, I would not be here today without you guys. You are all brilliant, gifted, and have taught me so much in and out of class. Thank you for supporting me with my thesis and being amazing friends.

Deanna Gerwin. I love you like Whoa! Thank you for being there for me through all the ups and down, early mornings and late nights, frustrations and successes that came with this project and with life. Thank you for keeping me sane and teaching me the importance of sleep. Thanks also to Danielle and Leah for getting me out of the lab periodically, bringing me coffee in the wee hours of the night and being my best friends.

Finally, I owe so much to my mother, who has motivated me in every endeavor and taught me to believe in myself.

#### **CHAPTER 1:**

## GEOLOGIC SETTING OF THE THE STANDARD CREEK CONTACT AUREOLE AND SOUTHERN GRAVELLY MOUNTAINS

#### The Standard Creek Contact Aureole

The Standard Creek contact aureole is located in the southern Gravelly Range in SW Montana and surrounds two metamorphosed plugs of coarse-grained gabbro of unknown age (Fig. 1-1). The dominant lithologies of the aureole are banded iron formation and a porphyroblast-rich phyllite. These units have been affected by regional metamorphism and contact metamorphism as the result of the intrusion of the gabbro plugs. As a result of these metamorphic events, the banded iron formation has undergone reactions to produce grunerite, ferrohornblende and ferroactinolite, and the phyllite has undergone reactions to produce 2 cm wide andalusite porphyroblasts. Both units have been deformed.

The purpose of this study is to understand the metamorphic history of these rocks, including the pressure-temperature conditions and the number and sequence of metamorphic events. Fundamental to this inquiry is whether the gabbro intrusion into the banded iron formation and phyllite pre-dated, post-dated or was contemporaneous with a regional metamorphic event.



Figure 1-1. Geologic map of the Standard Creek contact aureole in the southern Gravelly Mountains, Montana (adapted from O'Neill et al., 2004).

## **Southern Gravelly Mountains**

The Gravelly Mountains are a north-south trending exposure of Precambrian rock in the Wyoming Province (Fig. 1-2). They are located southeast of the Tobacco Root Mountains and west of the Madison Range. The northern Gravelly Mountains consist of sequences of intensely folded schists and gneisses with lithologies similar to those found in the Tobacco Root Mountains (Immega et al., 1976). Iron formation, amphibolite, and phyllite are common (Immega et al., 1976). However, the metamorphic grade of the southern Gravellys is much lower than that of the Tobacco Root Mountains and other mountain ranges to the northwest. Giletti's (1966) Line divides the Gravelly Range into a northern part, where the effect of the Big Sky orogeny at 1.8 Ga is recorded in upper amphibolite facies metamorphic rocks, and a southern part, in which lower-grade metamorphic rocks reveal only older Ar-Ar ages (2.4 - 2.7 Ga) (Harms et al., 2004). Compared to the Tobacco Root Mountains, little is known about the geologic history of the southern Gravelly Mountains.



Figure 1-2. Topographic relief map of the southern Gravelly Mountains. The location of the Standard Creek contact aureole within this range is highlighted in white.

#### Lithologies

The lithological sequence of the southern Gravellys is comprised of graphitic shales, phyllite and banded iron formation that overlay "a basal sandstone shale member that passes upward into cross-bedded, ripple-laminated quartzite and minor conglomerate" (O'Neill, 1998). This sequence is commonly intruded by coarse-grained gabbro sills and plugs, up to 150 m thick that display "chilled margins and coarsegrained, porphyritic cores." Contact metamorphism due to intrusion of the gabbro sills has resulted in the growth of andalusite and staurolite in some of the aureoles (O'Neill, 1998).

"The iron formation assemblages in the Ruby Creek area of the Gravelly Range are much lower grade [than the Tobacco Root Mountains] and are associated with pelitic rocks of greenschist facies". This suggests a temperature of under 400°C and a total pressure of about 2-4 kb. The presence of hydrobiotite differentiates the banded iron formation of the Gravellys from the Tobacco Root Mountains. "The origin of the hydrobiotite may be primary or secondary alteration product. Experimental work places its upper stability limit at about 480°C at 1-2 kb" (Immega, 1976).

O'Neill (1998) attributes the sequence of metasupracrustal units in the southern Gravellys to an arc basin, foredeep depositional environment. "The stratagraphic sequence typical of many of the foredeeps consist of a basal, transgressive, shallow-shelf quartzite that grades upward into iron formation and is, in turn, overlain by euxinic shale." Such a sequence is located in the southern Gravellys. According to O'Neill (1998) "Numerous gabbroic sills intrude all foredeep units. These sills have upper and lower

chilled margins, contact metamorphic aureoles and they predate all folding and thrusting." This sort of igneous intrusion is also characteristic of the southern Gravellys.

O'Neill further suggests that the foredeep of the arc basin became part of a "foreland-fold-and-thrust belt" after it progressed in front of a collisional zone, perhaps part of the Big Sky orogeny. Harms et al. (2004) argue that the foreland basin material that makes up the southern Gravellys was "contained and over ridden by the ductile thrust faults of the southern and northern Madison ranges." Tectonic transport in a south-east direction is indicated by these thrust faults. The deformation of the southern Gravelly rock units is associated with "north west-dipping thrust faults, shear zones, and [being] adjacent to gabbroic intrusions" (O'Neill, 1998).

The southern Gravelly Range differs from surrounding ranges. The low grade metamorphic rocks of the southern Gravellys do not contain carbonate rocks, which are typical of the Late Archean, metasupracrustal sequences throughout southwest Montana. The rocks record only one period of low-grade metamorphism and "non-penetrative deformation," whereas other rocks of the region display highly metamorphosed amphibolite to granulite facies (O'Neill, 1998).

The Standard Creek contact aureole is important for our understanding of the geologic history of the southern Gravelly Mountains and of Precambrian Rocks of SW Montana. The aureole contains lower-grade rocks and gives older metamorphic dates than rocks to the north and west in the Gravelly Range and in surrounding ranges.

The following questions are posed for the purposes of this study: Is the growth of metamorphic minerals in the aureole more a result of contact metamorphism or regional

metamorphism? Were the banded iron formation and phyllite relatively hot, warm or cold at the time of the intrusion? How does the grade of rocks change across the aureole? What do the mineral assemblages, mode and coarseness tell about contact and regional metamorphism? What does the contact metamorphism tell about regional metamorphism? Was the growth of large and alusite porphyroblasts a result of contact or regional metamorphism or both?

The following questions may aid in the understanding of the geologic history of SW Montana. What was the nature of the metamorphic event that occurred at 2.5 Ga? Was the intrusion of the gabbro a result of the tectonic setting of the regional metamorphic event? What effect did the Big Sky orogeny have on the southern Gravelly Range?

## CHAPTER 2:

## GEOLOGIC SETTING OF THE TOBACCO ROOT AND SURROUNDING MOUNTAIN RANGES IN THE NORTHERN WYOMING PROVINCE

### **Wyoming Province**

The Wyoming province is an area of Precambrian rocks that underlie much of Montana and Wyoming today (O'Neill, 1998). Discontinuous cores of Archean basement rocks exposed by Tertiary uplifts punctate the landscape (Fig. 2-1). Although these exposures represent only 5-10% of the Archean foundation, they provide the fundamental evidentiary support for the complex and extensive geologic history of the area (Burger, 2004).



Figure 2-1. Map of the Wyoming province (aqua) and distribution of Precambrian rock exposures (gray and red). Modified from Harms et al. (2002).

Much is still unknown about the tectonic boundaries of the Wyoming province. The stabilization of the Wyoming province's associative craton has been established at 3.0 Ga (Burger, 2004) although other studies have suggested a later stabilization date at 2.6 - 2.7 Ga (Harms et al. 2004). Recent data indicate that the three subprovinces that make up the Wyoming province, the Montana metasedimentay terrane, the Beartooth-Bighorn magmatic terrane, and the Wyoming greenstone province, were amalgamated during the period from 2.7 - 2.55 Ga (Burger, 2004) (Fig. 2-2).

Substantial evidence supports a major tectonothermal episode during the early Proterozoic that had an embracive and profound effect on the nature of the Montana metasedimentary terrane. This orogenic event caused large-scale, high-grade metamorphism of the preexisting Archean rocks. The extent of the metamorphism ranged from 6 to 7 kb and from 650-750° C with some partial melting (Burger, 2004). It has been theorized that this metamorphic event was a result of a continental collision between the Wyoming and Hearne provinces. The date of this collision at 1.8 is buttressed by U/Pb dating of euhedral zircons form a gneiss dome in the highland mountains. The Madison mylonite zone, although far removed from the theoretical suture point, follows a similar trend. Argon thermochronolgy analysis of samples from this shear zone indicates a 1.9 - 1.7 Ga collision (Burger, 2004). This event has been named the Big Sky orogeny and has been dated to the period between 1.78 and 1.72 Ga (Burger, 2004).



Figure 2-2. Map outlining the location of the three sub-provinces that comprise the Wyoming province: the Montana metasedimentay terrane (red), the Beartooth-Bighorn magmatic terrane (green), and the Wyoming greenstone province (blue). Modified from Harms et al. 2004.

The Great Falls tectonic zone is a northeast-trending region of crustal weakness that represents the suture point for the assembly of the Archean crustal masses represented by the Wyoming and Hearne provinces (Fig. 2-3). This physical inconsistency stretches from the Idaho batholith to the Canadian border and is evidenced by its structural influence of igneous intrusions and recurrent fault movements from the middle Proterozoic to the Cenozoic (Burger, 2004). Much of the tectonic and metamorphic history including the Big Sky orogeny and the events leading up to it have been recorded in the Tobacco Root Mountains, Highland Mountains, Gravelly Mountains and Ruby Range, which are characterized by quartzofeldspathic gneiss and metasupracrustal sequences (Harms et al., 2004). These ranges occupy the northwestern to northern central territory of the Wyoming province and abut the Great Falls tectonic zone to the north. The significance of the Archean exposures, which exemplify the mountains of the northern Wyoming province, is augmented by their close proximity with a possible collision zone.



Figure 2-3. Architecture of the Big Sky orogen in map and cross section including the northeast-trending metamorphic core zone: The Great Falls tectonic zone. Modified from Harms et al. 2004.

## **Precambrian Timeline of Tectonic Events**

A model of the Precambrian tectonic evolution of the northwestern territory of the Wyoming province has been proposed by Harms et al. (2004) (Fig. 2-4). The timeline is substantiated by a comprehensive investigation and analysis of the Tobacco Root Mountains, situated on the northwestern border of the Wyoming province adjacent to the Great Falls tectonic zone. The three major rock suites that comprise the Tobacco Root Mountains include the Spuhler Peak Metamorphic Suite (SPMS), The Indian Creek Metamorphic Suite (ICMS) and the Pony Middle Mountain Metamorphic Suite (PMMMS) (Harms et al., 2004) (Fig. 2-3).

The Indian Creek Metamorphic Suite is made up of quartzofeldspathic gneiss, amphibolite and metasupracrustal rocks including marble, quartzite, aluminous schist and iron formation. The Pony Middle Mountain Metamorphic Suite is dominantly quartzofeldspathic gneiss and amphibolite. The Spuhler Peak Metamorphic Suite is comprised of mafic rocks, quartzite and aluminous schist (Harms et al., 2004).

## Quartzofeldspathic Gneiss

Indian Creek and Pony Middle Mountain Suites contain rocks of igneous and sedimentary origin, indicated by elemental ratios of suite samples. The samples with an igneous origin are bimodal calc-alkaline (felsic end member) and tholeiitic (mafic end member) (Harms et al., 2004). The felsic rocks imply an arc setting while the mafic suggest ocean floor environment. The rocks of sedimentary origin indicate continental margin setting. "Chemical characteristics point to a subduction-related continental arc setting with back arc extension to generate mid-ocean ridge mafic rocks" (Fig. 2-4). These rocks date to 3.35 - 3.2 Ga. The quartzofeldspathic gneiss may have been produced by a "long-standing or repeatedly productive continental arc between 3.35 - 3.2 Ga." Magmatic zircons from Indian Creek Metamorphic Suite samples give igneous ages of 3.31, 3.21 and 3.37 Ga (Harms et al., 2004).

#### Metasupracrustal rocks

The marbles, quartzites, aluminous schists, and iron formation of the Indian Creek and Pony Middle Mountain Metamorphic Suites suggest a tectonically stable depositional environment, which differentiates the paleoenvironment of these rocks from the quartzofeldpathic gneisses. Detrital zircons from a quartzite of the ICMS generate a 3.13 Ga maximum age, while a minimum age of 2.85 Ga has been proposed. A supra-arc basin has been interpreted as the environment of deposition (Harms et al., 2004).

#### Metamorphic event at 2.45 Ga

Evidence to support a major metamorphic event at 2.45 Ga has been uncovered in the Tobacco Root Mountains. Aluminous gneiss of the Pony Middle Mountain and Indian Creek Metamorphic Suites contain monazites that have been dated to 2.45 Ga. Disturbance of zircon growth from quartzofeldpathic gneisses of the Indian Creek Metamorphic Suite are indicative of metamorphism at 2.4 Ga. "Other observations hint that the event at 2.45 Ga was tectonic as well as thermal, and that the arc, backarc, and basinal deposits of the Indian Creek and Pony Middle Mountain Metamorphic Suites were consolidated into continental crystalline basement by burial, deformation, and metamorphism at that time, implying renewed plate convergence and/or collision" (Harms et al., 2004).

Argon dating of hornblende, biotite and muscovite in the southern Madison Range yields ages of 2.4 - 2.5 Ga, suggesting that other regions of the northern Wyoming province experienced this tectonothermal event (Harms et al., 2004). The metamorphism was extensive and intense, resulting in the gneissic banding and folding which is prevalent in the Tobacco Root Mountains. The source of this metamorphism is a continental collision with an unknown collider.

### MMDS

The presence of metamorphosed mafic dikes and sills indicates that continental rifting was occurring by 2.06 Ga. Chilled margins and sharp contacts characteristic of many of the dikes and sills suggest that the craton that was created during the metamorphic event at 2.45 Ga, had cooled and was stabilized at the time of the intrusion (Harms et al., 2004).



Figure 2-4. Timeline of Precambrian tectonic evolution of the Tobacco Root Mountains from deposition of the Montana metasedimentary terrane in an arc-back arc system at 3.35 - 3.2 Ga until the Big sky orogeny at 1.78-1.72 Ga. Modified from Harms et al. 2004.

### Big Sky Orogeny

Evidence for the Big Sky orogeny can be found throughout the Tobacco Root Mountains. The progression of the metamorphism is recorded in these rocks beginning with crustal thickening resulting from collisional convergence at 1.78 Ga (>1.0 GPa and >700° C). Maximum crustal thickening was reached by 1.77 Ga. This stage of the orogeny was dated through "low discordance low Th/U metamorphic zircons from leucosome," produced by partial melting that occurred at the thermal maximum (800° C) of the metamorphism (Harms et al. 2004) (Fig. 2-5).

Thermal re-equilibrium was reached after 1.77 Ga with the erosional decompression of the thickest crust with "nearly isobaric cooling (750° to 700° C at .7-.8 GPa) leading to thermal decompression (From .07 to < .06 GPa at 700°C)" (Harms et al., 2004) (Fig. 2-5.). These data were accrued using garnet amphibole thermobarometery of metamorphic mafic rocks in the ICMS, SPMS, PMMMS, and the MMDS. Evidence exists to support a period of renewed convergence around 1.73 Ga due to thrust faulting over cooler rocks. 1.72 Ga marks the extension and unroofing of the orogenic core and the end of the collisional episode. It is believed that during the Big Sky orogeny, the Spuhler Peak Metamorphic Suite was part of the colliding landmass (Harms et al., 2004).



Figure 2-5. A pressure-temperature-time path of the Big Sky orogeny as exemplified by evidence from the metamorphic suites of the Tobacco Root Mountains. Modified from Harms et al. 2002

### Giletti's Line

Giletti (1966) asserts that the age disparity among rocks in Southwest Montana is marked by a northeast trending line that has been defined as "Giletti's Line." The significance of this regional divider is that it separates 1.79 - 1.55 Ga rocks in the northwest from 2.5 Ga rocks in the southeast. Giletti's findings are based upon K-Ar mineral ages of hornblende and biotite basement rocks (O'Neill, 1998). He interprets the transition between Proterozoic and Archean as a marker of regional metamorphism. The younger Proterozoic rocks were metamorphosed enough to reset the argon system of the rocks, whereas, the older Archean rocks were not metamorphosed enough to reset the argon. This is why the rocks to the southeast record an older date of metamorphism than the rocks to the northwest. The rocks in the southeast represent an undisturbed foreland and the rocks in the northwest represent a metamorphic core zone. The metamorphic core is upper amphibolite facies while the foreland is much lower grade (O'Neill, 1998). See Figures 2-1, 2-2 and 2-3 for approximation of Giletti's Line.

#### Foreland, Low-Grade Metamorphic Rocks

The southern Madison and southern Gravelly Ranges represent the least metamorphosed regions of the northwestern Wyoming province (Erslev et al., 1990). These rocks represent a cooler, more "cratonward" section of the Big Sky orogen that was part of a supracrustal foreland. Much of the southern Madison and southern Gravelly Ranges do not record the effects of the Big Sky orogen at 1.8 and give argon ages of 2.4-2.5 Ga (Harms et al., 2004).

#### Madison Mylonite Zone

Despite the prevalence of low-grade metamorphic rocks, unaffected by the Big Sky orogeny in the southeastern part of the Wyoming province, an area termed the Madison mylonite zone records activity during the Big Sky orogeny in "discrete shear zones." It has been suggested that the Madison mylonite zone is a foreland thrust zone on the margin of the Big Sky orogen (Erslev et al., 1990). The Madison mylonite zone includes the contact between the Cherry Creek Metamorphic Suite and the Pre-Cherry Creek Metamorphic Suite. Older amphibolite and granulite facies assemblages are "over printed" by greenschist and epidote amphibolite facies assemblages in the shear zone. Argon thermochronology from samples adjacent to the Madison mylonite zone record a late Archean cooling event at 2.5 Ga and argon closure associated with cooling at 1.9 Ga (Erslev et al., 1990).

### Cherry Creek Metamorphic Suite

"Marble-bearing metasedimentary rocks of the Cherry Creek Metamorphic Suite" lie adjacent to the north and south of a gneiss complex within the southern Madison Range. "Heterogeneous migmatites, tonalitic gneiss, amphibolite, and minor metasedimentary lithologies" characterize the gneiss complex, which surrounds a granitic to dioritic augen gneiss dome. It has been proposed by Erslev and Sutter (1990) that granulite-facies assemblages of an early Proterozoic metamorphism were "re-equilibrated to upper amphibolite facies assemblages during a later [Precambrian] metamorphic event" (Erslev et al., 1990). Evidence for retrograde metamorphism includes pelitic rocks that contain "muscovite-chlorite aggregates" pseudomorphed after aluminosilicates.

The Cherry Creek Metamorphic Suite can be observed in the northern and southern Madison Range as well as in the Gravelly Range, which runs parallel to the Madison Range. This suite is comprised of dolomitic marble, biotite-staurolite-garnet schist, quartzite and amphibolite. The separation of lithologic units is the result of northwest-directed ductile thrusting during a late Archean metamorphic event (Harms et al., 2004).

#### CHAPTER 3:

## FIELD OBSERVATIONS AND METHODS

#### **Field Observations**

The Standard Creek contact aureole is located in the southern Gravelly Mountains, along Standard Creek, south of Granite Mountain, within the Beaverhead National Forest (Fig. 3-1). The area of interest is approximately 0.46 square kilometers at an elevation of about 2,500 meters. A steep cliff to the north and a lack of outcrop to the south resulted in sample collection along a generally east-west transect, parallel to Standard Creek. The metamorphic lithologies that dominate this region include a series of banded iron formations and a porphyroblastic phyllite that have been intruded by a coarse-grained gabbro.

During the 2005 summer field season 130 samples were collected in and around two gabbro intrusions: one in proximity to Wolverine Creek (to the west) and one in proximity to Standard Creek (to the east) (See Table 3-1 for sample descriptions/locations). A very detailed suite extending to the east from the Wolverine Creek gabbro and a few detailed suites radiating from the Standard Creek gabbro were collected as well as one to the north, one to the north-north-east and one to the east (Fig. 3-2). Both banded iron formation and phyllite were found near the Wolverine Creek gabbro, whereas only banded iron formation was found near the Standard Creek gabbro. The rocks in between the Wolverine Creek and Standard Creek gabbros may have been affected by both gabbro intrusions.

The samples were collected based primarily upon their location and relationship to the gabbro intrusions. Samples that might demonstrate metamorphic grade, displayed a diverse mineral assemblage and discernible reaction textures, exhibited uniqueness or distinction, and were characteristic of a particular area were collected in order to acquire a range in bulk chemistry and metamorphic grade. Many of the rock suites radiate from a gabbro intrusion in order to characterize the degree of contact metamorphism. Samples from outside the proximity of the aureole were collected to establish the regional metamorphism. A Trimble GPS unit was used to determine and save sample locations. A Brunton Compass was used to ascertain the field orientation if possible, but the magnetite rich rocks made the Brunton ineffective in most locations.



Figure 3-1. Topographic relief map of the Gravelly Range and surrounding mountain ranges including the Tobacco Root Mountains, Ruby Range, Greenhorn Mountains, and Madison Range. The location of the Standard Creek contact aureole is highlighted in white. The red line is an approximate location of Giletti's Line

| LIST              | OF SAMPLE ROCK | TIPES, OKIENTATIO | JNS, AND LO | CATIONS    |
|-------------------|----------------|-------------------|-------------|------------|
| Sample Name       | Rock Type      | Strike/Dip        | Easting     | Northing   |
| AED05A            | Gabbro         | N/A               | 442110      | 4970630    |
| AED05B(1)/(2)     | Gabbro         | N/A               | 442116      | 4970667    |
| AED05C            | Meta-BIF       | 87/84             | 442117      | 4970658    |
| AED05E(1)/(2)     | Meta-BIF       | 017/<10           | 442155      | 4970673    |
| AED05F(1)/(2)     | Meta-BIF       | N/A               | 442142      | 4970696    |
| AED05H(1)/(2)/(3) | Meta-BIF       | N/A               | 442135      | 4970714    |
| AED05I            | Meta-BIF       | NE/West-SW        | 442195      | 4970741    |
| AED05J            | Meta-BIF       | NE/West-SW        | 442121.26   | 4970726.64 |
| AED06A            | Meta-BIF       | N/A               | 441899      | 4970786    |
| AED06B            | Meta-BIF       | N/A               | 441891      | 4970796    |
| AED06C            | Meta-BIF       | N/A               | 441875      | 4970800    |
| AED06D            | Meta-BIF       | N/A               | 441867      | 4970794    |
| AED06E            | Meta-BIF       | N/A               | 441881      | 4970789    |
| AED06F            | Meta-BIF       | N/A               | 441939      | 4970791    |
| AED06G            | Meta-BIF       | N/A               | 441912      | 4970784    |
| AED06H            | Meta-BIF       | N/A               | 441912      | 4970784    |
| AED06I            | Meta-BIF       | N/A               | 441950      | 4970775    |
| AED06J            | Meta-BIF       | N/A               | 441941      | 4970778    |
| AED06K            | Meta-BIF       | N/A               | 441929      | 4970748    |
| AED06L(1)         | Meta-BIF       | N/A               | 441930      | 4970715    |
| AED06L(2)         | Meta-BIF       | N/A               | 441930      | 4970715    |
| AED07A            | Phyllite       | 210/60            | 441410      | 4970610    |
| AED07B            | Amphibolite    | N/A               | 441403      | 4970607    |
| AED07C            | Gabbro         | N/A               | 441376      | 4970607    |
| AED07D            | Gabbro         | N/A               | 441335      | 4970613    |
| AED07E            | Meta-BIF       | N/A               | 441316      | 4970626    |
| AED08A(1)/(2)/(3) | Meta-BIF       | N/A               | 441292      | 4970630    |
| AED08B            | Gabbro         | N/A               | 441292      | 4970630    |
| AED08C            | Gabbro         | N/A               | 441314      | 4970671    |
| AED08E            | Basalt         | N/A               | 441290      | 4970697    |
| AED08F            | Meta-BIF       | N/A               | 441290      | 4970697    |
| AED09A            | Phyllite       | 149/59            | 441362      | 4970723    |
| AED09B(1)/(2)/(3) | Meta-BIF       | N/A               | 441350      | 4970722    |
| AED09C            | Meta-BIF       | N/A               | 441350      | 4970708    |
| AED09D            | Phyllite       | N/A               | 441391      | 4970739    |
| AED09E            | Phyllite       | N/A               | 441428      | 4970735    |
| AED09F            | Phyllite       | N/A               | 441436      | 4970779    |
| AED09G            | Phyllite       | N/A               | 441436      | 4970770    |
| AED10A            | Gabbro         | 140/49            | 441440      | 4970818    |
| AED10C            | Gabbro         | N/A               | 441293      | 4970748    |

TABLE 3-1 LIST OF SAMPLE ROCK TYPES OPIENTATIONS AND LOCATIONS

| Sample Name       | Rock Type        | Strike/Dip        | Easting | Northing |
|-------------------|------------------|-------------------|---------|----------|
| AED10D            | Gabbro           | N/A               | 441530  | 4970635  |
| AED10E            | Phyllite         | N/A               | 441589  | 4970568  |
| AED10F            | Gabbro           | N/A               | 441854  | 4970574  |
| AED11A            | Meta-BIF         | N/A               | 440884  | 4970616  |
| AED11B            | Gabbro           | 145-5             | 441126  | 4970735  |
| AED11C            | Gabbro           | 145-5             | 441145  | 4970699  |
| AED11D            | Graphitic Schist | East/Southeast    | 441114  | 4970592  |
| AED11E            | Meta-BIF         | N/A               | 441120  | 4970599  |
| AED12A(1)/(2)/(3) | Phyllite         | N/A               | 441443  | 4970690  |
| AED12B            | Phyllite         | N/A               | 441350  | 4970722  |
| AED12C(1)/(2)/(3) | Phyllite         | N/A               | 441395  | 4970739  |
| AED12D            | Phyllite         | N/A               | 441399  | 4970749  |
| AED13A            | Meta-BIF         | N/A               | 442040  | 4970999  |
| AED13B(1)/(2)     | Meta-BIF         | N/A               | 442306  | 4970535  |
| AED13C(1)/(2)/(3) | Meta-BIF         | N/A               | 442365  | 4970554  |
| AED13D            | Meta-BIF         | N/A               | 442399  | 4970750  |
| AED13E            | Meta-BIF         | N/A               | 442300  | 4970745  |
| AED13F            | Meta-BIF         | N/A               | 442290  | 4970770  |
| AED13G            | Meta-BIF         | N/A               | 442360  | 4970780  |
| AED13H            | Meta-BIF         | N/A               | 442240  | 4970690  |
| AED13I(1)/(2)     | Meta-BIF         | North-south/20-25 | 442344  | 4970656  |
| AED13J(1)/(2)     | Meta-BIF         | N/A               | 442416  | 4970652  |
| AED13K            | Meta-BIF         | N/A               | 442430  | 4970730  |
| AED13L            | Meta-BIF         | N/A               | 442368  | 497064   |
| AED13M            | Meta-BIF         | N/A               | 442331  | 4970660  |
| AED13O            | Meta-BIF         | N/A               | 442319  | 4970653  |
| AED13P            | Meta-BIF         | N/A               | 442204  | 4970571  |
| AED14A            | Gabbro           | N/A               | 441559  | 4970726  |
| AED14B            | Meta-BIF         | N/A               | 441579  | 4970738  |
| AED14C            | Phyllite         | 016/84            | 441526  | 4970695  |
| AED14D            | Amphibolite      | N/A               | 441496  | 4970700  |
| AED14E            | Phyllite         | North-east/west   | 441524  | 4970655  |
| AED14F            | Gabbro           | N/A               | 441590  | 4970650  |
| AED14G            | Basalt           | N/A               | 441610  | 4970690  |
| AED14H            | Phyllite         | N/A               | 441640  | 4970700  |



Figure 3-2. Geologic map of the Standard Creek contact aureole in the Southern Gravelly Mountains, Montana (adapted from O'Neill et al., 2004). Coarse-grained gabbro has intruded banded iron formation in two locations, the Wolverine Creek gabbro to the west and the Standard Creek gabbro to the east. The porphyroblast- rich phyllite is located between the two gabbro units but has not been mapped. Samples marked with a blue circle represent locations where the phyllite unit outcrops.

## **Banded Iron Formation**

The dominant lithology of the Standard Creek contact aureole is banded iron formation. Outcrops of iron formation were observed throughout the aureole. These outcrops are characterized by regular inter-banding of quartz and magnetite rich layers ranging in thickness from less than a millimeter to 15 cm. Outcrops farthest from the gabbro display prominent linear banding with sharp contacts between the magnetite and quartz layers (Fig. 3-3). Magnetite layers are generally thicker than the quartz layers but show a high degree of variability in width. Layers of both magnetite and quartz display signs of deformation including wavy banding (Fig. 3-4, 3-5), isoclinal and tight folds (Fig. 3-6) and quartz boudins that reach approximately 15cm in width (Fig. 3-7, 3-8).



Figure 3-3. Outcrop of banded iron formation from the Standard Creek contact aureole displaying characteristic inter- banding of quartz and magnetite of varying widths.



Figure 3-4. Quartz and magnetite layers display sharp contacts and wavy, folded banding on a small scale.



Figure 3-5. Large folds in an outcrop of banded iron formation at the periphery of the contact aureole


Figure 3-6. Tightly folded banded iron formation. (Hammer for scale; about 2.5 ft. shaft)



Figure 3-7. Large quartz boudin (approximately 15cm long) in banded iron formation



Figure 3-8. Smaller quartz boudins in banded iron formation

The degree of deformation of iron formation increases with proximity to the gabbro. Outcrops nearest to the gabbro lack definitive banding and the contacts are far less pronounced than those of outcrops at the periphery of the aureole. Samples from close proximity to the gabbro exhibit larger grain size, increased reaction band thickness, and diverse mineral assemblages that can include quartz, magnetite, ferrohornblende, grunerite and ferroactinolite. Magnetite and quartz layers seemingly decrease in width nearing the gabbro. It is uncertain whether the decrease in magnetite and quartz is necessarily related to the growth of new minerals or if it is a product of stretching and thinning of layers due to increased deformation.

In the field there is a disparity in the mineralogy of iron formation among outcrops that are of different distances from the gabbro. There is also a disparity in the mineralogy of outcrops of similar deformational characteristics and similar distances from the gabbro. Therefore, the mineralogy of iron formation is not necessarily related only to its distance from the gabbro. For instance outcrops of iron formation at the base of the Standard Creek gabbro (AED05a-c) display a hummocky dented texture, are generally massive, and lack definitive banding (Fig. 3-9). The mineralogy of these rocks is grunerite + ferrohornblende + magnetite. Quartz was not visible in the field at this location. However, samples AED06A-K were collected in another location at a similar distance from the gabbro, displayed a similar degree of folding and deformation and had abundant visible quartz.



Figure 3-9. Outcrop of banded iron formation from the base of the Standard Creek gabbro that has a unique hummocky "dented " texture. Samples from this outcrop are deformed, lack definitive banding, and quartz and magnetite have been replaced by grunerite, ferrohornblende and ferroactinolite.

# Phyllite

The blue-gray phyllite is less common in the contact aureole and lies between the Wolverine Creek gabbro to the west and the Standard Creek gabbro to the east (Samples AED09/AED012). The phyllite is composed of muscovite, quartz, graphite, minor biotite, and chlorite knots. In the field, the phyllite is micaceous, with distinguishing smooth surfaces and conchoidal fractures. Quartz knots are characteristic of the outcrops' knobby texture. Large andalusite crystals are visible in some samples when the rock is broken along the foliation, ranging in length from 5 mm to 10 cm (Fig. 3-10, 3-11). These crystals are white and pink with green muscovite rims. The fabric of the rock is crenulated and displays re-folded folds.



Figure 3-10. Large and alusite porphyroblasts in blue-gray phyllite; quarter for scale.



Figure 3-11. Large andalusite porphyroblasts, cut end-on.

There is a notable progression in degree of metamorphic grade from east to west within the phyllite unit. To the west the rocks are lower grade, break in planes, exhibit a lower degree of folding and are lacking andalusite crystals. The rocks to the east have a highly deformed fabric, break in chunks, and contain large andalusite porphyroblasts typically aligned parallel to one another. The andalusite porphyroblasts are more abundant toward the Standard Creek gabbro rather than the contiguous Wolverine Creek gabbro.

## Gabbro

In the field, the Standard Creek gabbro and the Wolverine Creek gabbro appear compositionally and texturally similar (Fig. 3-12); coarse grained, non-foliated (Fig. 3-13), massive, with a distinctive bouldery texture.



Figure 3-12. Exposure of Wolverine Creek gabbro. The gabbro intrusion stands out topographically from the surrounding banded iron formation and phyllite units.



Fig 3-13. Standard Creek gabbro in hand sample. This sample lacks foliation and is very coarse-grained. Scale in cm.

#### Petrography

Preparation of 42+ thin sections was performed at Smith College in Northampton, Massachusetts. Each thin section was analyzed and described petrographically using a Leitz Laborlux 11 POL series petrographic microscope. Mineral assemblages, reaction textures and estimated modes were noted. Photomicrographs were taken using an Olympus BH-2 microscope and Olympus DP70 digital camera.

#### **Relative Geothermometry**

Because the mineral assemblage in the banded iron formation is uniform throughout the aureole, the mineralogy alone does not indicate what effect the gabbro had on its host rocks. To assess the thermal effect of the gabbro on the banded iron formation, four thin sections from different locations throughout the aureole, were selected to be analyzed on the JEOL JSM 6400 Scanning Electron Microscope using energy-dispersive x-ray spectroscopy to determine mineral compositions. These thin sections were polished to one-micron grit, carbon-coated using a vacuum evaporator, and analyzed at an accelerating voltage of 20kV and a working distance of 15 mm. The energy dispersive x-ray microanalysis spectra were quantified with standards based software.

## Age Dating

A sample of andalusite porphyroblast-rich phyllite from near the Standard Creek gabbro was sent to the University of Massachusetts for Th-Pb chemical dating. Monazites from the matrix of this sample were analyzed using an electron microprobe to

give a date of the last metamorphic event experienced by the phyllite under the supervision of Micheal Jercinovic.

At the University of Massachusetts, a thin section of the andalusite-rich phyllite was carbon coated and high resolution cerium compositional scanning was performed in order to locate monazites. Five monazites from the thin section were chosen for analysis. Several points on each monazite were analyzed for concentrations of Th, U, and Pb. Compositional mapping of Y, Ca or Mg was performed to locate monazite rims. If present, the rim and core of the monazites were analyzed for Th, U, and Pb. Ages were calculated using the isotopic ratio of Th to Pb (M.L. Williams et al., 2006).

## **CHAPTER 4:**

## PETROGRAPHIC ANALYSIS

A total of 39 thin sections were petrographically analyzed for thermal and barometrically indicative mineral assemblages and reaction textures. Appendix 4-1 lists the mineral assemblages of each thin section and any petrographically significant characteristics including textural and mineralogical descriptions of specific thin sections.

The purpose of the petrographic study was to evaluate the effect the gabbro intrusion may have had on its host rocks. The reaction textures of rock suites radiating from the gabbro provided insight into the extent of the contact metamorphism because subtle changes in textures could be noted from thin section to thin section. The dominant lithologies of the Standard Creek contact aureole, banded iron formation and phyllite were analyzed for changes in mode, thickness of compositional banding and grain size, kinematic indicators, trends in mineral shapes, growth orientation of grains, and contacts between the various minerals within the sample.

## **Banded Iron Formation**

Although the change in metamorphic grade of banded iron formation was apparent in the field nearer to the gabbro, the change in metamorphism on a smaller scale is more obscure and becomes somewhat ambiguous with increasing proximity to the gabbro. Because the rocks are layered, a thin section may not accurately represent the mineral assemblage or mode of the rock as a whole. Varying compositional layering in the iron formation made it difficult to discern if a change in composition in a sequence of

samples was due to metamorphism or to the original composition. Highly deformed samples in which layering is less visible or absent altogether were the most difficult to characterize. The thickness of compositional banding was also difficult to determine because layer thickness was not uniform in every sample. Despite the challenges associated with analyzing thin sections of banded iron formation, general trends can be observed in samples nearing the gabbro.

The mineral assemblage of the banded iron formation is quartz + magnetite + grunerite + ferrohornblende + ferroactinolite. Quartz and magnetite dominate rocks at the periphery of the aureole. Grunerite, ferrohornblende, and ferroactinolite dominate rocks closest to the gabbro (Fig. 4-1).

Magnetite layers up to 2 in. thick were observed in the field at the periphery of the aureole. However, thin sections made of quartz- and magnetite-rich samples have magnetite layers with an average thickness of 4 mm and a maximum thickness 15 mm (13H, 09C, 13D, 13I1). Within the magnetite layers of some samples are finer magnetite lamellae approximately .25 mm thick (Fig. 4-2). The thickness of quartz layers varies from sample to sample and, like the magnetite layers, may be controlled by the original bedding. Individual magnetite grains give the appearance of "floating" in the quartz layers and are typically aligned parallel to layering.

Metamorphic mineral growth of ferrohornblende, grunerite and ferroactinolite is not significant in samples farthest from the gabbro. These minerals tend to be concentrated between the fine magnetite lamella, in contact with magnetite layers or in contact with individual magnetite grains. Grunerite grains in samples from the periphery tend to be acicular and nucleate on magnetite grains floating in the quartz layer or on the



Figure 4-1: Thin section photos displaying the change in metamorphic mineral growth in banded iron formation across the Standard Creek contact aureole. Figure 1a, a sample collected from the periphery of the aureole, is comprised of thick bands of quartz and magnetite with some grunerite growth. Figure 1b, a sample collected in close proximity & is dominated by coarse grunerite. Magnetite and quartz layers have been significantly replaced. (Width of thin sections 2cm)



Figure 4-2: Thin section photo displaying the variability of magnetite layers with little replacement by grunerite, ferrohornblende and ferroactinolite. Bands of magnetite in figure 1a are up to 3mm, in figure 4-2, magnetite layers are less than .5 mm. contact between magnetite layers and quartz layers (Fig. 4-3). The grains growing from floating magnetite are smaller than those that nucleate on or grow in contact with magnetite layers. The orientation of grunerite growth is random in general. However, grunerite commonly grows as sprays in which the needles are oriented in the same general direction. Ferrohornblende and ferroactinolite grow in a bladed form within magnetite layers and rarely in the quartz- magnetite matrix (Fig. 4-4, 4-5).

Samples collected nearer to the gabbro have different reaction textures, modes, grain coarseness and crystal habits than those samples far from the gabbro. Magnetite layers are thinner or are not present in samples collected closer to the gabbro. Grunerite and ferrohornblende have replaced magnetite at the edges and within magnetite layers such that the edges of the bands are not sharp and not easily discernible (Fig. 4-6). In many samples, magnetite exists as residual bands. Likewise, quartz layers seemingly decrease in width in samples nearer to the gabbro due to metamorphic mineral growth. However, in samples collected near to the gabbro, quartz is not as common as magnetite, which may be a result of its replacement or because the original compositional layering of the banded iron formation was not quartz-rich.

The mode and coarseness of grunerite increase with proximity to the gabbro. Grunerite exists in thick bands parallel to magnetite and quartz layers if present. Grunerite is the dominant mineral in the majority of samples near to the gabbro. These observations suggest that grunerite is produced through the reaction:

Magnetite + Quartz + Water  $\rightarrow$  Grunerite + Oxygen 14 Fe<sub>3</sub>O<sub>4</sub> + 48 SiO<sub>2</sub> + 6 H<sub>2</sub>O  $\rightarrow$  6 Fe<sub>7</sub>Si<sub>8</sub>O<sub>22</sub>(OH)<sub>2</sub> + 7 O<sub>2</sub>



Figure 4-3: Thin section photomicrograph of acicular grunerite nucleating on a thin magnetite layer. The grunerite has grown into a quartz layer with no preferred orientation. (ppl)



Figure 4-4: Thin section photomicrograph of medium to fine-grained ferrohornblende concentrated within a magnetite layer, a typical occurence within banded iron formation formation. Fine acicular grunerite has grown into a quartz layer at the bottom right of the photograph. (ppl)



Figure 4-5: Thin section photomicrograph from sample 13I collected at the periphery of the contact aureole. A small quartz boudin within a magnetite has has begun to grow ferrohornblende within the magnetite layer and at the contact between the quartz and magnetite layer. Fine-grained acicular grunerite has grown in the quartz matrix. (ppl)



Figure 4-6: Thin section photograph of a magnetite layer of banded iron formation sample colleced near the Standard Creek contact aureole. Coarse grunerite blades have replaced much of the layer. (Width is 2 cm)

Grunerite growing in quartz has a distinctive spiny texture that forms sprays extending from magnetite layers into quartz layers. These parallel or radiating aggregates are comprised of coarser grunerite grains and form thicker bundles than the sprays of samples farther from the gabbro (Fig 4-7, 4-8). Grunerite crystals not in contact with quartz are bladed or columnar and coarse-grained (1-3 mm). Grunerite is also present within magnetite layers. Crystals commonly grow from grunerite bands into the magnetite layers. Grunerite crystals in contact with magnetite and ferrohornblende or ferroactinolite are finer-grained (.05-.1 mm)(Fig 4-9, 4-10).

The mode and coarseness of ferrohornblende and/or ferroactinolite increases with proximity to the gabbro but not to as great an extent as grunerite. The grains are typically concentrated within magnetite layers or in contact with individual magnetite grains. Ferrohornblende and ferroactinolite are texturally similar. However, in some thin sections, ferrohornblende can be distinguished by its deep green to blue color and ferroactinolite by its lighter green color. These minerals commonly take on the form of surrounding grunerite. In some samples ferrohornblende and ferroactinolite exist in alternating bands parallel to layering. When analyzed for chemical compositions, it was found that the pale green amphibole contained less aluminum, sodium and potassium than the dark green to blue amphibole. This chemical distinction allows the pale green amphibole to be characterized as ferroactinolite and the deep green as ferrohornblende.

The orientation of mineral growth is dictated by the compositional layering in samples within proximity to the gabbro and at the periphery of the aureole. In general, the amphiboles have grown perpendicular to the compositional layering. However, a few



Figure 4-7: Thin section photomicrograph (ppl) of a coarse grunerite spray in a quartz layer



Figure 4-8: Thin section photomigraph (xpl) of a coarse grunerite spray in a quartz layer



Figure 4-9: Thin section photomicrograph (xpl)of coarse-grained bladed grunerite and finer-grained bladed grunerite. The fine-grained grunerite is growing in contact with the magnetite layer and the coarse-grained grunerite is not.



Figure 4-10: Thin section photmicrograph (ppl) of coarse-grained bladed grunerite.and finer-grained bladed grunerite. The fine-grained grunerite is growing in contact with the magnetite layer and the coarse-grained grunerite is not.

samples display an amphibole lineation that is parallel to the compositional layering, indicating deformation after growth.

#### **Phyllite**

Samples were collected in the phyllite unit in a west to east-northeast suite radiating from the Wolverine Creek gabbro. The phyllite is not compositionally or deformationally contiguous, as suggested by the presence of variable mineral assemblages, modes, grain sizes, and reaction textures. The dominant constituents of the phyllite unit are muscovite and quartz. Some graphite is present in all samples analyzed. The modal percentage of graphite was difficult to determine because of its opacity and black color, which made it appear more abundant.

There are two mineral assemblages present in the phyllite unit that are differentiated by the presence of andalusite or staurolite plus andalusite. Each of these mineral assemblages has associated reaction textures that are characteristic of samples with that assemblage.

Samples containing the mineral assemblage andalusite + chlorite + muscovite + quartz + graphite have a porphyroblastic-foliated texture (Fig. 4-11). The matrix of these samples is composed of muscovite, quartz and graphite. Quartz is typically fine-grained and present between fine layers of graphite (<. 5 mm) (Fig. 4-12). However, some samples contain inter-bedding of coarse-grained, undulatory quartz, located between bent layers of graphite, and fine-grained quartz. Graphite lamellae are up to 1 mm thick, but are typically too fine to measure. The graphite defines the fabric of the rock by its strong

crenulations that tends to bend around other minerals or pseudomorphs present in the rock (Fig. 4-13). Because the graphite is black and opaque, it gives the appearance that it is defining the crenulations. However, graphite is weak. It is more likely that the graphite follows the muscovite and therefore the muscovite "defines" the crenulations.

Subhedral porphyroblasts of andalusite range in size to from 1 to 2 cm across and are surrounded by muscovite rims 1-3mm wide (Fig. 4-11). In some samples, andalusite has been significantly replaced by sericite around the rims and within planes of weakness. These porphyroblasts are composed primarily of sericite with elongate finger-shaped remnants of andalusite at the cores.

The andalusite porphyroblasts are not crenulated but appear to dictate the fabric of the rock such that surrounding graphite and matrix muscovite form bows that flank the edges of the muscovite rims. Quartz inclusions are common in andalusite crystals. Chlorite is present as a minor constituent, typically growing in contact with graphite within or along the muscovite rim of andalusite. Chlorite grains have no distinct orientation, but typically grow in felted masses with a platy to bladed form. Samples of coarse chlorite are found in contact with coarse muscovite that is not associated with the muscovite rims of the andalusite.

Samples containing staurolite are texturally and modally distinct from the samples containing andalusite porphyroblasts. These samples display a mineral assemblage of staurolite + andalusite + chlorite + muscovite + quartz + graphite+ feldspar (Fig. 4-14). These samples have a fine-grained matrix of quartz and graphite. The graphite is present as patches of very fine grains within the quartz matrix. Ilmenite laths and bows (<. 5 mm)



Figure 4-11: Thin section photograph of phyllite sample 09e, containing andalusite porphyroblasts with muscovite rims. Graphite in the matrix follows the contours on the porphyroblast. This sample was analyzed for monazites (see results). Width is 2 cm.



Figure 4-12: Thin section photograph of phyllite sample 12C. Graphite displays crenulated fabric, characteristic of the unit. The opaque mineral is graphite. In between the graphite is quartz and muscovite.



Figure 4-13: Thin section photomicrograph in cross-polarized light of andalusite porphyroblasts with sericte rims. Thick graphite bands bend around the contours of the porphyroblast.



Figure 4-14 : Thin section photomicrograph in cross-polarized light of phyllite sample 11C. This this section shows staurolite porphyroblasts with sericite rims in a matrix of muscovite, quartz and graphite. Chlorite displays anomolous interference colors and grows in contact with the staurolite porphyroblasts. Black laths are ilmenite. appear to "float" in the matrix and also over grow staurolite porphyroblasts (Fig. 4-14). Subhedral feldspar porphyroblasts overgrow and preserve crenulated graphite.

Staurolite porphyroblasts range in size from 1- 6 mm and are much smaller than the andalusite porphyroblasts. The muscovite moats around staurolite are much smaller than those surrounding andalusite porphyroblasts in some samples. In other samples, muscovite significantly replaces staurolite leaving only a remnant core. Some porphyroblasts have been completely pseudomorphed to muscovite after staurolite.

Primary chlorite is present in these samples as large knots and coarse grains displaying twin lamellae. The chlorite lacks a distinctive orientation, but it is typically in contact with the fine-grained muscovite moats. In one sample, chlorite is in contact with staurolite within the muscovite rim. Sample 11C is unique because it contains porphyroblasts of both staurolite and andalusite, some of which are in contact, sharing a muscovite moat (Fig. 4-15). The fabric of this sample is distinctive because the staurolite porphyroblasts and muscovite rims have overgrown and preserve a crenulated fabric, similar to that of the surrounding graphite (Fig. 4-16).



Figure 4-15: Thin section photomicrograph in cross-polarized light of staurolite-andalusite porphyroblast with sericite rim from phyllite sample 09F.



Figure 4-16: Thin section photomicrograph in cross-polarized light of staurolite porphyroblast with sericite rim from phyllite sample 11C. This porphyroblast has overgrown a pre-existing crenulated fabric.

#### CHAPTER 5:

## RESULTS

## **Banded Iron Formation**

#### **Modal Percents**

The modal percentages of grunerite, ferrohornblende, ferroactinolite and magnetite in quartz-rich rocks are plotted against the distance from the gabbro in order to express graphically the change in mode across the aureole (Fig. 5-1). As the distance from the gabbro increases, the modal percentage of grunerite and of ferrohornblende/ferroactinolite decrease, whereas the modal percentage of magnetite increases. It was expected that samples farthest from the gabbro would have a higher percentage of quartz because it is a reactant for the reaction to produce grunerite, however, the amount of quartz shows little variance. This incongruity may be explained by the fact that thin sections do not necessarily represent the modal proportion of a rock as whole. Thin sections of rocks collected near the gabbro may have been preferentially selected to include quartz-rich layers that display interesting reaction textures.

The modal percentages of grunerite, ferrohornblende, ferroactinolite and magnetite in quartz-poor rocks plotted against the distance from the gabbro show that the modal percent of grunerite is fairly constant in quartz-poor rocks throughout the aureole (Fig. 5-2). There is an increase in grunerite about 50 m from the gabbro and a decrease in grunerite between 70 m and 91 m from the gabbro. It was expected that the percent of grunerite would decrease as distance from the gabbro increased. However, the lack of a simple trend in the data indicates that temperature is not the only factor in determining



Figure 5-1. Modal percentage of grunerite, ferrohornblende, ferroactinolite, magnetite, and quartz in quartz-poor banded iron formation samples plotted against distance in meters from the Standard Creek gabbro. Gaps in data were extrapolated to cover the distance between the closest and farthest sample to and from the gabbro. The graph shows the general trend that modal percentage of grunerite, ferrohornblende and ferroactinolite increases nearing the gabbro while the modal percentage of magnetite decreases. Quartz does not show a consistent trend.



Figure 5-2. Modal percentage of grunerite, ferrohornblende, ferroactinolite, and magnetite in quartz-poor banded iron formation samples plotted against distance in meters from the Standard Creek gabbro. Gaps in data were extrapolated to cover the distance between the closest and farthest sample to and from the gabbro. The highest percentages of grunerite, ferrohornblende and ferroactinolite are within proximity to the gabbro, while magnetite tends to decrease within proximity to the gabbro.

the extent of grunerite growth. The major discrepancy at 21 m from the gabbro represents sample 05C. The anomalously low modal percentage of grunerite may be due to the presence of thick bands (6 mm) of magnetite and decreased availability of reaction surface area to produce grunerite. There is a second major discrepancy at 77 m from the gabbro (sample 06d), the thin section for which contains a higher percentage of magnetite than the rock as a whole. Variations in modal percentages from a simple trend may also be explained by the presence or lack of water, a necessary reactant for the grunerite-producing reaction. The composition of the banded iron formation is not uniform across the aureole and the original chemistry may increase or decrease the likelihood for metamorphic mineral growth to occur.

#### Thermometry

The lack of minnesotaite, which is unstable above 350° C and 1kb and the presence of grunerite, which is unstable above 600°C, places the temperature of the metamorphism of the banded iron formation between these bounds (Kerrick, 1991).

#### **Relative Thermometry**

Because the mineral assemblage in the banded iron formation is uniform throughout the aureole, the modal mineralogy does not clearly indicate what effect the gabbro had on its host rocks through iron formation isograds. In the absence of discontinuous reactions, the possibility of continuous reactions was explored by examining the Fe-Mg compositions of coexisting grunerite and ferrohornblende. The mineral formulas for grunerite and ferrohornblende were recalculated using stoichiometry

to place limits on the amount of ferric iron in the amphibole (Leake et al., 1997). The results were plotted using the mole percent ratio of magnesium to ferrous iron in the hope that the distribution of these elements between ferrohornblende and grunerite pairs from each sample would represent the relative temperatures experienced. Higher temperature samples should have a Fe/(Mg+Fe) ratio that is closer to one than lower temperature samples.

It was expected that higher temperature pairs of coexisting grunerite and ferrohornblende would have more similar values of Fe/(Mg+Fe) than lower temperature pairs. Figure 5-3 shows the Fe/(Mg+Fe) values for grunerite-ferrohornblende pairs from four iron formation samples at different distances from the gabbro contact. The results of the geothermometry test do not show a consistent change in the Fe/Mg distribution relative to the gabbro contact. The sample with the greatest difference in proportion of Mg and Fe is not the farthest from the gabbro. However the sample collected nearest to the gabbro plotted as expected, having the most similar ratio. The differences are small and the extent of the intrusion in the third dimension is unknown, both of which create uncertainty in these results. All four samples are similar in composition. Any differences in chemistry are insignificant and would not affect the ratio of Fe to Mg. These are only relative values as no experimental work has been done to calibrate this exchange thermometer (See Appendix 5-1 for original and recalculated values).

# **Phyllite**

#### Thermobarometry

The mineral assemblage staurolite + andalusite + chlorite + muscovite + quartz + graphite+ feldspar from the phyllite places pressure temperature constraints for this rock less than 4 kb and between 460° C and 540° C according to the P-T grid for pelites in the KFMASH system (Spear, 1993). The presence of hydrous minerals and the ductility of the rocks present suggest pressures at or above 2kb. Andalusite, stable only below 4kb, gives a strong upper pressure constraint. For the upper temperature constraint, cordierite goes to chlorite plus aluminosilicate at 540°C. For the lower temperature constraint chloritoid and aluminosilicate go to staurolite at 460°C.



Figure 5-3. Mole percent ratio of magnesium to ferrous iron in ferrohornblende-grunerite pairs based on stoichiometry recalculated for ferrous and ferric iron. Sample 06E is the closest to the gabbro and sample 13J2 is farthest from the gabbro.

#### **Monazite Dating**

The Th/Pb dating of the phyllite indicates a metamorphic age of 2.55±.03 Ga based upon analyses of five monazites in phyllite sample 09e (Fig. 5-4). Chemical mapping of Y, Ca, Th and U in these monazites shows that monazites M3 and M5 have distinct compositional rims (Fig. 5-5). The rims and cores of these monazites were analyzed for Th/Pb to establish the ages of both. The results of the analyses of all five monazites, including the rims and cores of M3 and M5 (Fig. 5-6) were plotted as Gaussian normal probability distribution curves. The width of each curve is a graphical representation of the standard deviation the data for one mineral domain. The peak of the curve represents the most probable age measurement (See Appendix 5-2). For monazites M3 and M5 an average of the two core and two rim analyses was plotted together as Gaussian normal probability distribution curves (Fig. 5-7).

Together, the results of the analysis of all five monazite grains give an age of 2.55±.03 Ga. The results for monazites M3 and M5 gives mean core measurements of 2.55±.03 Ga. and mean rim measurements of 2.52±.03 Ga. The significance of these results is that the rim and core dates of these monazites differ in age. As expected, the rim is younger than the core. It should be noted that the monazites from this sample were located in the muscovite rim and matrix of the phyllite sample. Monazites were not found in the andalusite porphyroblast.



1024 X 512 step size: 35 μ

Figure 5-4. Compositional map of cerium and magnesium. The presence of cerium indicates the location of monazites. Magnesium concentrations help show where on the thin section the monazites are located. Green dots show the location of zircons and the yellow dots show the location of monazites. The labled monazites M1-M5 were analyzed. Monazites do not appear to be located within the andalusite porphyroblasts. Only the muscovite rims and matrix were dated.



Figure 5-5. Chemical maps of monazites M1-M5 for Y, Ca, Th, & U. These maps were created to detect rims and cores. Monazites M3 and M5 display rims and cores.
# Gaussian Distribution Plot of Monazite Core and Rim Analyses



Figure 5-6: Gaussian distribution plot of monazite core and rim analyses of monazites M1, M2, M3, M4 and M5. Curves are based on standard deviation and weighted mean ages.

## Gaussian Distribution Plot of Monazite Rim and Core Analyses: Monazites M3 and M5



Figure 5-7. Gaussian distribution plot of monazite rim and core analyses for monazites M3 and M5. The red curve (rims) and blue curve (cores) are based on standard deviation and mean ages.

#### CHAPTER 6:

### **DISCUSSION & CONCLUSION**

The Standard Creek contact aureole represents a sequence of sedimentary units that have experienced both low-grade regional metamorphism and contact metamorphism as a result of the intrusion of a gabbro. The time of the intrusion in relation to the regional metamorphism is unknown. It is hypothesized here that the intrusion of the gabbro was concurrent with the regional metamorphism. Evidence to support this hypothesis is provided by field and petrographic observations of the banded iron formation and phyllite units.

#### **Banded Iron Formation**

#### Deformation

The deformation seen in the field is not typical of contact metamorphism. The increased deformation near gabbro may be evidence to suggest that a regional metamorphic event was occurring simultaneously. The intrusion of the gabbro may have heated the country rocks enough to increase their ductility. Alternatively, deformation following cooling of the gabbro may have deformed the ductile country rocks around the more rigid gabbro (Burger, personal communication).

#### Petrography

Rocks nearer to the gabbro have a coarser grain size and higher mode of the metamorphic minerals grunerite, ferrohornblende, and ferroactinolite, suggesting that rocks that were experiencing the effects of the regional metamorphism responded to increased temperature at the time of the intrusion. Rocks nearer to the gabbro contain less magnetite and less quartz because these minerals were utilized for the reactions to produce grunerite, ferrohornblende and ferroactinolite. Although magnetite and quartz layers could vary in thickness due to original depositional circumstances, it is clear from the reaction textures present that the metamorphic minerals are replacing the quartz and magnetite layers.

The disappearance of magnetite and quartz and the growth of grunerite and ferrohornblende in proximity to the gabbro require the addition of water, reduction of some of the iron, and sources of Ca, Na, and Al. Calcite, which is known to occur in banded iron formations, could have provided the calcium necessary to produce ferroactinolite and ferrohornblende. The source of the Na and Al is still unknown. Because the original depositional environment of banded iron formation is marine, there are various carbonate related minerals that could have been deposited and utilized for these reactions to occur including calcite, glauconite, and siderite (Raymond, 2002).

The iron formation metamorphic mineral assemblage is the same throughout the aureole. This suggests that the gabbro did not raise the temperature high enough to change the mineral assemblage of the banded iron formation across the aureole. With starting reactants of magnetite, quartz and water, different minerals would be expected with higher temperatures. Assuming low pressure conditions, one would expect to see greenalite below 250 °C, minnesotaite below 300 °C, and grunerite above 300 °C at 1 kb and above 350 °C above 1 kb. Because the mineral assemblage of the phyllite places tight pressure constrains between 2 and 4 kb, the maximum temperature reached by the banded iron formation can be narrowed. Between 2 and 4 kb, grunerite is unstable above 600 °C,

as grunerite breaks down to fayalite, quartz and water. Therefore, the temperature of the metamorphism experienced by the banded iron formation falls between 350 and 600 °C (Kerrick, 1991).

A uniform mineral assemblage in banded iron formation that has experienced contact metamorphism is unusual. In well studied contact-metamorphosed banded iron formations, there is typically a "complete gradation" across the contact aureole, except where the "low-grade equivalent is not exposed." It has been suggested that non-hydrous intrusions combined with "low permeability" of host rocks, result in "fluid buffering by local reaction assemblages." This phenomenon may result in "low-variance assemblages" in contact-metamorphosed banded iron formation (Kerrick, 1991).

#### Relative Thermometry

It was expected that higher temperature samples should have a Fe/(Mg+Fe) ratio that is closer to one than lower temperature samples. The results of the relative thermometry support the hypothesis that rocks closer to the gabbro experienced higher temperatures than those farther away, which is consistent with contact metamorphism. The significance of these results is that the gabbro intrusion had a thermal effect on its host rocks that is consistent with petrographic observations. The gabbro more significantly metamorphosed banded iron formation within its proximity than rocks at the periphery of the aureole. These temperatures were high enough to change the ratio of Mg to Fe in grunerite and ferrohornblende.

#### Orientation

The alignment of minerals in the banded iron formation offers insight into the sequence of metamorphic events because amphibole lineation is observed to parallel compositional layering in some samples. Grunerite and ferrohornblende align as if sheared on selected planes. This evidence suggests that the banded iron formation experienced some deformation contemporaneous with the growth of grunerite and ferrohornblende. However, if the rocks were hot enough to recrystallize then the growth may have predated the deformation. Because mineral growth is typically perpendicular to the compositional layering, there is also evidence to suggest that the growth of grunerite and ferrohornblende postdated most of the deformational events.

The evidence provided by the banded iron formation supports the hypothesis that the intrusion of the gabbro was contemporaneous with another metamorphic event. The timing of the intrusion relative to the start or end of that metamorphic event is unknown. There are three possible explanations for the deformation, alignment of minerals and the character of the mineral assemblages in the aureole. These are 1) the banded iron formation was hot at the time of intrusion, and thus in the middle of a regional metamorphic event; 2) the banded iron formation was warm, but not hot at the time of intrusion, and thus at the beginning or end of a regional metamorphic event; 3) the banded iron formation was cold at the time of intrusion, pre or post-dating the regional metamorphic event. Of these three possible explanations, the first and second are feasible and the most probable because they account for a supplementary and necessary source of heat/or pressure. The latter of the two is favored because of the uniformity of the mineral assemblage in the banded iron formation. If the rocks reached the maximum temperature of the regional metamorphism simultaneous with the maximum heat given off by the gabbro, one might expect to see higher grade metamorphic minerals such as fayalite, especially at the contact with the gabbro. The consistency of the assemblage suggests that the rocks were warm, but not quite warm enough to produce grunerite, ferrohornblende and ferroactinolite. The intrusion of the gabbro may have provided the necessary heat boost to catalyze these metamorphic reactions, supported by the change in grade across the aureole. If the rocks were warm and ductile, they could have been deformed prior to mineral growth, which would account for the alignment of minerals perpendicular to bedding.

The third explanation may be feasible, but is not probable. It is unlikely that the gabbro intrusion could have provided the heat necessary to produce the metamorphic reactions present, especially under low-pressure conditions. Thermal models of intruding magma bodies (Jaeger, 1964) show that the maximum temperature at the contact is only one half the difference in temperature between the magma and the rocks it intrudes. The extent of grunerite and ferrohornblende growth cannot be achieved by a simple intrusion into cold rocks.

#### Phyllite

#### Thermobarometry

The maximum temperature and pressure experienced by the phyllite were 560°C and 4 kb, respectively, supporting the iron formation evidence that the contact aureole experienced low-grade metamorphism.

#### Monazite Dating

The Th/Pb dating of the phyllite provides a metamorphic age of 2548±30 Ga, indicating that the Standard Creek contact aureole was not sufficiently affected by the Big Sky orogeny at 1.8 Ga to grow monazites.

The age discrepancy between the rim and cores of monazites M3 and M5 suggests that after initial crystallization of monazite, there was a temperature increase that resulted in continued monazite growth. Although the source of the temperature increase is unknown, it is speculated here that the temperature increase may represent a heat flux due to the intrusion of the Standard Creek gabbro.

The metamorphic age of the phyllite may not have implications for the extent of the Big Sky orogeny as represented by Giletti's line, as that line was determined using Ar/Ar ages of muscovite, which can be reset at temperatures below the thermal conditions for monazite growth. The nature of the metamorphic event at 2.5 Ga that resulted in monazite growth is unknown.

#### **Deformation**

Although there appeared to be an increase in deformation of the phyllite unit from west to east toward the Standard Creek gabbro, it is uncertain if the deformation was related to intrusion of the gabbro. The deformational features that characterize the phyllite, including multiple strong foliations, folding and crenulations, are not typically characteristic of a contact aureole. The deformation, therefore, may have been caused by regional metamorphism, or contact metamorphism in combination with regional metamorphism, rather than contact metamorphism alone.

The phyllite unit is 315 m from the gabbro intrusion, a distance that may have been too far for the gabbro to have a significant thermal effect. Banded iron formation with a similar distance from the gabbro displays few mineral reaction textures and little deformation. In addition, a fault lies within the vicinity of the phyllite suite and may actually cross it so it cannot be said with great certainty that a change in deformation nearing the gabbro is representative of the original relative location and orientation. The change in the fabric of the rock from west to east may also be associated with a change in bulk chemistry of the rock.

The fabric of the phyllite indicates two folding episodes because folds have been refolded (Burger, personal communication). The two folding episodes may or may not be associated with the same metamorphic event.

#### Petrography

Graphite is crenulated and bows around the andalusite crystals. This evidence suggests that there were two directions of deformation to produce the crenulations and a

third deformational event to bend the graphite around the andalusite porphyroblasts. There are multiple scenarios that might account for this observation; however, it is most probable that the andalusite porphyroblasts grew before or simultaneously with one or more of the deformational episodes. The multiple deformational episodes may be a result of two or more metamorphic events or may represent multiple stages of one metamorphic event. Staurolite porphyroblasts overgrow and preserve a preexisting crenulated fabric. This feature suggests syntectonic growth (Passchier et al. 1998).

The sequence of metamorphic and deformational events recorded by the phyllite is complex and extensive; however, there is little evidence in the phyllite to indicate the timing of the intrusion relative to the regional metamorphic event. The presence of large andalusite porphyroblasts was thought by O'Neill (1998) to be the result of contact metamorphism. But the observation of similar porphyroblasts in a compositionally analogous phyllite unit outside of the contact aureole suggests that regional metamorphism, rather than contact metamorphism, is responsible for their growth (see Gerwin, 2006). Contact metamorphism may have aided growth by providing a heat boost, but there is no clear evidence in the phyllite to indicate the relative timing of the intrusion of the gabbro. Regional metamorphism appears to be the driving force behind deformation and porphyroblast growth.

#### Gabbro

It has been hypothesized here that the gabbro intrusion was contemporaneous with a regional metamorphic event. Although the gabbro was not analyzed in this study, it has been found that the Standard Creek gabbro is weakly foliated and displays a

reduced grain size near its contacts that appear to mimic chilled margins.

Mineralogically, it is an amphibolite, which is consistent with hydration and recrystallization during regional metamorphism. The weak foliation supports the interpretation that recrystallization was during regional metamorphism. The chilled margins suggest that the host rocks were warm, rather than hot, at the time of the intrusion.

#### **Tectonic Setting**

Harms et al. (2004) suggest that the deposition of rocks in the Gravelly Range was in a foreland basin that was eventually incorporated into a foreland-fold-and-thrustbelt during the Big Sky orogeny. The metamorphic ages determined in this study demonstrate the that the Standard Creek rocks and their metamorphism are much older than the Big Sky orogeny. Many details of the orogenic event at 2.5 Ga are still unknown; however, studies of Proterozoic foreland basins have revealed that sedimentary units of foreland basins are often intruded by gabbro dikes and sills. What causes these intrusions is unclear, especially because this phenomenon has not been observed in the Phanerozoic (Hoffman,1987). If this is the setting of the emplacement of the Standard Creek gabbro, it was a foreland basin for the 2.5 Ga orogeny, not the Big Sky orogeny. Based on the geochemistry of the Standard Creek gabbro, Siegel (2006) preferred a volcanic arc tectonic setting.

### Conclusion

The southern Gravelly Range, located in SW Montana, represents anomalously low grade rocks amidst higher grade rocks of the northern Gravelly Range and surrounding mountain ranges. The low grade rocks in this area, coupled with older metamorphic dates at 2.5 Ga rather than 1.8 Ga, make the southern Gravelly Mountains a curious and exciting location of study.

The Standard Creek contact aureole, located in the southern Gravelly Range, has a unique and complex geologic past that is open to multiple interpretations. The findings of this study show that the aureole is dominated by banded iron formation and phyllite that have been intruded by two plugs of coarse-grained gabbro. Field observations, petrographic analysis, and geothermobarometry of these two meta-sedimentary units indicate that they were affected by both low-grade regional metamorphism and contact metamorphism that occurred contemporaneously. The area was more recently incorporated into a foreland-fold-and-thrust belt during the Big Sky orogeny, giving it its present location and orientation. However, the major features of the Standard Creek gabbro and contact aureole significantly predate the Big Sky event.

#### REFRENCES

- Burger, H.R., 2004, General geology and tectonic setting of the Tobacco Root Mountains in Brady, J.B., Burger, H.R., Cheney, J.T., and Harms, T.A., eds., 2004, Precambrian Geology of the Tobacco Root Mountains, Montana: Geological Society of America Special paper 337, p. 1-14.
- Deer, W.A., Howie, R.A., Zussman, J., 1963. Rock-Forming Minerals. v. 2 Chain Silicates. Longmans, London, p. 203-373.
- Erslev, E.A., and Sutter, J.F., 1990, Evidence for Proterozoic mylonization in the northwestern Wyoming province: Geological Society of America Bulletin, v. 102, p. 1681-1694.
- Gerwin, D., 2006. A Regional Study of Metamorphosed Pelitic Rocks in Southwestern Montana. 19th Annual Keck Research Symposium in Geology Proceedings, <u>http://keck.wooster.edu/publications</u>
- Giletti, B.J., 1966, Isotopic ages from southwestern Montana: Journal of Geophysical Research, v. 71, p. 4029-4036
- Harms, T.A., Brady, John B., Burger, Robert H., and Cheney, John T., 2004, Advances in The geology of the Tobacco Root Mountains, Montana, and their implications for the history of the northern Wyoming province, in Precambrian Geology of the Tobacco Root Mountains, Montana: Geological Society of America Special Paper 337, p.227-243.
- Hoffman, P.F., 1987. Early Proterozoic Foredeeps, Foredeep Magmatism, and Superior-Type Iron-Formations of the Canadian Shield. Precambrian Geological Survey of Canada, Ottawa, Ontario KIA 0E4. American Geophysical Union, p. 85-98.
- Immega, I.P., and Klein, C., 1976, Mineralogy and petrology of some metamorphic Precambrian iron-formations of southwestern Montana: American Mineralogist, v. 61, p. 1117-1144.

- Jaeger, J.C., 1964. Thermal Effects of Intrusions. Reviews of Geophysics, v. 2, no. 3, p.443-466.
- Kerrick, D.M., 1991. Contact Metamorphism. Mineralogical Society of America. v 26, p. 847.
- Klein, C., 2005. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, v. 90, p. 1473-1499
- Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., and Youzhi, G. (1997) Nomenclature of amphiboles: Report of the Subcommittee on of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist, 82, 1019–1037.
- O'Neill, J.M., 1998, The Great Falls tectonic zone, Montana-Idaho: An Early Proterozoic collisional orogen beneath and south of the Belt Basin, in Berg, R.B., ed. Belt Symposium III- 1993: Montana Bureau of Mines and Geology Special Publication 112, p. 222-228.
- Passchier, C.W., Trouw, R.A.J., 1998. Microtectonics. Springer, Berlin. p.153-195.
- Raymond, L.A., 2002. Petrology: The Study of Igneous, Sedimentary & Metamorphic Rocks 2<sup>nd</sup> eds. McGraw-Hill Companies, Inc., New York, p. 455.
- Siegel, E., 2006. Geochemistry of Archean (?) Amphibolites in Southwestern Montana. 19<sup>th</sup> Annual Keck Research Symposium in Geology Proceedings, <u>http://keck.wooster.edu/publications</u>
- Spear, F.S., 1993. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineralogical Society of America, p. 344.
- Williams, M.L., Jercinovic, M.J., Goncalves, P., Mahan, K., 2006. Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. Chemical Geology 225, 1-15.

APPENDICES

#### Appendix 4-1 Mineral assemblages and petrographically significant characteristics including textural and mineralogical descriptions of specific thin sections: **BANDED IRON FORMATION Rock Type Estimated Mode Description of Mineralogy** Sample Structure ID 13G Mostly coarse-grained grunerite between fine layers of Small wavy folds (1-3mm Meta-BIF Magnetite 40 Fhb/Fact 10 magnetite (1-2mm) Alignment of magnetite grains in in amplitude) Grunerite 50 between layers, grunerite is more fine-grained in contact with magnetite grains. Ferrohornblende/ferroactinolite occasional grains in contact with magnetite. OUT DIT 2

| O6K  | Meta-BIF | Grunerite 60<br>Quartz 40                           | Coarse-grained grunerite. Acicular grains growing into<br>quartz layer, bladed grunerite growing in bands not into<br>quartz. Large splays up to 5mm long                                                                                                           | None                                                  |
|------|----------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 05H1 | Meta-BIF | Grunerite 50<br>Fhb 25                              | Magnetite layers very fine, have been significantly<br>replaced by grunerite, only residual bands in some                                                                                                                                                           | Linear bedding, no folding visible                    |
|      |          | Magnetite 25                                        | places. Grunerite is coarse. Ferrhornblende<br>concentrated between magnetite grains                                                                                                                                                                                |                                                       |
| 05C  | Meta-BIF | Magnetite 50<br>Grunerite 30<br>Fhb 20              | Thick magnetite bands have been replaced by grunerite<br>and ferrohornblende. Grunerite exists in the interstices<br>between bands of magnetite and is medium to fine<br>grained. Ferrohornblende coarse grained in grunerite<br>matrix and within magnetite layers | Bedding is slightly wavy<br>but fairly lineal overall |
| 14B  | Meta-BIF | Magnetite <5<br>Grunerite 20<br>Fhb 75              | Dominated by ferrohornblende, alternating bands of<br>fine and coarse-grained. Fine-grained in contact with<br>grunerite. Grunerite is very fine-grained.<br>Ferrohornblende has exolution lamellae                                                                 | Linear bedding                                        |
| 13H  | Met-BIF  | Grunerite 20<br>Magnetite 35<br>Fhb <5<br>Quartz 40 | Linear magnetite bands with fine magnetite lamellae in<br>between inter-bedded with quartz. Acicular grunerite in<br>quartz, slightly more bladed form in contact with<br>magnetite. Grunerite is fairly fine-grained                                               | Bedding is slightly wavy<br>but fairly lineal overall |

| Sample | Rock Type | Estimated Mode                                      | Description of Mineralogy                                                                                                                                                                                                                                                                                        | Structure                                                                                   |
|--------|-----------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 13P    | Meta-BIF  | Grunerite 70<br>Quartz 15<br>Fhb 15<br>Magnetite <5 | Coarse-grained grunerite, mostly bladed form, splays<br>where in contact with quartz. To parallel bands of<br>ferrohornblende (deep green-blue). Magnetite grains in<br>ferrohornblende layers (maybe remnants of may layers?).<br>Ferrohornblende takes on the form of grunerite or<br>overgrows the grunerite? | None                                                                                        |
| 09C    | Meta-BIF  | Magnetite 50<br>Quartz 25<br>Grunerite 20<br>Fhb 5  | Inter-bedding quartz and magnetite. Very fine-grained<br>grunerite grows mostly in quartz layer, in contact with<br>magnetite. Ferro grains, light and mostly in magnetite<br>layers but also some in grunerite patches.                                                                                         | Fairly linear bedding,<br>grunerite seems to grow<br>diagonal to magnetite<br>layers        |
| 09B2   | Meta-BIF  | Grunerite 60<br>Fhb 20<br>Magnetite 20              | Magnetite has been significantly replaced by very coarse-<br>grained grunerite so that edges of original magnetite<br>layers are indiscernible. Coarse-grained deep blue-green<br>ferrohornblende takes on the bladed form of grunerite.<br>Huge splays of grunerite but not quartz?                             | None                                                                                        |
| 131    | Meta-BIF  | Magnetite 45<br>Quartz 40<br>Grunerite 10<br>Fhb 5  | Inter-bedded quartz and magnetite. Very fine-grained<br>acicular grunerite in quartz layer. Slightly coarser bladed<br>form in contact with edges of magnetite layer.<br>Ferrohornblende grown in magnetite layer and somewhat<br>in contact with grunerite in contact with magnetite                            | Linear bedding of<br>magnetite with finer linear<br>lamellae of magnetite.<br>Quartz boudin |
| 13A    | Meta-BIF  | Grunerite 60<br>Fhb 30<br>Magnetite 10              | Medium grained grunerite forms dominant layer of thin<br>section. Aligned magnetite grains form parallel bands.<br>Blocky ferrohornblende is concentrated between and<br>around magnetite grains. Significant replacement of<br>magnetite by grunerite?                                                          | Linear bedding                                                                              |

| Sample<br>ID | Rock Type | Estimated Mode                                      | Description of Mineralogy                                                                                                                                                                                                                                                                                                                                                                                                        | Structure                                                                             |
|--------------|-----------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 06C          | Meta-BIF  | Grunerite 72<br>Fhb 8<br>Magnetite 15<br>Quartz <5  | Medium-grained grunerite replaces magnetite layers.<br>Grunerite grains grow from grunerite matrix into<br>magnetite layer. Grains growing into magnetite are much<br>for coarse-grained. Ferrohornblende "floats" in grunerite<br>matrix and is in magnetite layer                                                                                                                                                              | Linear bedding                                                                        |
| 06G          | Meta-BIF  | Grunerite 40<br>Quartz 35<br>Fhb 20<br>Magnetite <5 | Mostly medium grained grunerite form the matrix of this<br>sample. Coarse grunerite exists in splays growing into<br>the quartz layer. Ferrohornblende bands parallel quartz<br>layer- perhaps ferroactinolite here- cant get figure. One<br>layer-deep green, block form, other layer lighter green,<br>more coarser grains and more bladed form (could it be<br>had diff orientation?) Ferro always in contact with<br>quartz- | Slightly wavy, overall<br>linear bedding                                              |
| 13M          | Meta-BIF  | Grunerite 35<br>Fhb 15<br>Magnetite 10<br>Quartz 40 | Inter-bedding of quartz and magnetite. Between thicker<br>bands of magnetite, thin lamellae, ferrohornblende is<br>concentrated between these grains. Medium grunerite<br>grows throughout, mostly in quartz layers. Very coarse<br>grunerite (intergrown splays) make up a band between<br>two magnetite layers                                                                                                                 | Wavy bedding- deformed<br>in thin section because<br>layers bend but not<br>regularly |
| 06E          | Met-BIF   | Grunerite 80<br>Fhb 20-15<br>Magnetite <5           | Medium to coarser grained bladed grunerite matrix. Poor<br>layering of bladed medium grained ferrohornblende<br>generally aligned perpendicular to layering.                                                                                                                                                                                                                                                                     | None                                                                                  |
| 06B          | Meta-BIF  | Grunerite 40<br>Fact 40<br>Fhb 20                   | Inter-bedding of grunerite, ferroactinolite and<br>ferrohornblende. Ferroactinolite has exolution lamellae.<br>Ferrohornblende is distinguished by deep emerald green<br>bladed grains and ferroactinolite is distinguished by light<br>green color.                                                                                                                                                                             | None                                                                                  |

| Sample | Rock Type | Estimated Mode                                      | Description of Mineralogy                                                                                                                                                                                                                                         | Structure                                                                                                                |
|--------|-----------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|        |           |                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                          |
| 13J2   | Meta-BIF  | Quartz 50<br>Magnetite 30<br>Grunerite 15<br>Fhb 5  | Inter-bedding of quartz and magnetite with acicular very<br>fine-grained grunerite growing in the matrix and coarser<br>grained grunerite in contact with magnetite.                                                                                              | Linear bedding                                                                                                           |
| 05H2   | Meta-BIF  | Grunerite 50<br>Fhb 15<br>Quartz 25<br>Magnetite 10 | Parallel sequence, quartz center with coarse-grained<br>acicular grunerite splays, paralleled on both sided by<br>medium grained, blocky ferrohornblende, paralleled on<br>both sides by coarse grunerite (bladed) and significantly<br>replaced magnetite layers | Possible quartz boudin,<br>opposing bedding is<br>concave up and down                                                    |
| 06L2   | Meta-BIF  | Quartz 48<br>Grunerite 35<br>Fhb 12<br>Biotite 5    | Medium acicular grunerite in quartz layer, medium<br>bladed grunerite around quart boudin. Ferrohornblende<br>forms rim around grunerite with some minor biotite                                                                                                  | Quartz Boudin                                                                                                            |
| 06D    | Meta-BIF  | Grunerite 50<br>Magnetite 30<br>Fhb 20              | Parallel sequence, fine –grained bladed grunerite in<br>central layer, thin layers of fine-grained bladed<br>ferrohornblende parallel on both sides, paralleled by<br>thick magnetite layers (4 mm) paralleled by coarser<br>grunerite                            | Perhaps middle of replaced<br>boudin? Linear bedding<br>otherwise. Ferrohornblende<br>grows perpendicular to<br>layering |

## Appendix 4-1 Mineral assemblages and petrographically significant characteristics including textural and mineralogical descriptions of specific thin sections: PHYLLITE\*

| Sample    | Rock Type | Estimated Mode                                                                                              | Structure                                                                                                                                                                                                                                                                              |                                                               |
|-----------|-----------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| ID Sampic | ROCK Type | Estimated would                                                                                             | Description of Wineralogy                                                                                                                                                                                                                                                              |                                                               |
| 09E       | Phyllite  | Andalusite 40<br>Muscovite 25<br>Quartz 10<br>Graphite 15<br>Chlorite 10                                    | Large Andalusite porphyroblast 2cm with sericite rim in<br>matrix of muscovite, graphite and quartz. Graphite is<br>crenulated. Chlorite grows between muscovite rim pf<br>andalusite porphyroblast and graphite                                                                       | Crenulated fabric, graphite<br>bends around<br>porphyroblast. |
| 11C       | Phyllite  | Andalusite 5<br>Staurolite 10<br>Muscovite 20<br>Graphite 15<br>Chlorite 10<br>Quartz 15<br>Pseudomorphs 25 | Staurolite and andalusite porphyroblasts with muscovite<br>rims. Poikioblastic pseudomorphs (feldspar) preserved<br>crenulated fabric of original graphite, inclusion- quartz?<br>Staurolite porphyroblasts overgrow and preserve the<br>crenulated fabric characteristic of the rock. | Weak to moderate<br>crenulations                              |
| 09F       | Phyllite  | Staurolite 15<br>Sericite 20<br>Chlorite 15<br>Quartz 30<br>Graphite 20                                     | Staurolite porphyroblasts with sericite rims in a matrix or<br>quartz and graphite. Large primary chlorite in matrix and<br>in contact with staurolite within sericite rim                                                                                                             | Weakly crenulated                                             |
| 10E       | Phyllite  | Chlorite 10<br>Muscovite 30<br>Graphite 35<br>Quartz 25                                                     | Compositionally varied- contact between two chemically<br>different layers in this thin section. One layer<br>pseudomorphs                                                                                                                                                             | Wavy bedding, moderate crenulations                           |
| 12C2      | Phyllite  | Graphite 55<br>Biotite 5<br>Quartz 20<br>Muscovite 20                                                       | Inter bedding of graphite layers, muscovite, quartz                                                                                                                                                                                                                                    | Strongly crenulated                                           |

| Sample<br>ID | Rock Type | Estimated Mode                                                           | Description of Mineralogy                                                                                                | Structure             |
|--------------|-----------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 12D          | Phyllite  | Andalusite 40<br>Muscovite 10<br>Chlorite 10<br>Graphite 20<br>Quartz 20 | Andalusite porphyroblasts with sericite rims. Graphite<br>bends around porphyroblast Quartz Inclusions in<br>andalusite. | Moderately Crenulated |

\*Because of the optical properties of graphite, its opacity and black color, it tends to be modally overestimated. For the thin sections described in Appendix 4-1, the percentage of graphite is generally lower and the percentage of quartz and muscovite is generally higher than what it was observed to be.

## Appendix 5-1 Stoichiometry Recalculated for Fe3+ and Fe2+ Grunerite/ Ferrohornblende Analyses Samples 05H2, 06E, 13J2, 13P

| 05H2   |       |       |       |       |       |       |       |       |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| SiO2   | 49.06 | 46.07 | 48.40 | 48.23 | 48.87 | 47.14 | 48.03 | 47.68 |
| TiO2   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| A12O3  | 0.82  | 6.68  | 0.39  | 0.00  | 0.00  | 2.64  | 0.00  | 0.00  |
| Fe2O3  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| FeO    | 32.20 | 22.95 | 26.65 | 26.16 | 43.67 | 32.70 | 44.19 | 42.18 |
| MnO    | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| MgO    | 2.68  | 7.08  | 1.90  | 2.00  | 3.01  | 2.30  | 2.67  | 2.28  |
| CaO    | 11.23 | 11.29 | 22.13 | 22.38 | 0.84  | 11.70 | 1.00  | 3.10  |
| Na2O   | 0.54  | 1.54  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| K2O    | 0.00  | 0.27  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| H2O    |       |       |       |       |       |       |       |       |
| Totals | 96.52 | 95.89 | 99.46 | 98.77 | 96.39 | 96.48 | 95.89 | 95.23 |
| Si     | 3.94  | 7.56  | 7.25  | 7.41  | 7.53  | 7.56  | 7.51  | 7.58  |
| Ti     | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Al     | 0.08  | 0.50  | 0.07  | 0.28  | 0.00  | 0.50  | 0.00  | 0.00  |
| Fe+3   | 0.03  | 0.37  | 2.16  | 1.27  | 2.78  | 0.37  | 2.70  | 2.35  |
| Fe+2   | 2.13  | 4.02  | 1.18  | 2.60  | 2.85  | 4.02  | 3.07  | 3.26  |
| Mn     | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Mg     | 0.32  | 0.55  | 0.42  | 0.49  | 0.69  | 0.55  | 0.62  | 0.54  |
| Ca     | 0.97  | 2.01  | 3.55  | 2.78  | 0.14  | 2.01  | 0.17  | 0.53  |
| Na     | 0.08  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Κ      | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Н      | 1.00  | 2.00  | 2.00  | 2.00  | 2.00  | 2.00  | 2.00  | 2.00  |

| 06E    |       |       |       |       |       |       |       |       |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| SiO2   | 0.82  | 39.34 | 38.59 | 39.33 | 48.30 | 39.89 | 38.96 | 38.42 |
| TiO2   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Al2O3  | 32.20 | 11.65 | 12.77 | 12.55 | 0.61  | 12.24 | 13.65 | 13.07 |
| Fe2O3  |       | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| FeO    | 2.68  | 29.81 | 29.31 | 29.28 | 42.13 | 30.05 | 29.21 | 29.44 |
| MnO    | 11.23 | 0.00  | 0.00  | 0.00  | 0.26  | 0.00  | 0.00  | 0.00  |
| MgO    | 0.54  | 1.45  | 1.42  | 1.24  | 2.90  | 1.60  | 1.39  | 1.41  |
| CaO    | 0.00  | 10.62 | 10.64 | 10.77 | 0.73  | 10.64 | 10.33 | 10.66 |
| Na2O   | 0.00  | 1.68  | 1.92  | 1.68  | 0.00  | 2.10  | 2.08  | 1.97  |
| K2O    | 0.00  | 0.54  | 0.62  | 0.55  | 0.00  | 0.72  | 0.50  | 0.59  |
| H2O    |       |       |       |       |       |       |       |       |
| Totals | 47.47 | 95.11 | 95.27 | 95.39 | 94.94 | 97.24 | 96.12 | 95.55 |
| Si     | 6.44  | 6.41  | 6.28  | 6.38  | 7.54  | 6.96  | 7.25  | 6.23  |
| Ti     | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Al     | 2.26  | 2.24  | 2.45  | 2.40  | 0.11  | 1.26  | 0.68  | 2.50  |
| Fe+3   | 0.38  | 0.45  | 0.40  | 0.32  | 2.68  | 1.50  | 2.09  | 0.44  |
| Fe+2   | 3.62  | 3.62  | 3.59  | 3.65  | 2.82  | 3.24  | 3.03  | 3.55  |
| Mn     | 0.00  | 0.00  | 0.00  | 0.00  | 0.03  | 0.02  | 0.02  | 0.00  |
| Mg     | 0.38  | 0.35  | 0.34  | 0.30  | 0.67  | 0.49  | 0.58  | 0.34  |
| Ca     | 1.82  | 1.86  | 1.86  | 1.87  | 0.12  | 1.00  | 0.56  | 1.85  |
| Na     | 0.55  | 0.53  | 0.61  | 0.53  | 0.00  | 0.26  | 0.13  | 0.62  |
| K      | 0.12  | 0.11  | 0.13  | 0.11  | 0.00  | 0.06  | 0.03  | 0.12  |
| Η      | 2.00  | 2.00  | 2.00  | 2.00  | 2.00  | 2.00  | 2.00  | 2.00  |

| 06E    |       |       |       |       |       |       |       |
|--------|-------|-------|-------|-------|-------|-------|-------|
| SiO2   | 40.37 | 47.77 | 48.57 | 48.58 | 48.46 | 48.64 | 48.27 |
| TiO2   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Al2O3  | 9.66  | 0.30  | 0.33  | 0.37  | 0.66  | 0.30  | 0.18  |
| Fe2O3  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| FeO    | 30.01 | 41.62 | 42.58 | 42.58 | 41.75 | 42.43 | 42.68 |
| MnO    | 0.00  | 0.38  | 0.44  | 0.28  | 0.33  | 0.32  | 0.16  |
| MgO    | 1.92  | 3.24  | 2.92  | 2.88  | 3.14  | 3.07  | 3.13  |
| CaO    | 10.45 | 0.51  | 0.61  | 0.85  | 0.88  | 0.60  | 0.47  |
| Na2O   | 1.71  | 0.51  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| K2O    | 0.53  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| H2O    |       |       |       |       |       |       |       |
|        |       |       |       |       |       |       |       |
| Totals | 94.66 | 94.33 | 95.45 | 95.54 | 95.22 | 95.35 | 94.90 |
| ~      |       |       |       |       |       |       |       |
| Si     | 6.74  | 7.53  | 7.54  | 7.54  | 7.53  | 7.54  | 7.53  |
| Ti     | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Al     | 1.59  | 0.06  | 0.06  | 0.07  | 0.12  | 0.05  | 0.03  |
| Fe+3   | 1.27  | 2.61  | 2.75  | 2.73  | 2.61  | 2.76  | 2.76  |
| Fe+2   | 3.29  | 2.87  | 2.78  | 2.80  | 2.81  | 2.74  | 2.81  |
| Mn     | 0.01  | 0.05  | 0.06  | 0.04  | 0.04  | 0.04  | 0.02  |
| Mg     | 0.46  | 0.76  | 0.67  | 0.67  | 0.73  | 0.71  | 0.73  |
| Ca     | 1.21  | 0.09  | 0.10  | 0.14  | 0.15  | 0.10  | 0.08  |
| Na     | 0.38  | 0.16  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| K      | 0.08  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Η      | 2.00  | 2.00  | 2.00  | 2.00  | 2.00  | 2.00  | 2.00  |

| 13J2   |       |       |       |       |       |
|--------|-------|-------|-------|-------|-------|
| SiO2   | 39.82 | 50.35 | 50.86 | 50.69 | 50.87 |
| TiO2   | 0.00  | 0.00  |       |       |       |
| Al2O3  | 12.79 | 0.00  | 0.20  | 0.00  | 0.00  |
| Fe2O3  | 0.00  | 0.00  |       |       |       |
| FeO    | 24.96 | 34.37 | 34.44 | 34.19 | 34.42 |
| MnO    | 0.00  | 0.00  | 0.31  | 0.00  | 0.00  |
| MgO    | 4.20  | 9.15  | 9.23  | 9.14  | 9.06  |
| CaO    | 10.63 | 0.57  | 0.56  |       |       |
| Na2O   | 2.30  | 0.00  | 0.00  | 0.00  | 0.00  |
| K2O    | 0.44  | 0.00  | 0.00  | 0.00  | 0.00  |
| H2O    |       |       |       |       |       |
|        |       |       |       |       |       |
| Totals | 95.13 | 94.45 | 95.59 | 94.01 | 94.35 |
|        |       |       |       |       |       |
| Si     | 3.16  | 7.53  | 7.52  | 7.55  | 7.55  |
| Ti     | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Al     | 1.19  | 0.00  | 0.03  | 0.00  | 0.00  |
| Fe+3   | 0.29  | 2.18  | 2.11  | 2.34  | 2.36  |
| Fe+2   | 1.36  | 2.12  | 2.15  | 1.92  | 1.91  |
| Mn     | 0.00  | 0.00  | 0.04  | 0.00  | 0.00  |
| Mg     | 0.50  | 2.04  | 2.03  | 2.03  | 2.00  |
| Ca     | 0.90  | 0.09  | 0.09  | 0.00  | 0.00  |
| Na     | 0.35  | 0.00  | 0.00  | 0.00  | 0.00  |
| Κ      | 0.04  | 0.00  | 0.00  | 0.00  | 0.00  |
| Η      | 1.00  | 2.00  | 2.00  | 2.00  | 2.00  |

| 13P        |       |       |       |       |       |       |       |
|------------|-------|-------|-------|-------|-------|-------|-------|
| SiO2       | 37.56 | 38.10 | 47.80 | 47.98 | 46.98 | 47.97 | 48.77 |
| TiO2       | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| A12O3      | 14.77 | 14.94 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Fe2O3      | 0.00  | 0.00  |       | 0.00  | 0.00  | 0.00  | 0.00  |
| FeO        | 25.04 | 25.43 | 39.37 | 38.53 | 37.64 | 38.08 | 38.74 |
| MnO        | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| MgO        | 2.32  | 2.26  | 4.88  | 5.34  | 5.20  | 5.05  | 5.34  |
| CaO        | 10.12 | 10.01 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Na2O       | 2.20  | 1.94  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| K2O        | 0.52  | 0.58  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| H2O        |       |       |       |       |       |       |       |
|            |       |       |       |       |       |       |       |
| Totals     | 92.54 | 93.26 | 92.04 | 91.85 |       | 91.09 | 92.85 |
| <b>G</b> • | 2.00  |       |       | /     | 7 50  | 7.54  |       |
| Si         | 3.08  | 3.08  | 7.53  | 7.54  | 7.53  | 7.54  | 7.54  |
| Ti         | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Al         | 1.43  | 1.42  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Fe+3       | 0.24  | 0.31  | 2.70  | 2.68  | 2.69  | 2.68  | 2.69  |
| Fe+2       | 1.47  | 1.41  | 2.48  | 2.38  | 2.43  | 2.41  | 2.42  |
| Mn         | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Mg         | 0.28  | 0.27  | 1.15  | 1.25  | 1.20  | 1.22  | 1.21  |
| Ca         | 0.89  | 0.87  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Na         | 0.35  | 0.30  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| Κ          | 0.05  | 0.06  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
|            |       |       |       |       |       |       |       |

| 2/27/06     |         |           |              |              |          |               |           |               |             |           |          |           |            |            |              |
|-------------|---------|-----------|--------------|--------------|----------|---------------|-----------|---------------|-------------|-----------|----------|-----------|------------|------------|--------------|
| Analysis    | of AED  | 06E       |              |              |          |               |           |               |             |           |          |           |            |            |              |
| Meta-Bar    | nded Ir | on Form   | hation: The  | Standard (   | Creek Co | ontact Aure   | ole       |               |             |           |          |           |            |            |              |
|             |         |           |              |              |          |               |           |               |             |           |          |           |            |            |              |
|             |         |           |              |              |          |               |           |               |             |           |          |           |            |            |              |
|             |         |           |              |              |          |               |           |               |             |           |          |           |            |            |              |
| Location 1  | Gruner  | ite       |              |              |          |               |           |               |             |           |          |           |            |            |              |
| Elmt        | Line    | Spectrun  | Apparent con | cStat. Sigma | k Ratio  | k Ratio Sigma | Fit Index | Inten, Corrn. | Std. Corrn. | Element % | Sigma %  | Atomic %  |            | Compound % | Nos. of ions |
| Na          | К       | ED        | 0.1782       | 2 0.0472     | 0.0161   | 0.0043        | 1.7288    | 0.5741        | 1.0000      | 0.3104    | 0.0823   | 0.3578    | Na2O       | 0.4183     | 0.1360       |
| Ma          | к       | ED        | 1.2204       | 0.0435       | 0.0508   | 0.0018        | 0.1774    | 0.6341        | 1.0000      | 1.9244    | 0.0686   | 2.0982    | MaO        | 3.1908     | 0.7976       |
| Al          | к       | ED        | 0.0293       | 0.0412       | 0.0015   | 0.002         | 1.6866    | 0.7279        | 1.0000      | 0.0403    | 0.0565   | 0.0396    | AI2O3      | 0.0762     | 0.0151       |
| Si          | ĸ       | ED        | 21.551       | 0.1250       | 0.6803   | 0.0039        | 2.7042    | 0.9608        | 1.0000      | 22.4318   | 0.1301   | 21.1713   | SiO2       | 47,9881    | 8.0478       |
| Са          | к       | ED        | 0.3352       | 2 0.0472     | 0.0233   | 0.0033        | 0.4095    | 1.0448        | 3 1.0000    | 0.3208    | 0.0452   | 0.2122    | CaO        | 0.4489     | 0.0807       |
| Mn          | к       | ED        | 0.261        | 0.0732       | 0.0078   | 0.0022        | 2.1528    | 0.9937        | 1.0000      | 0.2633    | 0.0737   | 0.1271    | MnO        | 0.3400     | 0.0483       |
| Fe          | к       | ED        | 31,435       | 0.3037       | 0.5986   | 0.0058        | 2.2222    | 0.9634        | 1.0000      | 32.6299   | 0.3152   | 15.4877   | 7FeO       | 41,9777    | 5.8873       |
| 0           | Ка      | ED        |              |              |          |               |           |               |             | 36.5191   | 0.2418   | 60,5061   |            |            | 23.0000      |
| -           |         | Cati      | on sum 0.00  |              |          |               |           |               |             | 94,4400   | ) 1.0134 | 100.0000  | )          | 94,4400    | 15.0127      |
| * = <2 Siam | а       |           |              |              |          |               |           |               |             |           |          |           | r          |            |              |
|             |         |           |              |              |          |               |           |               |             |           |          |           |            |            |              |
|             |         |           |              |              |          |               |           |               |             |           |          |           |            |            |              |
| Location 1  | Gruner  | ite       |              |              |          |               |           |               |             |           |          |           |            |            |              |
| Elmt        | Line    | Spectrun  | Apparent con | cStat. Sigma | k Ratio  | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma %  | Atomic %  |            | Compound % | Nos. of ions |
| Na          | К       | ED        | 0.2180       | 0.0465       | 0.0197   | 0.0042        | 2.0339    | 0.5757        | 1.0000      | 0.3787    | 0.0807   | 0.4367    | Na2O       | 0.5105     | 0.1661       |
| Ma          | к       | ED        | 1.2426       | 0.0432       | 0.0517   | 0.0018        | 0.2419    | 0.6350        | 1.0000      | 1.9568    | 0.0680   | 2.1335    | MaO        | 3.2445     | 0.8115       |
| Al          | к       | ED        | 0.113        | 0.0414       | 0.0059   | 0.002         | 1.1343    | 0.7283        | 1.0000      | 0.1564    | 0.0569   | 0.1536    | AI2O3      | 0.2955     | 0.0584       |
| Si          | к       | ED        | 21,428       | 0.1249       | 0.6764   | 0.0039        | 2.3662    | 0.9597        | 1.0000      | 22.3279   | 0.1302   | 21.0727   | SiO2       | 47,7657    | 8.0157       |
| Ca          | ĸ       | ED        | 0.378        | 0.0492       | 0.0262   | 0.0034        | 0.7238    | 1.0445        | 1.0000      | 0.3620    | 0.0471   | 0.2394    | CaO        | 0.5064     | 0.0911       |
| Mn          | к       | ED        | 0.2959       | 0.0747       | 0.0088   | 0.0022        | 1.7917    | 0.9934        | 1.0000      | 0.2979    | 0.0752   | 0.1437    | 'MnO       | 0.3847     | 0.0547       |
| Fe          | к       | ED        | 31.1550      | 0.3036       | 0.5933   | 0.0058        | 3 1.6471  | 0.9630        | 1.0000      | 32.3502   | 0.3153   | 3 15.3547 | 7FeO       | 41.6179    | 5.8406       |
| 0           | Ка      | ED        |              |              |          |               |           |               |             | 36.4954   | 0.2419   | 60.4656   | 5          |            | 23.0000      |
|             |         | Cati      | on sum 0.00  |              |          |               |           |               |             |           |          |           |            | 94.3253    | 15.0381      |
| * = <2 Sigm | a       |           |              |              |          |               |           |               |             |           |          |           |            |            |              |
| Ŭ           |         |           |              |              |          |               |           |               |             |           |          |           |            |            |              |
| Location 1  | Ferroho | ornblende |              |              |          |               |           |               |             |           |          |           |            |            |              |
| Elmt        | Line    | Spectrun  | Apparent con | cStat. Sigma | k Ratio  | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma %  | Atomic %  |            | Compound % | Nos. of ions |
| Na          | K       | ED        | 0.826        | 0.0542       | 0.0745   | 0.0049        | 1.0508    | 0.6375        | 1.0000      | 1.2963    | 0.0850   | 1.4320    | Na2O       | 1.7474     | 0.5556       |
| Mg          | к       | ED        | 0.6349       | 0.0446       | 0.0264   | 0.0019        | 0.4839    | 0.6833        | 1.0000      | 0.9293    | 0.0652   | 0.9707    | MgO        | 1.5408     | 0.3766       |
| Al          | к       | ED        | 5.0089       | 0.0723       | 0.2582   | 0.0037        | 1.9403    | 0.7833        | 1.0000      | 6.3947    | 0.0923   | 6.0190    | -<br>Al2O3 | 12.0822    | 2.3352       |

| Si          | к       | ED        | 17.0544       | 0.1174      | 0.5383  | 0.0037        | 2.7887             | 0.935              | 1.0000      | 18.2322   | 0.1255  | 16.4865  | SiO2  | 39.0039    | 6.3963       |
|-------------|---------|-----------|---------------|-------------|---------|---------------|--------------------|--------------------|-------------|-----------|---------|----------|-------|------------|--------------|
| К           | к       | ED        | 0.6986        | 0.0543      | 0.0564  | 0.0044        | 0.565              | 1.0572             | 1.0000      | 0.6608    | 0.0513  | 0.4292   | K2O   | 0.7959     | 0.1665       |
| Са          | к       | ED        | 7.9104        | 0.1027      | 0.5490  | 0.0071        | 1.438 <sup>,</sup> | 1.0363             | 1.0000      | 7.6331    | 0.0991  | 4.8367   | CaO   | 10.6800    | 1.8765       |
| Fe          | к       | ED        | 21.8657       | 0.2559      | 0.4164  | 0.0049        | 1.1699             | 0.943 <sup>-</sup> | 1.0000      | 23.1842   | 0.2714  | 10.5432  | 2FeO  | 29.8260    | 4.0905       |
| 0           | Ka      | ED        |               |             |         |               |                    |                    |             | 37.3458   | 0.2375  | 59.2827  | ,     |            | 23.0000      |
|             |         | Cati      | on sum 0.00   |             |         |               |                    |                    |             |           |         |          |       | 95.6762    | 2 15.7972    |
| * = <2 Sigm | a       |           |               |             |         |               |                    |                    |             |           |         |          |       |            |              |
|             |         |           |               |             |         |               |                    |                    |             |           |         |          |       |            |              |
| Location 1  | Ferroho | rnblende  |               |             |         |               |                    |                    |             |           |         |          |       |            |              |
| Elmt        | Line    | Spectrun  | Apparent conc | Stat. Sigma | k Ratio | k Ratio Sigma | Fit Index          | Inten. Corrn.      | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Na          | к       | ED        | 0.8049        | 0.0543      | 0.0726  | 0.0049        | 1.3220             | 0.633              | 1.0000      | 1.2701    | 0.0857  | 1.4192   | Na2O  | 1.7121     | 0.5494       |
| Mg          | к       | ED        | 0.7888        | 0.0453      | 0.0328  | 0.0019        | 1.016              | 0.6799             | 1.0000      | 1.1601    | 0.0667  | 1.2258   | MgO   | 1.9236     | 0.4745       |
| AI          | к       | ED        | 3.9769        | 0.0674      | 0.2050  | 0.0035        | 2.0896             | 0.7776             | 1.0000      | 5.1143    | 0.0867  | 4.8692   | AI2O3 | 9.6631     | 1.8848       |
| Si          | к       | ED        | 17.8348       | 0.1190      | 0.5630  | 0.0038        | 1.8732             | 0.9453             | 1.0000      | 18.8689   | 0.1259  | 17.2585  | SiO2  | 40.3660    | 6.6804       |
| к           | к       | ED        | 0.4652        | 0.0525      | 0.0375  | 0.0042        | 0.414              | 1.056              | 1.0000      | 0.4403    | 0.0497  | 0.2893   | K2O   | 0.5304     | 0.1120       |
| Са          | к       | ED        | 7.7500        | 0.1014      | 0.5378  | 0.0070        | 0.5238             | 1.0374             | 1.0000      | 7.4708    | 0.0978  | 4.7883   | CaO   | 10.4529    | 1.8535       |
| Fe          | к       | ED        | 22.0092       | 0.2576      | 0.4191  | 0.0049        | 1.4967             | 0.943              | 1.0000      | 23.3270   | 0.2730  | 10.7301  | FeO   | 30.0097    | 4.1534       |
| 0           | Ka      | ED        |               |             |         |               |                    |                    |             | 37.0062   | 0.2364  | 59.4195  | 5     |            | 23.0000      |
|             |         | Cati      | on sum 0.00   |             |         |               |                    |                    |             |           |         |          |       | 94.657     | 7 15.7079    |
| * = <2 Sigm | a       |           |               |             |         |               |                    |                    |             |           |         |          |       |            |              |
|             |         |           |               |             |         |               |                    |                    |             |           |         |          |       |            |              |
| Location 2  | Gruneri | te Coarse | grained       |             |         |               |                    |                    |             |           |         |          |       |            |              |
|             |         |           |               |             |         |               |                    |                    |             |           |         |          |       |            |              |
| Elmt        | Line    | Spectrun  | Apparent conc | Stat. Sigma | k Ratio | k Ratio Sigma | Fit Index          | Inten. Corrn.      | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Mg          | к       | ED        | 1.1685        | 0.0435      | 0.0486  | 0.0018        | 0.2419             | 0.6377             | 1.0000      | ) 1.8324  | 0.0682  | 1.9670   | MgO   | 3.0383     | 0.7459       |
| AI          | к       | ED        | 0.1908        | 0.0430      | 0.0098  | 0.0022        | 0.4030             | 0.7324             | 1.0000      | 0.2604    | 0.0586  | 0.2519   | AI2O3 | 0.4921     | 0.0955       |
| Si          | к       | ED        | 21.9537       | 0.1266      | 0.6930  | 0.0040        | 1.1972             | 0.9628             | 1.0000      | 22.8021   | 0.1314  | 21.1878  | SiO2  | 48.7803    | 8.0340       |
| Са          | К       | ED        | 0.7806        | 0.0529      | 0.0542  | 0.0037        | 0.9429             | 1.0446             | 1.0000      | 0.7472    | 0.0507  | 0.4865   | CaO   | 1.0455     | 0.1845       |
| Mn          | к       | ED        | 0.2580        | 0.0751      | 0.0077  | 0.0022        | 1.493              | 0.9926             | 1.0000      | 0.2599    | 0.0757  | 0.1235   | MnO   | 0.3356     | 0.0468       |
| Fe          | к       | ED        | 31.5661       | 0.3039      | 0.6011  | 0.0058        | 1.2810             | 0.962              | 1.0000      | ) 32.7975 | 0.3157  | 15.3264  | FeO   | 42.1932    | 2 5.8115     |
| 0           | Ka      | ED        |               |             |         |               |                    |                    |             | 37.1854   | 0.2389  | 60.6569  | )     |            | 23.0000      |
|             |         | Cati      | on sum 0.00   |             |         |               |                    |                    |             |           |         |          |       | 95.8849    | 14.9182      |
| * = <2 Sigm | a       |           |               |             |         |               |                    |                    |             |           |         |          |       |            |              |
|             |         |           |               |             |         |               |                    |                    |             |           |         |          |       |            |              |
| Location 2  | Ferroho | rnblende  |               |             |         |               |                    |                    |             |           |         |          |       |            |              |
|             |         |           |               |             |         |               |                    |                    |             |           |         |          |       |            |              |
| Elmt        | Line    | Spectrum  | Apparent conc | Stat. Sigma | k Ratio | k Ratio Sigma | Fit Index          | Inten. Corrn.      | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Na          | К       | ED        | 0.7955        | 0.0540      | 0.0717  | 0.0049        | 1.2712             | 0.6342             | 1.0000      | 1.2542    | 0.0851  | 1.3968   | Na2O  | 1.6906     | 0.5417       |

| Mg          | к       | ED          | 0.6288             | 0.0447     | 0.0262  | 0.0019        | 0.9194    | 0.6807        | 1.0000      | 0.9238    | 0.0657   | 0.9729   | MgO   | 1.5317              | 0.3773       |
|-------------|---------|-------------|--------------------|------------|---------|---------------|-----------|---------------|-------------|-----------|----------|----------|-------|---------------------|--------------|
| AI          | к       | ED          | 4.7150             | 0.0709     | 0.2430  | 0.0037        | 3.0448    | 0.7810        | 1.0000      | 6.0374    | 0.0908   | 5.7291   | AI2O3 | 11.407:             | 3 2.2219     |
| Si          | к       | ED          | 17.0990            | 0.1175     | 0.5397  | 0.0037        | 4.3099    | 0.9374        | 1.0000      | 18.2421   | 0.1253   | 16.6300  | SiO2  | 39.025 <sup>2</sup> | 6.4497       |
| к           | к       | ED          | 0.6110             | 0.0542     | 0.0493  | 0.0044        | 0.6970    | 1.0578        | 1.0000      | 0.5776    | 0.0512   | 0.3782   | K2O   | 0.6958              | 0.1467       |
| Са          | к       | ED          | 7.8721             | 0.1026     | 0.5463  | 0.0071        | 0.6667    | 1.0375        | 1.0000      | 7.5876    | 0.0989   | 4.8471   | CaO   | 10.6163             | 3 1.8799     |
| Mn          | к       | ED          | 0.0614             | 0.0681     | 0.0018  | 0.0020        | 2.6250    | 0.9706        | 1.0000      | 0.0633    | 0.0702   | 0.0295   | MnO   | 0.0817              | 0.0114       |
| Fe          | к       | ED          | 22.0517            | 0.2569     | 0.4200  | 0.0049        | 3.0719    | 0.9437        | 1.0000      | 23.3669   | 0.2722   | 10.7129  | FeO   | 30.0610             | 4.1549       |
| 0           | Ka      | ED          |                    |            |         |               |           |               |             | 37.0567   | 0.2402   | 59.3035  |       |                     | 23.0000      |
|             |         | Cati        | on sum 0.00        |            |         |               |           |               |             |           |          |          |       | 95.1096             | 5 15.7835    |
| * = <2 Sigm | a       |             |                    |            |         |               |           |               |             |           |          |          |       |                     |              |
|             |         |             |                    |            |         |               |           |               |             |           |          |          |       |                     |              |
| Location 3  | Gruner  | ite         |                    |            |         |               |           |               |             |           |          |          |       |                     |              |
| Elmt        | Line    | Spectrum    | Apparent concSt    | at. Sigma  | k Ratio | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma %  | Atomic % |       | Compound %          | Nos. of ions |
| Mg          | К       | ED          | 1.1993             | 0.0432     | 0.0499  | 0.0018        | 0.1774    | 0.6346        | 1.0000      | 1.8897    | 0.0681   | 2.0539   | MgO   | 3.1332              | 0.7790       |
| Al          | К       | ED          | 0.0703             | 0.0415     | 0.0036  | 0.0021        | 0.8955    | 0.7288        | 1.0000      | 0.0965    | 0.0570   | 0.0945   | Al2O3 | 0.1823              | 0.0358       |
| Si          | К       | ED          | 21.6877            | 0.1263     | 0.6846  | 0.0040        | 3.845     | 0.961         | 1.0000      | 22.5656   | 0.1314   | 21.2316  | SiO2  | 48.2743             | 8.0529       |
| Са          | К       | ED          | 0.3527             | 0.0488     | 0.0245  | 0.0034        | 0.6762    | 1.0452        | 1.0000      | 0.3374    | 0.0466   | 0.2225   | CaO   | 0.4721              | 0.0844       |
| Mn          | к       | ED          | 0.1266             | 0.0732     | 0.0038  | 0.0022        | 2.4236    | 0.9940        | 1.0000      | 0.1274    | 0.0737   | 0.0613   | MnO   | 0.1645              | 0.0232       |
| Fe          | к       | ED          | 31.9688            | 0.3047     | 0.6088  | 0.0058        | 2.5098    | 0.9637        | 1.0000      | 33.1733   | 0.3162   | 15.6969  | FeO   | 42.6767             | 5.9537       |
| 0           | Ka      | ED          |                    |            |         |               |           |               |             | 36.7132   | 0.2381   | 60.6394  |       |                     | 23.0000      |
|             |         | Cati        | on sum 0.00        |            |         |               |           |               |             |           |          |          |       | 94.9030             | 14.9291      |
| * = <2 Sigm | a       |             |                    |            |         |               |           |               |             |           |          |          |       |                     |              |
|             |         |             |                    |            |         |               |           |               |             |           |          |          |       |                     |              |
| Location 3  | (rim of | grunerite i | n contact with fer | rohornblen | de)     |               |           |               |             |           |          |          |       |                     |              |
| Elmt        | Line    | Spectrum    | Apparent concSt    | at. Sigma  | k Ratio | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma %  | Atomic % |       | Compound %          | Nos. of ions |
| Mg          | К       | ED          | 1.2331             | 0.0439     | 0.0513  | 0.0018        | 0.387     | 0.6359        | 1.0000      | 1.9391    | 0.0691   | 2.0859   | MgO   | 3.2152              | 0.7908       |
| Al          | к       | ED          | 0.0717             | 0.0417     | 0.0037  | 0.0022        | 0.5970    | 0.7296        | 1.0000      | 0.0983    | 0.0572   | 0.0953   | AI2O3 | 0.1857              | 0.0361       |
| Si          | к       | ED          | 21.9910            | 0.1263     | 0.6942  | 0.0040        | 1.8732    | 0.9619        | 1.0000      | 22.8624   | 0.1313   | 21.2885  | SiO2  | 48.9092             | 8.0707       |
| Са          | К       | ED          | 0.3352             | 0.0502     | 0.0233  | 0.0035        | 0.5143    | <u> </u>      | 1.0000      | 0.3209    | 0.0480   | 0.2094   | CaO   | 0.4489              | 0.0794       |
| Mn          | К       | ED          | 0.2200             | 0.0783     | 0.0066  | 0.0023        | 2.7083    | 0.9937        | 1.0000      | 0.2214    | 0.0788   | 0.1054   | MnO   | 0.2859              | 0.0400       |
| Fe          | К       | ED          | 31.9856            | 0.3053     | 0.6091  | 0.0058        | 2.6144    | 0.9634        | 1.0000      | 33.2007   | 0.3169   | 15.5475  | FeO   | 42.7120             | 5.8942       |
| 0           | Ka      | ED          |                    |            |         |               |           |               |             | 37.1142   | 2 0.2392 | 60.6681  |       |                     | 23.0000      |
|             |         | Cati        | on sum 0.00        |            |         |               |           |               |             |           |          |          |       | 95.7570             | ) 14.9112    |
| * = <2 Sigm | a       |             |                    |            |         |               |           |               |             |           |          |          |       |                     |              |
|             |         |             |                    |            |         |               |           |               |             |           |          |          |       |                     |              |
| Location 3  | Gruner  | ite (same   | grai as above but  | in core)   |         |               |           |               |             |           |          |          |       |                     |              |
| Elmt        | Line    | Spectrum    | Apparent concSt    | at. Sigma  | k Ratio | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma %  | Atomic % |       | Compound %          | Nos. of ions |
| Mg          | К       | ED          | 1.2092             | 0.0436     | 0.0503  | 0.0018        | 0.1290    | 0.6388        | 1.0000      | 1.8929    | 0.0682   | 2.0433   | MgO   | 3.1386              | 0.7746       |

| AI          | к                                              | ED         | 0.2578          | 0.0429         | 0.0133        | 0.0022           | 1.2239        | 0.732          | 1.0000      | 0.3519                | 0.0585   | 0.3422               | AI2O3      | 0.6648              | 0.1297       |
|-------------|------------------------------------------------|------------|-----------------|----------------|---------------|------------------|---------------|----------------|-------------|-----------------------|----------|----------------------|------------|---------------------|--------------|
| Si          | к                                              | ED         | 21.7853         | 0.1260         | 0.6877        | 0.0040           | 2.8592        | 0.961          | 3 1.0000    | 22.651                | 0.1310   | 21.1645              | SiO2       | 48.4576             | 8.0238       |
| Са          | к                                              | ED         | 0.6556          | 0.0524         | 0.0455        | 0.0036           | 0.9333        | 1.044          | 1 1.0000    | 0.6279                | 0.0502   | 2 0.411 <sup>.</sup> | ICaO       | 0.8785              | 0.1558       |
| Mn          | к                                              | ED         | 0.2560          | 0.0767         | 0.0076        | 0.0023           | 1.5903        | 0.992          | 5 1.0000    | 0.2579                | 0.0773   | 0.1232               | MnO        | 0.333               | 0.0467       |
| Fe          | к                                              | ED         | 31.2274         | 0.3012         | 0.5947        | 0.0057           | 1.5948        | 0.962          | 3 1.0000    | 32.4493               | 0.3129   | 15.2479              | FeO        | 41.7453             | 3 5.7807     |
| 0           | Ka                                             | ED         |                 |                |               |                  |               |                |             | 36.986                | 0.2376   | 60.6678              | 3          |                     | 23.0000      |
|             |                                                | Cat        | ion sum 0.00    |                |               |                  |               |                |             |                       |          |                      |            | 95.2179             | 9 14.9114    |
| * = <2 Sigm | а                                              |            |                 |                |               |                  |               |                |             |                       |          |                      |            |                     |              |
|             |                                                |            |                 |                |               |                  |               |                |             |                       |          |                      |            |                     |              |
| Location 3  | Ferroho                                        | ornblende  | in contact with | above grune    | rite) (see    | photo)           | AED6E         |                |             |                       |          |                      |            |                     |              |
| Elmt        | Line                                           | Spectrun   | Apparent conc   | Stat. Sigma    | k Ratio       | k Ratio Sigma    | Fit Index     | Inten. Corrn.  | Std. Corrn. | Element %             | Sigma %  | Atomic %             |            | Compound %          | Nos. of ions |
| Na          | к                                              | ED         | 0.8532          | 0.0823         | 0.0769        | 0.0074           | 0.4068        | 0.641          | 5 1.0000    | 1.3299                | 0.1283   | 1.4632               | Na2O       | 1.7927              | 0.5667       |
| Mg          | к                                              | ED         | 0.7880          | 0.0674         | 0.0328        | 0.0028           | 0.5484        | 0.686          | 5 1.0000    | ) 1.1479              | 0.0982   | 1.1943               | MgO        | 1.9033              | 0.4625       |
| AI          | к                                              | ED         | 4.7570          | 0.1040         | 0.2452        | 0.0054           | 0.850         | 0.783          | 1.0000      | 6.0700                | 0.1328   | 5.6902               | AI2O3      | 11.468              | 8 2.2037     |
| Si          | к                                              | ED         | 17.5286         | 0.1758         | 0.5533        | 0.0055           | 1.1268        | 0.939          | 1.0000      | 18.659                | 0.1871   | 16.8044              | SiO2       | 39.918 <sup>.</sup> | 6.5081       |
| к           | к                                              | ED         | 0.4649          | 0.0756         | 0.0375        | 0.0061           | 0.4949        | 1.055          | 1.0000      | 0.4403                | 0.0716   | 0.2848               | K2O        | 0.5304              | 0.1103       |
| Са          | к                                              | ED         | 8.0556          | 0.1513         | 0.5590        | 0.0105           | 0.485         | 1.036          | 2 1.0000    | 7.7742                | 0.1460   | 4.9061               | CaO        | 10.8774             | 1.9001       |
| Mn          | к                                              | ED         | 0.0852          | 0.1009         | 0.0025        | 0.0030           | 0.9514        | 0.969          | 1.0000      | 0.0879                | 0.1042   | 0.0405               | MnO        | 0.113               | 5 0.0157     |
| Fe          | к                                              | ED         | 21.2773         | 0.3769         | 0.4052        | 0.0072           | 1.0654        | 0.942          | 1 1.0000    | 22.5842               | 0.4000   | 10.2287              | FeO        | 29.054 <sup>-</sup> | 3.9614       |
| 0           | Ka                                             | ED         |                 |                |               |                  |               |                |             | 37.5644               | 0.3552   | 59.3878              | 3          |                     | 23.0000      |
|             |                                                | Cat        | ion sum 0.00    |                |               |                  |               |                |             |                       |          |                      |            | 95.658              | 5 15.7285    |
| * = <2 Sigm | а                                              |            |                 |                |               |                  |               |                |             |                       |          |                      |            |                     |              |
|             |                                                |            |                 |                |               |                  |               |                |             |                       |          |                      |            |                     |              |
| Location 4  | Ferroho                                        | ornblende  | residual band   | of ferrohornb  | lende         | coarse graine    | d             | (center of gra | ain)        |                       |          |                      |            |                     |              |
| Elmt        | Line                                           | Spectrun   | Apparent conc   | Stat. Sigma    | k Ratio       | k Ratio Sigma    | Fit Index     | Inten. Corrn.  | Std. Corrn. | Element %             | Sigma %  | Atomic %             |            | Compound %          | Nos. of ions |
| Na          | к                                              | ED         | 0.9960          | 0.0559         | 0.0898        | 0.0050           | 0.6949        | 0.640          | 2 1.0000    | 1.5558                | 0.0873   | 1.6868               | Na2O       | 2.097               | 0.6548       |
| Mg          | к                                              | ED         | 0.6592          | 0.0450         | 0.0274        | 0.0019           | 0.5323        | 0.683          | 2 1.0000    | 0.9650                | 0.0659   | 0.9894               | MgO        | 1.6000              | 0.3840       |
| AI          | к                                              | ED         | 5.0735          | 0.0729         | 0.2615        | 0.0038           | 1.3582        | 0.783          | 1.0000      | 6.4802                | 0.0931   | 5.9865               | AI2O3      | 12.2438             | 3 2.3237     |
| Si          | к                                              | ED         | 17.4365         | 0.1189         | 0.5504        | 0.0038           | 1.5493        | 0.935          | 2 1.0000    | ) 18.646 <sup>,</sup> | 0.1272   | 16.5485              | SiO2       | 39.8893             | 6.4234       |
| К           | к                                              | ED         | 0.6288          | 0.0525         | 0.0508        | 0.0042           | 1.2222        | 1.056          | 1 1.0000    | 0.5954                | 0.0497   | 0.3796               | K2O        | 0.7172              | 2 0.1473     |
| Са          | к                                              | ED         | 7.8787          | 0.1023         | 0.5468        | 0.0071           | 1.4762        | 1.035          | 9 1.0000    | 7.6052                | 0.0987   | 4.7298               | CaO        | 10.641              | 1 1.8359     |
| Fe          | к                                              | ED         | 22.0251         | 0.2573         | 0.4194        | 0.0049           | 1.6144        | 0.942          | 9 1.0000    | 23.3573               | 0.2729   | 10.4252              | FeO        | 30.048              | 7 4.0466     |
| 0           | Ka                                             | ED         |                 |                |               |                  |               |                |             | 38.0323               | 0.2396   | 59.2542              | 2          |                     | 23.0000      |
|             |                                                | Cat        | ion sum 0.00    |                |               |                  |               |                |             |                       |          |                      |            | 97.2374             | 15.8158      |
| * = <2 Sigm | а                                              |            |                 |                |               |                  |               |                |             |                       |          |                      |            |                     |              |
|             |                                                |            |                 |                |               |                  |               |                |             |                       |          |                      |            |                     |              |
| Location 4  | Ferroho                                        | ornlende f | rom above getti | ng close to th | ne rim wh     | ere in contact v | with gruner   | te             |             |                       |          |                      |            |                     |              |
| Elmt        | Line Spectrun Apparent concStat. Sigma k Ratio |            |                 | k Ratio        | k Ratio Sigma | Fit Index        | Inten. Corrn. | Std. Corrn.    | Element %   | Sigma %               | Atomic % |                      | Compound % | Nos. of ions        |              |

| Na          | К      | ED           | 0.9948           | 0.0563          | 0.0897     | 0.0051          | 0.8983      | 0.6443        | 1.0000      | 1.5439               | 0.0873  | 1.6867    | Na2O  | 2.0812     | 2 0.6538        |
|-------------|--------|--------------|------------------|-----------------|------------|-----------------|-------------|---------------|-------------|----------------------|---------|-----------|-------|------------|-----------------|
| Mg          | к      | ED           | 0.5758           | 0.0450          | 0.0240     | 0.0019          | 0.3710      | 0.6868        | 1.0000      | 0.8384               | 0.0655  | 0.8661    | MgO   | 1.3901     | 1 0.3357        |
| AI          | К      | ED           | 5.6882           | 0.0756          | 0.2932     | 0.0039          | 2.5522      | 0.7875        | 1.0000      | ) 7.223 <sup>2</sup> | 0.0959  | 6.7235    | AI2O3 | 13.6474    | 4 2.6062        |
| Si          | К      | ED           | 16.9199          | 0.1175          | 0.5341     | 0.0037          | 5.521       | 0.9292        | 1.0000      | 18.2107              | 0.1265  | 16.2848   | 3SiO2 | 38.9580    | <b>)</b> 6.3125 |
| К           | K      | ED           | 0.4385           | 0.0507          | 0.0354     | 0.0041          | 1.2424      | 1.0544        | 1.0000      | 0.4159               | 0.0481  | 0.2671    | K2O   | 0.5010     | ) 0.1036        |
| Са          | K      | ED           | 7.6458           | 0.1010          | 0.5306     | 0.0070          | 1.390       | 1.0358        | 1.0000      | 7.3815               | 0.0975  | 4.6255    | CaO   | 10.3280    | <b>)</b> 1.7930 |
| Fe          | K      | ED           | 21.4047          | 0.2540          | 0.4076     | 0.0048          | 0.947       | 0.9426        | 1.0000      | 22.7060              | 0.2695  | 5 10.2114 | 4FeO  | 29.2108    | 8 3.9583        |
| 0           | Ka     | ED           |                  |                 |            |                 |             |               |             | 37.7970              | 0.2387  | 59.3348   | 3     |            | 23.0000         |
|             |        | Cat          | ion sum 0.00     |                 |            |                 |             |               |             |                      |         |           |       | 96.116     | 6 15.7631       |
| * = <2 Sigm | а      |              |                  |                 |            |                 |             |               |             |                      |         |           |       |            |                 |
|             |        |              |                  |                 |            |                 |             |               |             |                      |         |           |       |            |                 |
| Location 4  | Ferroh | ornblende    | (same) analysi   | s at rim of gra | ain in con | tact with greun | erite. (see | photo 06E(2)  | (600)       |                      |         |           |       |            |                 |
| Elmt        | Line   | Spectrun     | Apparent cond    | Stat. Sigma     | k Ratio    | k Ratio Sigma   | Fit Index   | Inten. Corrn. | Std. Corrn. | Element %            | Sigma % | Atomic %  |       | Compound % | Nos. of ions    |
| Na          | K      | ED           | 0.8435           | 0.0551          | 0.0761     | 0.0050          | 0.7119      | 0.6394        | 1.0000      | ) 1.3192             | 0.0862  | 1.4357    | Na2O  | 1.7782     | 2 0.5557        |
| Mg          | к      | ED           | 0.6645           | 0.0448          | 0.0277     | 0.0019          | 0.8710      | 0.6849        | 1.0000      | 0.9702               | 0.0654  | 0.9985    | MgO   | 1.608      | 7 0.3865        |
| AI          | K      | ED           | 4.9871           | 0.0725          | 0.2571     | 0.0037          | 2.7164      | 0.7845        | 1.0000      | 6.3574               | 0.0924  | 5.8952    | AI2O3 | 12.011     | 8 2.2819        |
| Si          | K      | ED           | 17.6497          | 0.1195          | 0.5571     | 0.0038          | 3.8732      | 0.9377        | 1.0000      | 18.8246              | 0.1275  | 16.7699   | SiO2  | 40.2712    | 2 6.4914        |
| К           | K      | ED           | 0.5367           | 0.0525          | 0.0433     | 0.0042          | 0.7980      | 1.055         | 1.0000      | 0.5085               | 0.0498  | 0.3254    | K2O   | 0.612      | 5 0.1260        |
| Са          | K      | ED           | 7.8655           | 0.1025          | 0.5458     | 0.0071          | 0.4667      | 1.0360        | 1.0000      | 7.5918               | 0.0989  | 4.7393    | CaO   | 10.6223    | 3 1.8345        |
| Fe          | К      | ED           | 21.9238          | 0.2570          | 0.4175     | 0.0049          | 1.9216      | 0.9428        | 1.0000      | 23.252               | 0.2726  | 10.4176   | FeO   | 29.9142    | 2 4.0325        |
| 0           | Ka     | ED           |                  |                 |            |                 |             |               |             | 37.994               | 0.2392  | 59.418    | 5     |            | 23.0000         |
|             |        | Cat          | ion sum 0.00     |                 |            |                 |             |               |             |                      |         |           |       | 96.8190    | 0 15.7085       |
| * = <2 Sigm | а      |              |                  |                 |            |                 |             |               |             |                      |         |           |       |            |                 |
|             |        |              |                  |                 |            |                 |             |               |             |                      |         |           |       |            |                 |
| Location 4  | Gruner | ite rim in c | ontact with abo  | ve ferrohornt   | olende     |                 |             |               |             |                      |         |           |       |            |                 |
| Elmt        | Line   | Spectrun     | Apparent cond    | Stat. Sigma     | k Ratio    | k Ratio Sigma   | Fit Index   | Inten. Corrn. | Std. Corrn. | Element %            | Sigma % | Atomic %  |       | Compound % | Nos. of ions    |
| Mg          | К      | ED           | 1.0964           | 0.0426          | 0.0456     | 0.0018          | 0.1774      | 0.6362        | 1.0000      | 1.7233               | 0.0669  | 1.8758    | MgO   | 2.8573     | 3 0.7102        |
| Al          | К      | ED           | 0.0878           | 0.0415          | 0.0045     | 0.0021          | 1.2836      | 0.7320        | 1.0000      | 0.1200               | 0.0566  | 0.1177    | AI2O3 | 0.2267     | 7 0.0445        |
| Si          | к      | ED           | 21.9386          | 0.1266          | 0.6925     | 0.0040          | 3.591       | 0.9641        | 1.0000      | 22.7568              | 0.1314  | 21.4419   | SiO2  | 48.6834    | 4 8.1179        |
| Са          | K      | ED           | 0.3365           | 0.0488          | 0.0234     | 0.0034          | 0.0952      | 1.0444        | 1.0000      | 0.3222               | 0.0468  | 0.2127    | CaO   | 0.4508     | 3 0.0805        |
| Mn          | К      | ED           | 0.2513           | 0.0772          | 0.0075     | 0.0023          | 1.1597      | 0.9936        | 1.0000      | 0.2530               | 0.0777  | 0.1219    | MnO   | 0.3266     | 3 0.0461        |
| Fe          | К      | ED           | 31.4670          | 0.3034          | 0.5993     | 0.0058          | 1.2680      | 0.9632        | 1.0000      | 32.6679              | 0.3150  | 15.4797   | 7FeO  | 42.026     | 5 5.8606        |
| 0           | Ka     | ED           |                  |                 |            |                 |             |               |             | 36.7282              | 0.2377  | 60.7504   | 4     |            | 23.0000         |
|             |        | Cat          | ion sum 0.00     |                 |            |                 |             |               |             |                      |         |           |       | 94.5713    | 3 14.8599       |
| * = <2 Sigm | а      |              |                  |                 |            |                 |             |               |             |                      |         |           |       |            |                 |
|             |        |              |                  |                 |            |                 |             |               |             |                      |         |           |       |            |                 |
| Location 4  | Gruner | ite as abo   | ve, farther from | contact with    | ferrohorn  |                 |             |               |             |                      |         |           |       |            |                 |
| Elmt        | Line   | Spectrun     | Apparent cond    | Stat. Sigma     | k Ratio    | k Ratio Sigma   | Fit Index   | Inten. Corrn. | Std. Corrn. | Element %            | Sigma % | Atomic %  |       | Compound % | Nos. of ions    |

| Mg          | К      | ED           | 1.116             | 0.0429          | 0.0465     | 0.0018        | 0.0968    | 0.6349        | 1.0000      | 1.7587               | 0.0676   | 1.9009    | MgO   | 2.9160     | 0.7207          |
|-------------|--------|--------------|-------------------|-----------------|------------|---------------|-----------|---------------|-------------|----------------------|----------|-----------|-------|------------|-----------------|
| Al          | к      | ED           | 0.1272            | 0.0415          | 0.0066     | 0.002         | 0.4179    | 0.7306        | 1.0000      | ) 0.174 <sup>-</sup> | 0.0568   | 0.1696    | AI2O3 | 0.3290     | 0.0643          |
| Si          | к      | ED           | 21.8410           | 0.1262          | 0.6894     | 0.0040        | 2.1408    | 0.9620        | 1.0000      | 22.703 <sup>-</sup>  | 0.1312   | 21.2412   | SiO2  | 48.5683    | 8.0535          |
| Са          | К      | ED           | 0.4567            | 0.0508          | 0.0317     | 0.0035        | 0.4952    | 1.0454        | 1.0000      | 0.4369               | 0.0485   | 0.2864    | CaO   | 0.6113     | 0.1086          |
| Mn          | К      | ED           | 0.3398            | 0.0733          | 0.0101     | 0.0022        | 2.958     | 0.9939        | 1.0000      | 0.3419               | 0.0738   | 0.1635    | MnO   | 0.4414     | 0.0620          |
| Fe          | к      | ED           | 31.8973           | 3 0.3068        | 0.6075     | 0.0058        | 2.9216    | 0.9636        | 1.0000      | 33.102               | 0.3183   | 15.5754   | FeO   | 42.5850    | ) 5.9053        |
| 0           | Ka     | ED           |                   |                 |            |               |           |               |             | 36.934               | 0.2388   | 60.6630   |       |            | 23.0000         |
|             |        | Cat          | ion sum 0.00      |                 |            |               |           |               |             |                      |          |           |       | 95.4510    | ) 14.9144       |
| * = <2 Sigm | а      |              |                   |                 |            |               |           |               |             |                      |          |           |       |            |                 |
|             |        |              |                   |                 |            |               |           |               |             |                      |          |           |       |            |                 |
| Location 4  | Gruner | ite right at | contect           |                 |            |               |           |               |             |                      |          |           |       |            |                 |
| Elmt        | Line   | Spectrun     | Apparent con      | cStat. Sigma    | k Ratio    | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element %            | Sigma %  | Atomic %  |       | Compound % | Nos. of ions    |
| Mg          | К      | ED           | 1.1787            | 0.0436          | 0.0491     | 0.0018        | 0.2097    | 0.6360        | 1.0000      | 1.853                | 0.0685   | 2.0024    | MgO   | 3.0729     | 0.7591          |
| Al          | К      | ED           | 0.114             | 5 0.0419        | 0.0059     | 0.0022        | 0.8060    | 0.7306        | 1.0000      | 0.1567               | 0.0573   | 0.1526    | AI2O3 | 0.2962     | 0.0579          |
| Si          | К      | ED           | 21.8744           | 4 0.1265        | 0.6905     | 0.0040        | 2.7746    | 0.9622        | 1.0000      | 22.7352              | 0.1314   | 21.2637   | SiO2  | 48.6370    | 8.0611          |
| Са          | к      | ED           | 0.4463            | 3 0.0511        | 0.0310     | 0.003         | 0.3048    | 3 1.0448      | 3 1.0000    | ) 0.427 <sup>-</sup> | 0.0489   | 0.2799    | CaO   | 0.5976     | 0.1061          |
| Mn          | к      | ED           | 0.2438            | 3 0.0733        | 0.0073     | 0.0022        | 1.2500    | 0.9936        | 1.0000      | 0.2454               | 0.0737   | 0.1173    | MnO   | 0.3168     | 0.0445          |
| Fe          | к      | ED           | 31.771            | 5 0.3071        | 0.6051     | 0.0058        | 0.9608    | 0.9633        | 3 1.0000    | 32.983               | 0.3188   | 3 15.5140 | FeO   | 42.4323    | 5.8814          |
| 0           | Ka     | ED           |                   |                 |            |               |           |               |             | 36.9519              | 0.2395   | 60.6700   |       |            | 23.0000         |
|             |        | Cat          | ion sum 0.00      |                 |            |               |           |               |             |                      |          |           |       | 95.3528    | 3 14.9100       |
| * = <2 Sigm | a      |              |                   |                 |            |               |           |               |             |                      |          |           |       |            |                 |
|             |        |              |                   |                 |            |               |           |               |             |                      |          |           |       |            |                 |
| Location 5  | Gruner | ite (long s  | piny grain in co  | ontact with lor | ng ferroho | rnblende)     | See photo | mag 600       | 06E(3)      |                      |          |           |       |            |                 |
| Elmt        | Line   | Spectrun     | Apparent con      | cStat. Sigma    | k Ratio    | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element %            | Sigma %  | Atomic %  |       | Compound % | Nos. of ions    |
| Mg          | к      | ED           | 1.1143            | 3 0.0432        | 0.0464     | 0.0018        | 0.1129    | 0.6366        | 1.0000      | ) 1.7503             | 0.0678   | 3 1.8986  | MgO   | 2.9022     | 0.7197          |
| Al          | к      | ED           | 0.2371            | 0.0428          | 0.0122     | 0.0022        | 1.6269    | 0.7321        | 1.0000      | 0.3238               | 0.0584   | 0.3165    | Al2O3 | 0.6118     | 3 0.1200        |
| Si          | к      | ED           | 21.711            | 7 0.1259        | 0.6853     | 0.0040        | 4.0282    | 0.9616        | 1.0000      | 22.578               | 0.1309   | 21.2002   | SiO2  | 48.3007    | 8.0358          |
| Са          | к      | ED           | 0.5442            | 2 0.0526        | 0.0378     | 0.0037        | 0.1619    | 1.0447        | 1.0000      | 0.5209               | 0.0503   | 0.3427    | CaO   | 0.7288     | 0.1299          |
| Mn          | к      | ED           | 0.2020            | 0.0736          | 0.0060     | 0.0022        | 1.8889    | 0.9933        | 1.0000      | 0.2034               | 0.0741   | 0.0976    | MnO   | 0.2626     | 0.0370          |
| Fe          | к      | ED           | 31.5379           | 0.3027          | 0.6006     | 0.0058        | 1.542     | 0.9630        | 1.0000      | 32.7494              | 0.3143   | 15.4650   | FeO   | 42.1315    | 5.8619          |
| 0           | Ka     | ED           |                   |                 |            |               |           |               |             | 36.811               | 8 0.2377 | 60.6793   |       |            | 23.0000         |
|             |        | Cat          | ion sum 0.00      |                 |            |               |           |               |             |                      |          |           |       | 94.9376    | <b>14.904</b> 2 |
| * = <2 Sigm | a      |              |                   |                 |            |               |           |               |             |                      |          |           |       |            |                 |
|             |        |              |                   |                 |            |               |           |               |             |                      |          |           |       |            |                 |
| Location 5  | Gruner | ite uppern   | nost left in cont | tact with ferro | hornblenc  | le            |           |               |             |                      |          |           |       |            |                 |
| Elmt        | Line   | Spectrun     | Apparent con      | cStat. Sigma    | k Ratio    | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element %            | Sigma %  | Atomic %  |       | Compound % | Nos. of ions    |
| Mg          | К      | ED           | 1.1056            | 0.0432          | 0.0460     | 0.0018        | 0.6290    | 0.6354        | 1.0000      | 1.7399               | 0.0679   | 1.8782    | MgO   | 2.8848     | 0.7122          |
| AI          | К      | ED           | 0.1413            | 3 0.0427        | 0.0073     | 0.0022        | 0.8358    | 0.7313        | 1.0000      | 0.1932               | 0.0584   | 0.1880    | Al2O3 | 0.3651     | 0.0713          |

| Si          | к       | ED        | 21.8555         | 0.1264             | 0.6899      | 0.0040        | 1.9577    | 0.9625        | 1.0000      | 22.7076   | 0.1313  | 21.2193   | SiO2  | 48.578     | 8.0460       |
|-------------|---------|-----------|-----------------|--------------------|-------------|---------------|-----------|---------------|-------------|-----------|---------|-----------|-------|------------|--------------|
| Са          | к       | ED        | 0.6356          | 0.0527             | 0.0441      | 0.0037        | 0.6952    | 1.0453        | 1.0000      | 0.6081    | 0.0505  | 0.3982    | CaO   | 0.8508     | 3 0.1510     |
| Mn          | к       | ED        | 0.2171          | 0.0732             | 0.0065      | 0.0022        | 1.8889    | 0.9934        | 1.0000      | 0.2185    | 0.0737  | 0.1044    | MnO   | 0.282      | 0.0396       |
| Fe          | к       | ED        | 31.8818         | 0.3039             | 0.6072      | 0.0058        | 2.4575    | 0.9632        | 1.0000      | 33.1001   | 0.3155  | 15.5553   | FeO   | 42.582     | 5.8983       |
| 0           | Ka      | ED        |                 |                    |             |               |           |               |             | 36.9762   | 0.2384  | 60.6567   |       |            | 23.0000      |
|             |         | Cat       | ion sum 0.00    |                    |             |               |           |               |             |           |         |           |       | 95.543     | 5 14.9183    |
| * = <2 Sigm | а       |           |                 |                    |             |               |           |               |             |           |         |           |       |            |              |
|             |         |           |                 |                    |             |               |           |               |             |           |         |           |       |            |              |
| Location 5  | Ferroho | rnblende  | rim in contact  | with abover of     | grunerite(u | pperleft)     |           |               |             |           |         |           |       |            |              |
| Elmt        | Line    | Spectrun  | Apparent con    | Stat. Sigma        | k Ratio     | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma % | Atomic %  |       | Compound % | Nos. of ions |
| Na          | к       | ED        | 0.7948          | 0.056              | 0.0717      | 0.0051        | 0.6102    | 0.6362        | 1.0000      | 1.2493    | 0.0881  | 1.3879    | Na2O  | 1.6840     | 0.5374       |
| Mg          | к       | ED        | 0.5979          | 0.0446             | 0.0249      | 0.0019        | 0.9839    | 0.6825        | 1.0000      | 0.8761    | 0.0653  | 0.9204    | MgO   | 1.4526     | 3 0.3564     |
| Al          | к       | ED        | 4.8302          | 0.0715             | 0.2490      | 0.0037        | 4.5522    | 0.7832        | 1.0000      | 6.1672    | 0.0913  | 5.8380    | AI2O3 | 11.652     | 5 2.2605     |
| Si          | к       | ED        | 17.2404         | 0.118              | 0.5442      | 0.0037        | 5.4225    | 0.9377        | 1.0000      | 18.3880   | 0.1260  | ) 16.7222 | 2SiO2 | 39.3372    | 2 6.4749     |
| К           | к       | ED        | 0.4768          | 0.0525             | 0.0385      | 0.0042        | 1.3333    | 1.0568        | 1.0000      | 0.4512    | 0.0497  | 0.2947    | K2O   | 0.5435     | 5 0.1141     |
| Са          | к       | ED        | 7.8768          | 0.1023             | 0.5466      | 0.0071        | 1.6381    | 1.0373        | 1.0000      | 7.5931    | 0.0986  | 4.8388    | CaO   | 10.624     | 1 1.8736     |
| Fe          | к       | ED        | 21.8592         | 0.2568             | 0.4163      | 0.0049        | 0.9020    | 0.9433        | 1.0000      | 23.1728   | 0.2720  | 10.5980   | FeO   | 29.811     | 3 4.1036     |
| 0           | Ka      | ED        |                 |                    |             |               |           |               |             | 37.2075   | 0.2379  | 59.3999   | )     |            | 23.0000      |
|             |         | Cat       | ion sum 0.00    |                    |             |               |           |               |             |           |         |           |       | 95.1052    | 2 15.7206    |
| * = <2 Sigm | a       |           |                 |                    |             |               |           |               |             |           |         |           |       |            |              |
|             |         |           |                 |                    |             |               |           |               |             |           |         |           |       |            |              |
| Location 5  | ferroho | nblende a | as above, core  |                    |             |               |           |               |             |           |         |           |       |            |              |
| Elmt        | Line    | Spectrun  | Apparent con    | Stat. Sigma        | k Ratio     | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma % | Atomic %  |       | Compound % | Nos. of ions |
| Na          | к       | ED        | 0.9375          | 0.057              | 0.0845      | 0.0052        | 0.8983    | 0.6407        | 1.0000      | 1.4632    | 0.0891  | 1.6142    | Na2O  | 1.9723     | 3 0.6266     |
| Mg          | к       | ED        | 0.5804          | 0.0448             | 0.0242      | 0.0019        | 0.0323    | 0.6844        | 1.0000      | 0.8481    | 0.0654  | 0.8847    | MgO   | 1.4062     | 0.3434       |
| Al          | к       | ED        | 5.4290          | 0.0742             | 0.2798      | 0.0038        | 0.7463    | 0.7852        | 1.0000      | 6.9148    | 0.0945  | 6.4999    | AI2O3 | 13.065     | 2.5232       |
| Si          | к       | ED        | 16.7103         | 0.117 <sup>,</sup> | 0.5275      | 0.0037        | 3.6479    | 0.9306        | 1.0000      | 17.9585   | 0.1258  | 16.2173   | SiO2  | 38.4184    | 6.2953       |
| к           | к       | ED        | 0.5203          | 0.0525             | 0.0420      | 0.0042        | 0.4040    | 1.0565        | 1.0000      | 0.4924    | 0.0497  | 0.3194    | K2O   | 0.5932     | 0.1240       |
| Са          | к       | ED        | 7.9008          | 0.1026             | 0.5483      | 0.0071        | 0.3905    | 1.0368        | 1.0000      | 7.6206    | 0.0990  | ) 4.8224  | CaO   | 10.662     | 5 1.8720     |
| Fe          | к       | ED        | 21.5759         | 0.2554             | 0.4109      | 0.0049        | 1.1307    | 0.9429        | 1.0000      | 22.8818   | 0.2708  | 10.3918   | FeO   | 29.4370    | 4.0339       |
| 0           | Ka      | ED        |                 |                    |             |               |           |               |             | 37.3752   | 0.2387  | 59.2503   | 3     |            | 23.0000      |
|             |         | Cat       | ion sum 0.00    |                    |             |               |           |               |             |           |         |           |       | 95.5546    | 5 15.8184    |
| * = <2 Sigm | a       |           |                 |                    |             |               |           |               |             |           |         |           |       |            |              |
|             |         |           |                 |                    |             |               |           |               |             |           |         |           |       |            |              |
| Location 6  | ferroho | nblende o | center of grain |                    |             |               |           |               |             |           |         |           |       |            |              |
| Elmt        | Line    | Spectrun  | Apparent con    | Stat. Sigma        | k Ratio     | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma % | Atomic %  |       | Compound % | Nos. of ions |
| Na          | к       | ED        | 0.9147          | 0.055              | 0.0825      | 0.0050        | 0.983     | 0.6407        | 1.0000      | 1.4276    | 0.0860  | ) 1.5794  | Na2O  | 1.9243     | 0.6128       |
| Mg          | к       | ED        | 0.5865          | 0.0445             | 0.0244      | 0.0019        | 0.2258    | 0.6847        | 1.0000      | 0.8566    | 0.0650  | 0.8962    | MgO   | 1.4203     | 0.3477       |

| Al           | К        | ED           | 5.3060           | 0.0737       | 0.273       | 0.0038                 | 1.059              | 0.7853               | 1.0000      | 6.7566               | 0.0939  | 6.3692    | AI2O3 | 12.7660             | 2.4711       |
|--------------|----------|--------------|------------------|--------------|-------------|------------------------|--------------------|----------------------|-------------|----------------------|---------|-----------|-------|---------------------|--------------|
| Si           | К        | ED           | 16.8180          | ) 0.1171     | 0.5309      | 0.0037                 | 1.8592             | 0.9324               | 1.0000      | 18.0392              | 0.1256  | 6 16.3364 | SiO2  | 38.5909             | 6.3381       |
| К            | К        | ED           | 0.5399           | 0.0527       | 0.0436      | 0.0042                 | 0.888              | 1.0564               | 1.0000      | ) 0.511 <sup>.</sup> | 0.0498  | 0.3324    | K2O   | 0.6156              | 6 0.1290     |
| Са           | К        | ED           | 7.8843           | 0.1022       | 0.547       | 0.0071                 | 1.381              | 1.036                | 1.0000      | 7.6066               | 0.0986  | 4.8272    | CaO   | 10.6430             | 1.8728       |
| Fe           | К        | ED           | 21.4808          | 0.2555       | 0.409       | 0.0049                 | 2.228              | 0.942                | 1.0000      | 22.7839              | 0.2710  | ) 10.3767 | 'FeO  | 29.3110             | 4.0259       |
| 0            | Ka       | ED           |                  |              |             |                        |                    |                      |             | 37.2897              | 0.2379  | 59.2825   | 5     |                     | 23.0000      |
|              |          | Cat          | ion sum 0.00     |              |             |                        |                    |                      |             |                      |         |           |       | 95.2712             | 2 15.7973    |
| * = <2 Sigm  | а        |              |                  |              |             |                        |                    |                      |             |                      |         |           |       |                     |              |
|              |          |              |                  |              |             |                        |                    |                      |             |                      |         |           |       |                     |              |
| Location 6   | (see pł  | noto X 430   | ) ferrohornblen  | de from aboy | ve at rim i | n contact with         | what looks         | like magnetite       |             |                      |         |           |       |                     |              |
| Elmt         | Line     | Spectrun     | Apparent cond    | Stat. Sigma  | k Ratio     | k Ratio Sigma          | Fit Index          | Inten. Corrn.        | Std. Corrn. | Element %            | Sigma % | Atomic %  |       | Compound %          | Nos. of ions |
| Na           | K        | ED           | 0.7987           | 0.0547       | 0.0720      | 0.0049                 | 0.6102             | 2 0.640 <sup>2</sup> | 1 1.0000    | ) 1.2479             | 0.0854  | 1.3782    | Na2O  | 1.6821              | 0.5332       |
| Mg           | K        | ED           | 0.5138           | 0.0436       | 0.0214      | <u>0.0018 0.0018 1</u> | 0.209              | 0.686                | 1 1.0000    | 0.7488               | 0.0635  | 0.7821    | MgO   | 1.2416              | 0.3026       |
| Al           | K        | ED           | 5.2331           | 0.0735       | 0.269       | 0.0038                 | 1.611              | 0.7880               | 1.0000      | <b>6.641</b>         | 0.0932  | 6.2495    | Al2O3 | 12.5479             | 2.4177       |
| Si           | К        | ED           | 17.2090          | 0.1185       | 0.5432      | 0.0037                 | 2.112              | 0.9362               | 1.0000      | 18.3830              | 0.1266  | 16.6192   | SiO2  | 39.3265             | 5 6.4293     |
| К            | К        | ED           | 0.4826           | 0.0527       | 0.0389      | 0.0043                 | 1.101              | 1.0560               | 1.0000      | 0.4570               | 0.0499  | 0.2967    | K20   | 0.5504              | 0.1148       |
| Са           | К        | ED           | 7.9750           | 0.1025       | 0.5534      | 0.0071                 | 1.5429             | 1.0364               | 1.0000      | 7.6946               | 0.0989  | 9 4.8746  | CaO   | 10.766              | 1.8858       |
| Fe           | К        | ED           | 21.4494          | 0.2545       | 0.408       | 0.0048                 | 1.849              | 0.942                | 1.0000      | 22.756               | 0.2700  | ) 10.3465 | FeO   | 29.2760             | 4.0026       |
| 0            | Ka       | ED           |                  |              |             |                        |                    |                      |             | 37.4616              | 0.2376  | 59.4532   | 2     |                     | 23.0000      |
|              |          | Cat          | ion sum 0.00     |              |             |                        |                    |                      |             |                      |         |           |       | 95.3906             | 5 15.6859    |
| * = <2 Sigm  | а        |              |                  |              |             |                        |                    |                      |             |                      |         |           |       |                     |              |
|              |          |              |                  |              |             |                        |                    |                      |             |                      |         |           |       |                     |              |
| Location 6 f | errohori | nblende at   | rim in contact   | with magneti | te and gru  | inerite                |                    |                      |             |                      |         |           |       |                     |              |
| Elmt         | Line     | Spectrun     | Apparent con     | Stat. Sigma  | k Ratio     | k Ratio Sigma          | Fit Index          | Inten. Corrn.        | Std. Corrn. | Element %            | Sigma % | Atomic %  |       | Compound %          | Nos. of ions |
| Na           | К        | ED           | 0.8265           | 0.0557       | 0.074       | 0.0050                 | 0.983              | 0.6402               | 2 1.0000    | ) 1.2910             | 0.0870  | ) 1.4222  | Na2O  | 1.7402              | 0.5496       |
| Mg           | К        | ED           | 0.6129           | 0.0450       | 0.025       | 0.0019                 | 0.483              | 0.6857               | 1.0000      | 0.8938               | 0.0656  | 0.9310    | MgO   | 1.4819              | 0.3598       |
| Al           | к        | ED           | 4.7854           | 0.0716       | 0.246       | 0.0037                 | 1.403              | ) 0.786 <sup>-</sup> | 1.0000      | 6.0878               | 0.0911  | 5.7143    | AI2O3 | 11.502              | 5 2.2083     |
| Si           | К        | ED           | 17.7741          | 0.1198       | 0.5610      | 0.0038                 | 2.873              | 0.9413               | 1.0000      | 18.8847              | 0.1273  | 17.0291   | SiO2  | 40.3998             | 6.5811       |
| К            | к        | ED           | 0.4777           | 0.0522       | 0.0386      | 0.0042                 | 0.353              | 1.0549               | 1.0000      | 0.4528               | 0.0495  | 0.2933    | K2O   | 0.5455              | 0.1133       |
| Са           | К        | ED           | 7.8107           | 0.1019       | 0.5420      | 0.0071                 | 0.8762             | 1.0358               | 1.0000      | 7.5410               | 0.0983  | 4.7651    | CaO   | 10.551 <sup>-</sup> | 1 1.8415     |
| Fe           | к        | ED           | 21.4698          | 0.2552       | 0.4089      | 0.0049                 | 1.843 <sup>-</sup> | 0.9424               | 1.0000      | 22.7803              | 0.2708  | 10.3307   | 'FeO  | 29.3064             | 3.9924       |
| 0            | Ka       | ED           |                  |              |             |                        |                    |                      |             | 37.5960              | 0.2381  | 59.5143   | }     |                     | 23.0000      |
|              |          | Cat          | ion sum 0.00     |              |             |                        |                    |                      |             |                      |         |           |       | 95.5274             | 15.6462      |
| * = <2 Sigm  | а        |              |                  |              |             |                        |                    |                      |             |                      |         |           |       |                     |              |
|              |          |              |                  |              |             |                        |                    |                      |             |                      |         |           |       |                     |              |
| Location 6   | Gruner   | ite in conta | act with ferroho | ornblende    |             |                        |                    |                      |             |                      |         |           |       |                     |              |
| Elmt         | Line     | Spectrun     | Apparent con     | Stat. Sigma  | k Ratio     | k Ratio Sigma          | Fit Index          | Inten. Corrn.        | Std. Corrn. | Element %            | Sigma % | Atomic %  |       | Compound %          | Nos. of ions |
| Mg           | К        | ED           | 1.2569           | 0.0440       | 0.0523      | 3 0.0018               | 0.306              | 0.6354               | 1.0000      | ) 1.9780             | 0.0693  | 2.1326    | MgO   | 3.2796              | 0.8090       |

| AI         | ĸ  | ED  | 0.0302       | 0.0417 | 0.0016 | 0.0021 | 2.5970 | 0.7288 | 1.0000 | 0.0415  | 0.0572 | 0.0403  | AI2O3 | 0.0784  | 0.0153  |
|------------|----|-----|--------------|--------|--------|--------|--------|--------|--------|---------|--------|---------|-------|---------|---------|
| Si         | к  | ED  | 21.8830      | 0.1264 | 0.6908 | 0.0040 | 6.5352 | 0.9618 | 1.000  | 22.7527 | 0.1314 | 21.2347 | SiO2  | 48.6745 | 8.0557  |
| Са         | к  | ED  | 0.4224       | 0.0491 | 0.0293 | 0.0034 | 0.1905 | 1.0451 | 1.0000 | 0.4042  | 0.0470 | 0.2643  | 3CaO  | 0.5655  | 0.1003  |
| Mn         | к  | ED  | 0.3002       | 0.0771 | 0.0089 | 0.0023 | 2.7292 | 0.9938 | 1.000  | 0.3021  | 0.0776 | 0.1441  | MnO   | 0.3901  | 0.0547  |
| Fe         | к  | ED  | 31.9338      | 0.3050 | 0.6081 | 0.0058 | 2.9216 | 0.9635 | 1.000  | 33.1444 | 0.3166 | 15.5565 | FeO   | 42.6396 | 5.9016  |
| 0          | Ka | ED  |              |        |        |        |        |        |        | 37.0049 | 0.2389 | 60.6274 | Ļ     |         | 23.0000 |
|            |    | Cat | ion sum 0.00 |        |        |        |        |        |        |         |        |         |       | 95.6277 | 14.9366 |
| * = <2 Sig | ma |     |              |        |        |        |        |        |        |         |        |         |       |         |         |

| Sample      |      | BIF     | AED13P       |             |         |              |           |              |             |           |         |          |       |            |              |
|-------------|------|---------|--------------|-------------|---------|--------------|-----------|--------------|-------------|-----------|---------|----------|-------|------------|--------------|
| Date 02/15/ | 06   |         |              |             |         |              |           |              |             |           |         |          |       |            |              |
| Location 1  |      |         |              |             |         |              |           |              |             |           |         |          |       |            |              |
| Grunerite   |      |         |              |             |         |              |           |              |             |           |         |          |       |            |              |
| Elmt        | Line | Spectru | Apparent con | Stat. Sigma | k Ratio | k Ratio Sigm | Fit Index | Inten. Corrr | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Mg          | к    | ED      | 1.9104       | 0.0728      | 0.0795  | 0.0030       | 0.1129    | 0.6485       | 1.0000      | 2.9457    | 0.1122  | 3.2810   | MgO   | 4.8841     | 1.2434       |
| AI          | к    | ED      | 0.0830       | 0.0725      | 0.0043  | 0.0037       | 0.0896    | 0.7289       | 1.0000      | 0.1138    | 0.0995  | 0.1142   | AI2O3 | 0.2151     | 0.0433       |
| Si          | к    | ED      | 21.2403      | 0.1733      | 0.6705  | 0.0055       | 0.7465    | 0.9603       | 1.0000      | 22.1202   | 0.1805  | 21.3275  | SiO2  | 47.3215    | 8.0823       |
| Fe          | к    | ED      | 28.8861      | 0.3734      | 0.5501  | 0.0071       | 0.7908    | 0.9603       | 1.0000      | 30.0790   | 0.3888  | 14.5849  | FeO   | 38.6961    | 5.5271       |
| 0           | Ka   | ED      |              |             |         |              |           |              |             | 35.8580   | 0.3123  | 60.6923  |       |            | 23.0000      |
|             |      | Catior  | n sum 0.00   |             |         |              |           |              |             |           |         |          |       | 91.1167    | 14.8961      |
| * = <2 Sigm | а    |         |              |             |         |              |           |              |             |           |         |          |       |            |              |
|             |      |         |              |             |         |              |           |              |             |           |         |          |       |            |              |
| Location 1  |      |         |              |             |         |              |           |              |             |           |         |          |       |            |              |
| Grunerite   |      |         |              |             |         |              |           |              |             |           |         |          |       |            |              |
| Elmt        | Line | Spectru | Apparent con | Stat. Sigma | k Ratio | k Ratio Sigm | Fit Index | Inten. Corrr | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Mg          | к    | ED      | 1.9045       | 0.0712      | 0.0793  | 0.0030       | 0.0968    | 0.6470       | 1.0000      | 2.9434    | 0.1101  | 3.2507   | MgO   | 4.8804     | 1.2321       |
| Si          | к    | ED      | 21.4647      | 0.1735      | 0.6775  | 0.0055       | 2.2535    | 0.9608       | 1.0000      | 22.3419   | 0.1805  | 21.3585  | SiO2  | 47.7958    | 8.0958       |
| Fe          | к    | ED      | 29.3972      | 0.3747      | 0.5598  | 0.0071       | 0.4575    | 0.9607       | 1.0000      | 30.5997   | 0.3900  | 14.7115  | FeO   | 39.3659    | 5.5763       |
| 0           | Ka   | ED      |              |             |         |              |           |              |             | 36.1570   | 0.2978  | 60.6793  |       |            | 23.0000      |
|             |      | Catior  | n sum 0.00   |             |         |              |           |              |             |           |         |          |       | 92.0421    | 14.9042      |
| * = <2 Sigm | а    |         |              |             |         |              |           |              |             |           |         |          |       |            |              |
|             |      |         |              |             |         |              |           |              |             |           |         |          |       |            |              |
| Location 2  |      |         |              |             |         |              |           |              |             |           |         |          |       |            |              |
| Ferrohornbl | ende |         |              |             |         |              |           |              |             |           |         |          |       |            |              |
| Elmt        | Line | Spectru | Apparent con | Stat. Sigma | k Ratio | k Ratio Sigm | Fit Index | Inten. Corrr | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Na          | к    | ED      | 1.1638       | 0.0919      | 0.1049  | 0.0083       | 2.6610    | 0.6684       | 1.0000      | 1.7412    | 0.1375  | 1.8874   | Na2O  | 2.3471     | 0.7316       |
| Mg          | к    | ED      | 1.0474       | 0.0809      | 0.0436  | 0.0034       | 0.2903    | 0.7056       | 1.0000      | 1.4843    | 0.1147  | 1.5215   | MgO   | 2.4611     | 0.5898       |
| Al          | к    | ED      | 6.4678       | 0.1195      | 0.3334  | 0.0062       | 0.0000    | 0.7964       | 1.0000      | 8.1216    | 0.1500  | 7.5011   | AI2O3 | 15.3451    | 2.9076       |
| Si          | к    | ED      | 16.6481      | 0.1653      | 0.5255  | 0.0052       | 0.4225    | 0.9240       | 1.0000      | 18.0190   | 0.1789  | 15.9881  | SiO2  | 38.5478    | 6.1974       |
| к           | к    | ED      | 0.4047       | 0.0745      | 0.0327  | 0.0060       | 0.3838    | 1.0494       | 1.0000      | 0.3856    | 0.0710  | 0.2458   | K2O   | 0.4645     | 0.0953       |
| Са          | к    | ED      | 7.6771       | 0.1386      | 0.5328  | 0.0096       | 0.7714    | 1.0305       | 1.0000      | 7.4501    | 0.1345  | 4.6322   | CaO   | 10.4240    | 1.7956       |
| Fe          | к    | ED      | 18.6937      | 0.3089      | 0.3560  | 0.0059       | 0.6144    | 0.9385       | 1.0000      | 19.9178   | 0.3291  | 8.8879   | FeO   | 25.6238    | 3.4451       |
| 0           | Ka   | ED      |              |             |         |              |           |              |             | 38.0938   | 0.3332  | 59.3360  |       |            | 23.0000      |
|             |      | Catior  | n sum 0.00   |             |         |              |           |              |             |           |         |          |       | 95.2134    | 15.7623      |
| * = <2 Sigm | а    |         |              |             |         |              |           |              |             |           |         |          |       |            |              |
|             |      |         |              |             |         |              |           |              |             |           |         |          |       |            |              |
| 1           | 1     |          |                 |                | 1             | 1              |               |              | 1           | 1         | 1       | 1        |       | 1          | 1            |
|-------------|-------|----------|-----------------|----------------|---------------|----------------|---------------|--------------|-------------|-----------|---------|----------|-------|------------|--------------|
| Location 2  |       |          |                 |                |               |                |               |              |             |           |         |          |       |            |              |
| Grunerite   |       |          |                 |                |               |                |               |              |             |           |         |          |       |            |              |
| Elmt        | Line  | Spectru  | Apparent con    | Stat. Sigma    | k Ratio       | k Ratio Sigm   | Fit Index     | Inten. Corrr | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Mg          | к     | ED       | 2.0956          | 0.0730         | 0.0872        | 0.0030         | 0.5323        | 0.6512       | 1.0000      | 3.2181    | 0.1121  | 3.5458   | MgO   | 5.3358     | 1.3436       |
| Si          | к     | ED       | 21.5596         | 0.1732         | 0.6805        | 0.0055         | 1.5211        | 0.9612       | 1.0000      | 22.4298   | 0.1802  | 21.3932  | SiO2  | 47.9838    | 8.1066       |
| Fe          | к     | ED       | 28.7371         | 0.3765         | 0.5473        | 0.0072         | 1.5882        | 0.9596       | 1.0000      | 29.9466   | 0.3924  | 14.3644  | FeO   | 38.5257    | 5.4432       |
| 0           | Ка    | ED       |                 |                |               |                |               |              |             | 36.2508   | 0.2989  | 60.6966  |       |            | 23.0000      |
|             |       | Cation   | n sum 0.00      |                |               |                |               |              |             |           |         |          |       | 91.8453    | 14.8934      |
| * = <2 Sigm | а     |          |                 |                |               |                |               |              |             |           |         |          |       |            |              |
|             |       |          |                 |                |               |                |               |              |             |           |         |          |       |            |              |
| Location 3  |       |          |                 |                |               |                |               |              |             |           |         |          |       |            |              |
| pyrrhotite  |       |          |                 |                |               |                |               |              |             |           |         |          |       |            |              |
| Elmt        | Line  | Spectru  | Apparent con    | Stat. Sigma    | k Ratio       | k Ratio Sigm   | Fit Index     | Inten. Corrr | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| S           | к     | ED       | 43.4409         | 0.2865         | 3.0378        | 0.0200         | 1.0125        | 1.1470       | 1.0000      | 37.8756   | 0.2498  | 17.3379  | SO3   | 94.5719    | 0.0000       |
| Fe          | к     | ED       | 56.1003         | 0.5149         | 1.0684        | 0.0098         | 1.4575        | 0.9621       | 1.0000      | 58.3068   | 0.5351  | 15.3241  | FeO   | 75.0105    | 0.0000       |
| 0           | Ka    | ED       |                 |                |               |                |               |              |             | 73.4001   | 0.4188  | 67.3379  |       |            | 0.0000       |
|             |       | Cation   | n sum 0.00      |                |               |                |               |              |             |           |         |          |       |            |              |
| * = <2 Sigm | а     |          |                 |                |               |                |               |              |             |           |         |          |       |            |              |
|             |       |          |                 |                |               |                |               |              |             |           |         |          |       |            |              |
| Location 4  |       |          |                 |                |               |                |               |              |             |           |         |          |       |            |              |
| Ferrohormb  | lende | note: qu | uartz inclusion | s in the ferro | hornblende ci | rystasl, no ma | gnetite visit | le           |             |           |         |          |       |            |              |
| Elmt        | Line  | Spectru  | Apparent con    | Stat. Sigma    | k Ratio       | k Ratio Sigm   | Fit Index     | Inten. Corrr | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Na          | к     | ED       | 1.0895          | 0.0916         | 0.0982        | 0.0083         | 2.7797        | 0.6671       | 1.0000      | 1.6333    | 0.1374  | 1.8234   | Na2O  | 2.2016     | 0.7065       |
| Mg          | к     | ED       | 0.9876          | 0.0800         | 0.0411        | 0.0033         | 0.4194        | 0.7052       | 1.0000      | 1.4006    | 0.1135  | 1.4786   | MgO   | 2.3223     | 0.5729       |
| Al          | к     | ED       | 6.2276          | 0.1174         | 0.3210        | 0.0060         | 0.1343        | 0.7966       | 1.0000      | 7.8185    | 0.1473  | 7.4372   | AI2O3 | 14.7726    | 2.8818       |
| Si          | к     | ED       | 16.2429         | 0.1627         | 0.5127        | 0.0051         | 0.3944        | 0.9251       | 1.0000      | 17.5591   | 0.1759  | 16.0461  | SiO2  | 37.5639    | 6.2177       |
| к           | к     | ED       | 0.4496          | 0.0743         | 0.0363        | 0.0060         | 0.5354        | 1.0496       | 1.0000      | 0.4283    | 0.0708  | 0.2812   | K2O   | 0.5160     | 0.1089       |
| Са          | к     | ED       | 7.4555          | 0.1377         | 0.5174        | 0.0096         | 0.5238        | 1.0304       | 1.0000      | 7.2357    | 0.1336  | 4.6335   | CaO   | 10.1240    | 1.7954       |
| Fe          | к     | ED       | 18.2677         | 0.3047         | 0.3479        | 0.0058         | 1.8627        | 0.9386       | 1.0000      | 19.4613   | 0.3246  | 8.9440   | FeO   | 25.0366    | 3.4657       |
| 0           | Ka    | ED       |                 |                |               |                |               |              |             | 37.0000   | 0.3285  | 59.3562  |       |            | 23.0000      |
|             |       | Cation   | n sum 0.00      |                |               |                |               |              |             |           |         |          |       | 92.5368    | 15.7491      |
| * = <2 Sigm | а     |          |                 |                |               |                |               |              |             |           |         |          |       |            |              |
|             |       |          |                 |                |               |                |               |              |             |           |         |          |       |            |              |
| Location 4  |       |          |                 |                |               |                |               |              |             |           |         |          |       |            |              |
| Grunerite   |       |          |                 |                |               |                |               |              |             |           |         |          |       |            |              |
| Elmt        | Line  | Spectru  | Apparent con    | Stat. Sigma    | k Ratio       | k Ratio Sigm   | Fit Index     | Inten. Corrr | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Ма          |       |          |                 |                |               |                |               |              |             |           |         |          |       |            |              |
|             | K     | ED       | 2.0435          | 0.0722         | 0.0851        | 0.0030         | 0.4839        | 0.6514       | 1.0000      | 3.1372    | 0.1108  | 3.5340   | MgO   | 5.2017     | 1.3389       |

| Fe           | к            | ED        | 28.0726         | 0.3694         | 0.5346  | 0.0070       | 0.7059    | 0.9595       | 1.0000      | 29.2558   | 0.3850  | 14.3468  | FeO   | 37.6370    | 5.4356       |
|--------------|--------------|-----------|-----------------|----------------|---------|--------------|-----------|--------------|-------------|-----------|---------|----------|-------|------------|--------------|
| 0            | Ka           | ED        |                 |                |         |              |           |              |             | 35.4637   | 0.2954  | 60.7064  |       |            | 23.0000      |
|              |              | Catior    | n sum 0.00      |                |         |              |           |              |             |           |         |          |       | 89.8160    | 14.8873      |
| * = <2 Sigm  | а            |           |                 |                |         |              |           |              |             |           |         |          |       |            |              |
|              |              |           |                 |                |         |              |           |              |             |           |         |          |       |            |              |
| Location 4   |              |           |                 |                |         |              |           |              |             |           |         |          |       |            |              |
| Spiny Grune  | erite        |           |                 |                |         |              |           |              |             |           |         |          |       |            |              |
| Elmt         | Line         | Spectru   | Apparent con    | Stat. Sigma    | k Ratio | k Ratio Sigm | Fit Index | Inten. Corrr | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Mg           | к            | ED        | 1.9856          | 0.0727         | 0.0827  | 0.0030       | 0.1613    | 0.6517       | 1.0000      | 3.0470    | 0.1115  | 3.3822   | MgO   | 5.0521     | 1.2800       |
| Si           | к            | ED        | 21.5987         | 0.1742         | 0.6818  | 0.0055       | 0.7887    | 0.9633       | 1.0000      | 22.4214   | 0.1809  | 21.5438  | SiO2  | 47.9657    | 8.1536       |
| Fe           | к            | ED        | 28.3958         | 0.3734         | 0.5408  | 0.0071       | 0.8235    | 0.9594       | 1.0000      | 29.5972   | 0.3892  | 14.3021  | FeO   | 38.0762    | 5.4129       |
| 0            | Ka           | ED        |                 |                |         |              |           |              |             | 36.0285   | 0.2981  | 60.7719  |       |            | 23.0000      |
|              |              | Catior    | n sum 0.00      |                |         |              |           |              |             |           |         |          |       | 91.0940    | 14.8464      |
| * = <2 Sigm  | а            |           |                 |                |         |              |           |              |             |           |         |          |       |            |              |
|              |              |           |                 |                |         |              |           |              |             |           |         |          |       |            |              |
| Location 4   |              |           |                 |                |         |              |           |              |             |           |         |          |       |            |              |
| Ferrohornbl  | ende same    | shape a   | nd in contact w | vith spiny gru | unerite |              |           |              |             |           |         |          |       |            |              |
| Elmt         | Line         | Spectru   | Apparent con    | Stat. Sigma    | k Ratio | k Ratio Sigm | Fit Index | Inten. Corrr | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Na           | к            | ED        | 0.9582          | 0.0900         | 0.0864  | 0.0081       | 2.7966    | 0.6653       | 1.0000      | 1.4402    | 0.1352  | 1.5963   | Na2O  | 1.9413     | 0.6174       |
| Mg           | к            | ED        | 0.9618          | 0.0803         | 0.0400  | 0.0033       | 0.5645    | 0.7060       | 1.0000      | 1.3624    | 0.1137  | 1.4279   | MgO   | 2.2589     | 0.5522       |
| Al           | к            | ED        | 6.3089          | 0.1184         | 0.3252  | 0.0061       | 0.2239    | 0.7980       | 1.0000      | 7.9068    | 0.1484  | 7.4670   | AI2O3 | 14.9393    | 2.8879       |
| Si           | к            | ED        | 16.4920         | 0.1641         | 0.5206  | 0.0052       | 0.9014    | 0.9260       | 1.0000      | 17.8115   | 0.1773  | 16.1596  | SiO2  | 38.1038    | 6.2498       |
| к            | к            | ED        | 0.5022          | 0.0744         | 0.0405  | 0.0060       | 0.4242    | 1.0493       | 1.0000      | 0.4786    | 0.0709  | 0.3119   | K2O   | 0.5765     | 0.1206       |
| Са           | к            | ED        | 7.3691          | 0.1375         | 0.5114  | 0.0095       | 0.7524    | 1.0300       | 1.0000      | 7.1542    | 0.1335  | 4.5484   | CaO   | 10.0100    | 1.7591       |
| Fe           | к            | ED        | 18.5606         | 0.3083         | 0.3535  | 0.0059       | 1.0458    | 0.9389       | 1.0000      | 19.7675   | 0.3283  | 9.0193   | FeO   | 25.4305    | 3.4883       |
| 0            | Ka           | ED        |                 |                |         |              |           |              |             | 37.3393   | 0.3306  | 59.4695  |       |            | 23.0000      |
|              |              | Catior    | n sum 0.00      |                |         |              |           |              |             |           |         |          |       | 93.2605    | 15.6753      |
| * = <2 Sigm  | а            |           |                 |                |         |              |           |              |             |           |         |          |       |            |              |
|              |              |           |                 |                |         |              |           |              |             |           |         |          |       |            |              |
| Location 5   |              |           |                 |                |         |              |           |              |             |           |         |          |       |            |              |
| Grunerite in | contact with | h ferroho | ornblende and   | quartz         |         |              |           |              |             |           |         |          |       |            |              |
| Elmt         | Line         | Spectru   | Apparent con    | Stat. Sigma    | k Ratio | k Ratio Sigm | Fit Index | Inten. Corrr | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Mg           | к            | ED        | 2.2775          | 0.0757         | 0.0948  | 0.0032       | 0.2097    | 0.6559       | 1.0000      | 3.4721    | 0.1154  | 3.7318   | MgO   | 5.7570     | 1.4124       |
| Si           | к            | ED        | 22.2952         | 0.1772         | 0.7038  | 0.0056       | 1.2113    | 0.9632       | 1.0000      | 23.1472   | 0.1840  | 21.5352  | SiO2  | 49.5185    | 8.1509       |
| Fe           | к            | ED        | 28.6046         | 0.3719         | 0.5447  | 0.0071       | 0.6601    | 0.9583       | 1.0000      | 29.8478   | 0.3880  | 13.9654  | FeO   | 38.3986    | 5.2858       |
| 0            | Ka           | ED        |                 |                |         |              |           |              |             | 37.2070   | 0.3008  | 60.7676  |       |            | 23.0000      |
|              |              | Catior    | n sum 0.00      |                |         |              |           |              |             |           |         |          |       | 93.6741    | 14.8491      |
| * = <2 Sigm  | а            |           |                 |                |         |              |           |              |             |           |         |          |       |            |              |

| Location 5   |             |           |                 |             |         |              |           |              |             |           |         |          |       |            |              |
|--------------|-------------|-----------|-----------------|-------------|---------|--------------|-----------|--------------|-------------|-----------|---------|----------|-------|------------|--------------|
| Ferrohornbl  | ende        | has qu    | artz inclusion  |             |         |              |           |              |             |           |         |          |       |            |              |
| Elmt         | Line        | Spectru   | Apparent con    | Stat. Sigma | k Ratio | k Ratio Sigm | Fit Index | Inten. Corrr | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Na           | к           | ED        | 0.9809          | 0.0911      | 0.0885  | 0.0082       | 2.6102    | 0.6705       | 1.0000      | 1.4630    | 0.1359  | 1.6297   | Na2O  | 1.9720     | 0.6303       |
| Mg           | к           | ED        | 1.0186          | 0.0806      | 0.0424  | 0.0034       | 0.6290    | 0.7101       | 1.0000      | 1.4343    | 0.1135  | 1.5110   | MgO   | 2.3782     | 0.5843       |
| AI           | к           | ED        | 6.4264          | 0.1190      | 0.3313  | 0.0061       | 0.1343    | 0.8006       | 1.0000      | 8.0277    | 0.1487  | 7.6198   | Al2O3 | 15.1678    | 2.9467       |
| Si           | к           | ED        | 16.3437         | 0.1640      | 0.5159  | 0.0052       | 0.5352    | 0.9257       | 1.0000      | 17.6579   | 0.1772  | 16.1018  | SiO2  | 37.7754    | 6.2269       |
| к            | к           | ED        | 0.4755          | 0.0745      | 0.0384  | 0.0060       | 0.2121    | 1.0487       | 1.0000      | 0.4534    | 0.0710  | 0.2970   | K2O   | 0.5462     | 0.1148       |
| Са           | к           | ED        | 7.4728          | 0.1387      | 0.5186  | 0.0096       | 0.1619    | 1.0292       | 1.0000      | 7.2610    | 0.1348  | 4.6398   | CaO   | 10.1594    | 1.7943       |
| Fe           | к           | ED        | 17.8477         | 0.3052      | 0.3399  | 0.0058       | 1.3399    | 0.9378       | 1.0000      | 19.0294   | 0.3254  | 8.7267   | FeO   | 24.4809    | 3.3748       |
| 0            | Ka          | ED        |                 |             |         |              |           |              |             | 37.1531   | 0.3301  | 59.4742  |       |            | 23.0000      |
|              |             | Catio     | n sum 0.00      |             |         |              |           |              |             |           |         |          |       | 92.4799    | 15.6722      |
| * = <2 Sigm  | а           |           |                 |             |         |              |           |              |             |           |         |          |       |            |              |
|              |             |           |                 |             |         |              |           |              |             |           |         |          |       |            |              |
| Location 6   |             |           |                 |             |         |              |           |              |             |           |         |          |       |            |              |
| In matrix of | coarse grun | erite- is | it ferrohornble | nde?        |         |              |           |              |             |           |         |          |       |            |              |
| Elmt         | Line        | Spectru   | Apparent con    | Stat. Sigma | k Ratio | k Ratio Sigm | Fit Index | Inten. Corrr | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Mg           | к           | ED        | 1.9889          | 0.0853      | 0.0828  | 0.0036       | 0.1290    | 0.6565       | 1.0000      | 3.0294    | 0.1300  | 3.6479   | MgO   | 5.0230     | 1.4343       |
| AI           | к           | ED        | 7.6892          | 0.1251      | 0.3964  | 0.0064       | 0.4179    | 0.7303       | 1.0000      | 10.5294   | 0.1713  | 11.4243  | AI2O3 | 19.8945    | 4.4918       |
| Si           | к           | ED        | 9.0070          | 0.1316      | 0.2843  | 0.0042       | 0.6761    | 0.8322       | 1.0000      | 10.8248   | 0.1582  | 11.2831  | SiO2  | 23.1573    | 4.4363       |
| Са           | к           | ED        | 0.1375          | 0.0622      | 0.0095  | 0.0043       | 0.4857    | 1.0500       | 1.0000      | 0.1309    | 0.0593  | 0.0956   | CaO   | 0.1832     | 0.0376       |
| Fe           | к           | ED        | 27.7255         | 0.3671      | 0.5280  | 0.0070       | 1.1961    | 0.9655       | 1.0000      | 28.7134   | 0.3802  | 15.0516  | FeO   | 36.9392    | 5.9180       |
| 0            | Ka          | ED        |                 |             |         |              |           |              |             | 31.9693   | 0.3294  | 58.4976  |       |            | 23.0000      |
|              |             | Catior    | n sum 0.00      |             |         |              |           |              |             |           |         |          |       | 85.1972    | 16.3179      |
| * = <2 Sigm  | a           |           |                 |             |         |              |           |              |             |           |         |          |       |            |              |
|              |             |           |                 |             |         |              |           |              |             |           |         |          |       |            |              |
| Location 6   |             |           |                 |             |         |              |           |              |             |           |         |          |       |            |              |
| Grunerite    |             |           |                 |             |         |              |           |              |             |           |         |          |       |            |              |
| Elmt         | Line        | Spectru   | Apparent con    | Stat. Sigma | k Ratio | k Ratio Sigm | Fit Index | Inten. Corrr | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Mg           | к           | ED        | 2.1002          | 0.0729      | 0.0874  | 0.0030       | 0.0000    | 0.6522       | 1.0000      | 3.2203    | 0.1117  | 3.5056   | MgO   | 5.3394     | 1.3274       |
| Si           | к           | ED        | 21.9409         | 0.1745      | 0.6926  | 0.0055       | 0.3944    | 0.9625       | 1.0000      | 22.7970   | 0.1813  | 21.4822  | SiO2  | 48.7694    | 8.1344       |
| Fe           | к           | ED        | 28.8887         | 0.3746      | 0.5502  | 0.0071       | 0.5490    | 0.9593       | 1.0000      | 30.1139   | 0.3905  | 14.2711  | FeO   | 38.7409    | 5.4038       |
| 0            | Ka          | ED        |                 |             |         |              |           |              |             | 36.7185   | 0.2989  | 60.7411  |       |            | 23.0000      |
|              |             | Catior    | n sum 0.00      |             |         |              |           |              |             |           |         |          |       | 92.8497    | 14.8656      |
| * = <2 Sigm  | а           |           |                 |             |         |              |           |              |             |           |         |          |       |            |              |
|              |             |           |                 |             |         |              |           |              |             |           |         |          |       |            |              |

## AED13J2 2/8/06x-29.12 y-29.08

Grunerite

| Elmt        | Line     | Spectrum | Apparent co   | n&tat. Sigma  | k Ratio   | k Ratio Sigm | aFit Index | Inten. Corrn. | Std. Corr | nElement % | Sigma %              | Atomic %             |                | Compound % | Nos. of ions |
|-------------|----------|----------|---------------|---------------|-----------|--------------|------------|---------------|-----------|------------|----------------------|----------------------|----------------|------------|--------------|
| Mg          | к        | ED       | 3.79          | 18 0.059      | 6 0.157   | 9 0.002      | 5 0.016    | 1 0.681       | 4 1.000   | 0 5.564    | 4 0.087              | 4 5.730              | 1MgO           | 9.226      | 1 2.174      |
| AI          | к        | ED       | 0.07          | 74 0.043      | 1 0.004   | 0 0.002      | 2 0.507    | 5 0.730       | 6 1.000   | 0 0.105    | 9 0.059              | 1 0.098              | <b>2</b> AI2O3 | 0.200      | 0 0.037      |
| Si          | к        | ED       | 22.84         | 26 0.129      | 0 0.721   | 0 0.004      | 1 1.070    | 4 0.960       | 9 1.000   | 0 23.77:   | 34 0.134             | 2 21.19 <sup>,</sup> | <b>\$</b> iO2  | 50.858     | 8.040        |
| Са          | к        | ED       | 0.41          | 02 0.049      | 4 0.028   | 5 0.003      | 4 0.114    | 3 1.029       | 1 1.000   | 0.398      | 6 0.048              | 0 0.249              | 0CaO           | 0.557      | 8 0.094      |
| Mn          | к        | ED       | 0.23          | 68 0.074      | 2 0.007   | 1 0.002      | 2 0.409    | 7 0.982       | 1 1.000   | 0 0.24     | 11 0.075             | 5 0.109              | 9MnO           | 0.311      | 3 0.041      |
| Fe          | к        | ED       | 25.48         | 84 0.277      | 2 0.485   | 4 0.005      | 3 0.614    | 4 0.952       | 1 1.000   | 0 26.76    | 92 0.29 <sup>2</sup> | 1 12.000             | 0 <b>5</b> eO  | 34.438     | 0 4.553      |
| 0           | Ка       | ED       |               |               |           |              |            |               |           | 38.73      | 88 0.235             | 6 60.620             | 95             |            | 23.000       |
|             |          | Catio    | n sum 0.00    |               |           |              |            |               |           |            |                      |                      |                | 95.59      | 3 14.941     |
| * = <2 Sigi | ma       |          |               |               |           |              |            |               |           |            |                      |                      |                |            |              |
|             |          |          |               |               |           |              |            |               |           |            |                      |                      |                |            |              |
| Elmt        | Line     | Spectrum | Apparent co   | n&tat. Sigma  | k Ratio   | k Ratio Sigm | aFit Index | Inten. Corrn. | Std. Corr | nElement % | Sigma %              | Atomic %             |                | Compound % | Nos. of ions |
| Mg          | к        | ED       | 0.17          | 67 0.032      | 5 0.007   | 4 0.001      | 4 0.177    | 4 0.714       | 7 1.000   | 0 0.247    | 2 0.045              | 4 0.555              | 6MgO           | 0.409      | 9 0.022      |
| Са          | к        | ED       | 39.55         | 20 0.204      | 8 2.744   | 8 0.014      | 2 0.619    | 0 1.128       | 4 1.000   | 0 35.05    | 21 0.181             | 5 47.787             | 7 <b>€</b> aO  | 49.044     | 0 1.911      |
| Fe          | к        | ED       | 1.48          | 56 0.098      | 3 0.028   | 3 0.001      | 9 0.562    | 1 0.877       | 2 1.000   | 0 1.693    | 5 0.112              | 1 1.657              | <b>(</b> FeO   | 2.178      | 7 0.066      |
| 0           | Ка       | ED       |               |               |           |              |            |               |           | 14.639     | 98 0.134             | 6 50.000             | 00             |            | 2.000        |
|             |          | Catio    | n sum 0.00    |               |           |              |            |               |           |            |                      |                      |                | 51.632     | 6 2.000      |
| * = <2 Sigi | ma       |          |               |               |           |              |            |               |           |            |                      |                      |                |            |              |
|             |          |          |               |               |           |              |            |               |           |            |                      |                      |                |            |              |
| AED13J2(    | A-1)     | 38756.00 | 00ocation 1 o | n map         | Being exo | lved         |            |               |           |            |                      |                      |                |            |              |
| Ferro       |          |          |               |               |           |              |            |               |           |            |                      |                      |                |            |              |
| Elmt        | Line     | Spectrum | Apparent co   | n&tat. Sigma  | k Ratio   | k Ratio Sigm | aFit Index | Inten. Corrn. | Std. Corr | nElement % | Sigma %              | Atomic %             |                | Compound % | Nos. of ions |
| Na          | к        | ED       | 1.14          | 64 0.097      | 1 0.103   | 4 0.008      | 8 3.694    | 9 0.672       | 6 1.000   | 0 1.704    | 4 0.144              | 4 1.843              | Na2O           | 2.297      | 5 0.715      |
| Mg          | к        | ED       | 1.79          | 82 0.090      | 0 0.074   | 9 0.003      | 7 0.387    | 1 0.709       | 5 1.000   | 0 2.534    | 6 0.126              | 8 2.591              | MgO            | 4.202      | 5 1.005      |
| AI          | к        | ED       | 5.32          | 68 0.117      | 2 0.274   | 6 0.006      | 0 0.403    | 0 0.787       | 1 1.000   | 0 6.767    | 8 0.148              | 9 6.235              | <b>6</b> AI2O3 | 12.787     | 3 2.419      |
| Si          | к        | ED       | 17.34         | 48 0.169      | 6 0.547   | 5 0.005      | 4 1.774    | 6 0.932       | 0 1.000   | 0 18.61    | 22 0.182             | 0 16.474             | 4 <b>6</b> iO2 | 39.816     | 9 6.392      |
| к           | к        | ED       | 0.38          | 13 0.075      | 3 0.030   | 8 0.006      | 0.585      | 9 1.048       | 2 1.000   | 0 0.363    | 8 0.071              | 8 0.231              | <b>3</b> K2O   | 0.438      | 2 0.089      |
| Са          | к        | ED       | 7.81          | 59 0.142      | 7 0.542   | 4 0.009      | 9 1.142    | 9 1.029       | 2 1.000   | 0 7.594    | 3 0.138              | 7 4.710              | ScaO           | 10.625     | 7 1.827      |
| Fe          | к        | ED       | 18.18         | 08 0.307      | 8 0.346   | 2 0.005      | 9 0.392    | 2 0.937       | 1 1.000   | 0 19.39    | 94 0.328             | 5 8.635              | FeO            | 24.957     | 0 3.350      |
| 0           | Ка       | ED       |               |               |           |              |            |               |           | 38.148     | 85 0.339             | 0 59.277             | 76             |            | 23.000       |
|             |          | Catio    | n sum 0.00    |               |           |              |            |               |           |            |                      |                      |                | 95.125     | 51 15.800    |
| * = <2 Sigi | ma       |          |               |               |           |              |            |               |           |            |                      |                      |                |            |              |
|             |          |          |               |               |           |              |            |               |           |            |                      |                      |                |            |              |
| AED13J2(    | Location | 1 on map | original      |               |           |              |            |               |           |            |                      |                      |                |            |              |
| Ferro       |          |          |               |               |           |              |            |               |           |            |                      |                      |                |            |              |
| Elmt        | Line     | Spectrum | Apparent co   | n Stat. Sigma | k Ratio   | k Ratio Sigm | aFit Index | Inten. Corrn. | Std. Corr | nElement % | Sigma %              | Atomic %             |                | Compound % | Nos. of ions |

| Na          | к         | ED       | 0.781        | 7 0.094      | 19 0.070 | 5 0.008      | 6 4.661    | 0 0.684            | 0 1.000   | 0 1.142     | 9 0.138   | 7 1.2113          | Na2O  | 1.540      | 5 0.465      |
|-------------|-----------|----------|--------------|--------------|----------|--------------|------------|--------------------|-----------|-------------|-----------|-------------------|-------|------------|--------------|
| Mg          | к         | ED       | 3.099        | 4 0.09       | 0.129    | 0 0.004      | 0 0.822    | 6 0.725            | 7 1.000   | 0 4.271     | 0.132     | 5 4.2808          | MgO   | 7.082      | 0 1.646      |
| AI          | к         | ED       | 2.761        | 9 0.102      | 25 0.142 | 4 0.005      | 3 0.656    | 7 0.781            | 0 1.000   | 0 3.536     | 6 0.131   | 2 3.1937          | AI2O3 | 6.682      | 1 1.228      |
| Si          | к         | ED       | 20.812       | 5 0.17       | 6 0.657  | 0 0.005      | 6 2.126    | 8 0.966            | 5 1.000   | 0 21.534    | 44 0.184  | 8 18.682 <b>5</b> | \$iO2 | 46.068     | 3 7.185      |
| к           | к         | ED       | 0.232        | 6 0.072      | 26 0.018 | 8 0.005      | 9 0.020    | 2 1.042            | 9 1.000   | 0 0.223     | 0.069     | 6 0.139 <b>0</b>  | K2O   | 0.268      | 7 0.053      |
| Са          | к         | ED       | 8.267        | 0 0.14       | 40 0.573 | 7 0.010      | 0.066      | 7 1.024            | 3 1.000   | 0 8.070     | 0.140     | 6 4.9065          | CaO   | 11.292     | 23 1.887     |
| Fe          | к         | ED       | 16.642       | 0 0.29       | 91 0.316 | 9 0.005      | 7 0.451    | 0 0.932            | 8 1.000   | 0 17.84     | 07 0.320  | 6 7.7840          | FeO   | 22.951     | 7 2.993      |
| 0           | Ка        | ED       |              |              |          |              |            |                    |           | 39.26       | 61 0.332  | 9 59.8021         | 1     |            | 23.000       |
|             |           |          |              |              |          | Cation sum   | 0.00       |                    |           |             |           |                   |       | 95.885     | 6 15.460     |
|             |           |          |              | * = <2 Sigma |          |              |            |                    |           |             |           |                   |       |            |              |
|             |           |          |              |              |          |              |            |                    |           |             |           |                   |       |            |              |
| AED13J(2    | Location  | 2        |              | Grunerite    |          |              |            |                    |           |             |           |                   |       |            |              |
| Elmt        | Line      | Spectrum | Apparent con | Stat. Sigma  | k Ratio  | k Ratio Sigm | aFit Index | Inten. Corrn.      | Std. Corr | nElement %  | Sigma %   | Atomic %          |       | Compound % | Nos. of ions |
| Mg          | к         | ED       | 3.758        | 5 0.08       | 5 0.156  | 5 0.003      | 6 0.403    | 2 0.680            | 7 1.000   | 0 5.520     | 0.127     | 0 5.7554          | MgO   | 9.154      | 1 2.183      |
| Si          | к         | ED       | 22.628       | 3 0.17       | 70 0.714 | 3 0.005      | 6 1.591    | 5 0.961            | 4 1.000   | 0 23.53     | 79 0.184  | 1 21.2405         | \$iO2 | 50.354     | 2 8.058      |
| Са          | к         | ED       | 0.422        | 7 0.06       | 90 0.029 | 3 0.004      | 8 0.076    | 2 1.029            | 0 1.000   | 0 0.410     | 0.067     | 0 0.2598          | CaO   | 0.574      | 8 0.098      |
| Fe          | к         | ED       | 25.435       | 9 0.35       | 30 0.484 | 4 0.006      | 7 1.019    | 6 0.952            | 1 1.000   | 0 26.71     | 53 0.370  | 8 12.124€         | ₽eO   | 34.368     | 37 4.600     |
| 0           | Ка        | ED       |              |              |          |              |            |                    |           | 38.26       | 69 0.300  | 60.6202           | 2     |            | 23.000       |
|             | 1         | Catio    | n sum 0.00   |              |          |              |            |                    |           |             |           |                   |       | 94.451     | 8 14.94      |
| * = <2 Sigr | na        |          |              |              |          |              |            |                    |           |             |           |                   |       |            |              |
|             |           |          |              |              |          |              |            |                    |           |             |           |                   |       |            |              |
| Location 2  |           |          | Grunerite    |              |          |              |            |                    |           |             |           |                   |       |            |              |
| Elmt        | Line      | Spectrum | Apparent con | Stat. Sigma  | k Ratio  | k Ratio Sigm | aFit Index | Inten. Corrn.      | Std. Corr | nElement %  | Sigma %   | Atomic %          |       | Compound % | Nos. of ions |
| Mg          | к         | ED       | 3.757        | 2 0.08       | 57 0.156 | 4 0.003      | 6 0.209    | 7 0.681            | 7 1.000   | 0 5.51      | 14 0.125  | 5.759 <b>6</b>    | MgO   | 9.138      | 3 2.181      |
| Si          | к         | ED       | 22.789       | 0.17         | 71 0.719 | 4 0.005      | 6 1.450    | 7 0.961            | 9 1.000   | 0 23.69     | 33 0.184  | 2 21.4334         | \$iO2 | 50.686     | 57 8.119     |
| Fe          | к         | ED       | 25.309       | 0 0.354      | 42 0.482 | 0 0.006      | 7 0.490    | 2 0.952            | 3 1.000   | 0 26.57     | 55 0.372  | 0 12.0901         | FeO   | 34.188     | 8 4.579      |
| 0           | Ka        | ED       |              |              |          |              |            |                    |           | 38.23       | 36 0.297  | 8 60.7167         | 7     |            | 23.000       |
|             | 1         | Catio    | n sum 0.00   |              |          |              |            |                    |           |             |           |                   |       | 94.013     | 14.880       |
| * = <2 Sigr | na        |          |              |              |          |              |            |                    |           |             |           |                   |       |            |              |
|             |           |          |              |              |          |              |            |                    |           |             |           |                   |       |            |              |
| Location 2  |           |          |              |              |          |              |            |                    |           |             |           |                   |       |            |              |
| Elmt        | Lino      | Speetrum | Apparant con | Etat Sigma   | k Potio  | k Datia Sigm | eEit Indox | Inton Corro        | Std. Corr | relement %  | Sigma 9/  | Atomia %          |       | Compound % | Non of iona  |
| Ma          | Line<br>K |          | 3 076        |              | 10 0 165 |              |            |                    |           | 1 ⊑iement % | 3iyina 70 |                   | MaO   | 0.526      | 2 2 546      |
|             | ĸ         | ED       | 7 7/2        | 5 0.10       | 70 0.100 | 1 0.004      |            | 7 0.720            | 7 1 000   | 10 10 61    | 33 0 17   | 3 10.78/9         |       | 20.051     | 1 d 239      |
| Si          | ĸ         | FD       | 9 930        | 1 0.12       | 58 0.313 | 5 0.004      | 3 0.009    | . 0.728<br>7 0.831 | 7 1 000   | 11 94       | 11 0 163  | 11 6576           | Si∩2  | 25.54      | 4 4 581      |
| Ca          | ĸ         | ED       | 0.249        | 5 0.06       | 56 0.017 | 3 0.004      | 6 0.276    | 2 1.038            | 1 1.000   | 0 0 240     | 0.063     | 0.1644            | CaO   | 0.336      | 3 0.064      |
| Fe          | ĸ         | ED       | 24.150       | 0.340        | 64 0.459 | 9 0.006      | 6 0.888    | 9 0.956            | 9 1.000   | 25.230      | 63 0.361  | 9 12.3897         | FeO   | 32.466     | 0 4.869      |
|             | 1         | -        |              |              |          |              |            |                    |           |             |           |                   |       |            |              |

| 0           | Ка        | ED                |                |             |          |              |            |                    |                    | 34.15      | 06 0.332              | 9 58.524 | 47             |            | 23.000                                  |
|-------------|-----------|-------------------|----------------|-------------|----------|--------------|------------|--------------------|--------------------|------------|-----------------------|----------|----------------|------------|-----------------------------------------|
|             |           | Catio             | n sum 0.00     |             |          |              |            |                    |                    |            |                       |          |                | 87.927     | 0 16.299                                |
| * = <2 Sigr | na        |                   |                |             |          |              |            |                    |                    |            |                       |          |                |            |                                         |
|             |           |                   |                |             |          |              |            |                    |                    |            |                       |          |                |            |                                         |
| Location 2  | Calcite   |                   |                |             |          |              |            |                    |                    |            |                       |          |                |            |                                         |
|             |           |                   |                |             |          |              |            |                    |                    |            |                       |          |                |            |                                         |
| Elmt        | Line      | Spectrum          | Apparent con   | Stat. Sigma | k Ratio  | k Ratio Sigm | aFit Index | Inten. Corrn.      | Std. Corr          | nElement % | Sigma %               | Atomic % |                | Compound % | Nos. of ions                            |
| Ma          | к         | ED                | 0.200          | 0.042       | 1 0.008  | 4 0.001      | 8 0.177    | 4 0.712            | 2 1.000            | 0 0.281    | 0.059                 | 0.642    | 2 <b>7</b> MaO | 0.467      | 3 0.025                                 |
| Ca          | к         | ED                | 38.683         | 35 0.274    | 3 2.684  | 5 0.019      | 0 1.123    | 8 1.128            | 3 1.000            | 0 34.28    | 38 0.243              | 1 47.423 | 3£CaO          | 47.969     | 0 1.896                                 |
| Fe          | к         | ED                | 1.711          | 2 0.130     | 7 0.032  | 6 0.002      | 5 0.104    | 6 0.878            | 4 1.000            | 0 1.948    | 0.148                 | 8 1.934  | <b>0</b> FeO   | 2.506      | 3 0.077                                 |
| 0           | Ka        | FD                |                |             |          |              |            |                    |                    | 14 42      | 89 0 179              | 5 50 000 | 0              |            | 2 000                                   |
|             |           | Catio             | n sum 0.00     |             |          |              |            |                    |                    |            |                       | 0 00.000 |                | 50 942     | 2.000<br>6 2.000                        |
| * = <2 Sign | na        |                   |                |             |          |              |            |                    |                    |            |                       |          |                | 00.012     | 2.000                                   |
|             |           |                   |                |             |          |              |            |                    |                    |            |                       |          |                |            |                                         |
| Location 3  |           |                   | with exolution | lamellea    |          |              |            |                    |                    |            |                       |          |                |            |                                         |
| Location o  | TILD 100( | 2)lotinonto       |                |             |          |              |            |                    |                    |            |                       |          |                |            |                                         |
| Elmt        | Line      | Spectrum          |                | Stat Sigma  | k Ratio  | k Ratio Sigm | aFit Index | Inten Corrn        | Std. Corr          | nElement % | Sigma %               | Atomic % |                | Compound % | Nos of ions                             |
| Na          | ĸ         | FD                | 0.855          |             | 0 0 0 77 |              |            | 3 0.680            | 1 1 000            | 1 257      |                       | 1 326    | 31/220         | 1 695      | 6 0.510                                 |
| Ma          | ĸ         | ED                | 3.056          |             | 7 0 1 27 | 2 0.000      | 0 1.030    | 6 0.721            | 3 1 000            | 0 1.237    | 0.140                 | 3 1.020  | 13/00          | 7.035      | 1 1 624                                 |
|             | ĸ         |                   | 2 670          | 0 0.094     | 0 0.127  | 7 0.000      | 0.022      | 6 0.721            | 1 1 000            | 0 4.230    | 0.13                  | 3 4.224  |                | 6.485      | 2 1 196                                 |
|             | ĸ         |                   | 2.070          | 0.101       | 0 0.137  | 7 0.000      | C 0.203    | 7 0.065            | e 1.000            | 0 3.432    | 70 0.125              | 10 3.003 |                | 0.400      | 2 1.100                                 |
|             | ĸ         |                   | 20.923         | 0.170       | 7 0.574  |              |            | 2 1.000            | 0 1.000            | 0 21.07    | 0 0.102               | 1 10.70  | 20002          | 40.37      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|             | ĸ         |                   | 0.212          | 0 0.141     | 7 0.574  |              |            | 3 1.020<br>9 0.022 | 2 1.000<br>c 1.000 | 0 0.00     | 0.130                 | 4.0/5    |                | 02.67      | 0 1.075                                 |
| Fe          | ĸ         | ED                | 17.182         | 4 0.296     | 0.327    | 2 0.005      | 0.960      | 8 0.933            | 6 1.000            | 10 18.40   |                       | 8 7.987  | a-eU           | 23.673     | 8 3.072                                 |
| 0           | ка        | ED                |                |             |          |              |            |                    |                    | 39.46      | ο <b>0 0.32</b> ε     | 4 59.793 | 38             | 00.50      | 23.000                                  |
|             |           | Catio             | n sum 0.00     |             |          |              |            |                    |                    |            |                       |          |                | 96.535     | 15.465                                  |
| * = <2 Sigr | na        |                   |                |             |          |              |            |                    |                    |            |                       |          |                |            |                                         |
|             |           |                   |                |             |          |              |            |                    |                    |            |                       |          |                |            |                                         |
| Location 3  |           | <b>a</b> <i>i</i> |                | <u></u>     |          |              |            |                    | 011.0              |            | <b>a</b> : <b>a</b> / |          |                | 0 10       |                                         |
| Elmt        | Line      | Spectrum          | Apparent con   | Stat. Sigma | k Ratio  | k Ratio Sigm | aFit Index | Inten. Corrn.      | Std. Corr          | nElement % | Sigma %               | Atomic % |                | Compound % | Nos. of ions                            |
| Mg          | ĸ         | ED                | 3.980          | 2 0.106     | 0 0.165  | 7 0.004      | 4 1.758    | 1 0.706            | 8 1.000            | 0 5.630    | 0.149                 | 9 6.577  | 8MgO           | 9.335      | 9 2.574                                 |
| Al          | K         | ED                | 8.028          | 4 0.133     | 3 0.413  | 8 0.006      | 9 1.791    | 0 0.739            | 1 1.000            | 10.864     | 45 0.180              | 11.430   | 6241203        | 20.527     | 7 4.476                                 |
| Si          | ĸ         | ED                | 9.680          | 9 0.137     | 4 0.305  | 6 0.004      | 3 1.028    | 2 0.829            | 7 1.000            | 0 11.66    | 89 0.165              | 7 11.800 | 0 <b>3</b> iO2 | 24.963     | 2 4.618                                 |
| Fe          | К         | ED                | 21.440         | 0.327       | 8 0.408  | 3 0.006      | 2 1.241    | 8 0.954            | 2 1.000            | 0 22.46    | 83 0.343              | 5 11.420 | 6 <b>6</b> eO  | 28.905     | 0 4.472                                 |
| 0           | Ka        | ED                |                |             |          |              |            |                    |                    | 33.099     | 95 0.329              | 8 58.759 | 92             |            | 23.000                                  |
|             | 1         | Catio             | h sum 0.00     |             |          |              |            |                    |                    |            |                       |          |                | 83.73      | 8 16.142                                |
| * = <2 Sigr | ha        |                   |                |             |          |              |            |                    |                    |            |                       |          |                |            |                                         |
|             |           |                   |                |             |          |              |            |                    |                    |            |                       |          |                |            |                                         |
| Location 4  | Grunerite |                   |                |             |          |              |            |                    |                    |            |                       |          |                |            |                                         |

| Elmt       | Line | Spectrum | Apparent con | Stat. Sigma | k Ratio | k Ratio Sigm | aFit Index | Inten. Corrn. | Std. Corr | nElement % | Sigma % | Atomic %            |                 | Compound % | Nos. of ions |
|------------|------|----------|--------------|-------------|---------|--------------|------------|---------------|-----------|------------|---------|---------------------|-----------------|------------|--------------|
| Mg         | к    | ED       | 3.719        | 7 0.086     | 7 0.154 | 9 0.003      | 6 0.080    | 6 0.681       | 0 1.000   | 0 5.461    | 9 0.127 | 4 5.69 <sup>.</sup> | 1MgO            | 9.056      | 3 2.155      |
| Si         | к    | ED       | 22.878       | 0.178       | 1 0.722 | 2 0.005      | 6 0.816    | 9 0.962       | 1 1.000   | 0 23.78    | 0.185   | 1 21.449            | 9 <b>6</b> 5iO2 | 50.873     | 9 8.124      |
| Fe         | к    | ED       | 25.482       | 7 0.358     | 1 0.485 | 3 0.006      | 8 0.634    | 0 0.952       | 5 1.000   | 0 26.75    | 8 0.376 | 0 12.13             | 5 <b>∉</b> eO   | 34.418     | 4.596        |
| 0          | Ка   | ED       |              |             |         |              |            |               |           | 38.35      | 8 0.300 | 3 60.724            | 45              |            | 23.000       |
|            |      | Catio    | n sum 0.00   |             |         |              |            |               |           |            |         |                     |                 | 94.348     | 3 14.876     |
| * = <2 Sig | ma   |          |              |             |         |              |            |               |           |            |         |                     |                 |            |              |
|            |      |          |              |             |         |              |            |               |           |            |         |                     |                 |            |              |
|            |      |          |              |             |         |              |            |               |           |            |         |                     |                 |            |              |
|            |      |          |              |             |         |              |            |               |           |            |         |                     |                 |            |              |

| AED05H4-an   | alysis 1   |             |              |             |         |               |           |               |             |           |         |          |       |            |              |
|--------------|------------|-------------|--------------|-------------|---------|---------------|-----------|---------------|-------------|-----------|---------|----------|-------|------------|--------------|
| Grunerite    |            |             |              |             |         |               |           |               |             |           |         |          |       |            |              |
| Elmt         | Line       | Spectrum ty | Apparent con | Stat. Sigma | k Ratio | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Mg           | к          | ED          | 1.0126       | 0.0424      | 0.0422  | 0.0018        | 0.1774    | 0.6293        | 1.0000      | 1.6090    | 0.0674  | 1.7433   | MgO   | 2.6678     | 0.6624       |
| Si           | к          | ED          | 24.1553      | 0.1412      | 1.7683  | 0.0103        | 1.5775    | 1.0759        | 1.0000      | 22.4515   | 0.1313  | 21.0565  | SiO2  | 48.0302    | 8.0012       |
| Са           | к          | ED          | 0.6880       | 0.0520      | 0.0319  | 0.0024        | 0.1714    | 0.9648        | 1.0000      | 0.7132    | 0.0538  | 0.4687   | CaO   | 0.9979     | 0.1781       |
| Fe           | к          | ED          | 33.1400      | 0.3161      | 0.6311  | 0.0060        | 0.3856    | 0.9647        | 1.0000      | 34.3534   | 0.3277  | 16.2032  | FeO   | 44.1949    | 6.1570       |
| 0            | Ka         | ED          |              |             |         |               |           |               |             | 36.7638   | 0.2335  | 60.5283  |       |            | 23.0000      |
|              |            | Cation sum  | 0.00         |             |         |               |           |               |             |           |         |          |       | 95.8908    | 14.9988      |
| * = <2 Sigma |            |             |              |             |         |               |           |               |             |           |         |          |       |            |              |
|              |            |             |              |             |         |               |           |               |             |           |         |          |       |            |              |
| AED05H4-an   | analysis 1 |             |              |             |         |               |           |               |             |           |         |          |       |            |              |
| Ferrohornble | nd         |             |              |             |         |               |           |               |             |           |         |          |       |            |              |
| Elmt         | Line       | Spectrum ty | Apparent con | Stat. Sigma | k Ratio | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Na           | к          | ED          | 0.2451       | 0.0502      | 0.0221  | 0.0045        | 1.1525    | 0.6166        | 1.0000      | 0.3975    | 0.0814  | 0.4382   | Na2O  | 0.5358     | 0.1670       |
| Mg           | к          | ED          | 1.0870       | 0.0449      | 0.0453  | 0.0019        | 0.1613    | 0.6734        | 1.0000      | 1.6142    | 0.0667  | 1.6829   | MgO   | 2.6765     | 0.6415       |
| Al           | к          | ED          | 0.3366       | 0.0464      | 0.0176  | 0.0024        | 0.0597    | 0.7735        | 1.0000      | 0.4352    | 0.0600  | 0.4088   | AI2O3 | 0.8222     | 0.1558       |
| Si           | к          | ED          | 25.5939      | 0.1458      | 1.8736  | 0.0107        | 0.2535    | 1.1162        | 1.0000      | 22.9307   | 0.1306  | 20.6942  | SiO2  | 49.0553    | 7.8881       |
| Са           | к          | ED          | 7.6819       | 0.1004      | 0.3558  | 0.0046        | 0.3048    | 0.9573        | 1.0000      | 8.0243    | 0.1048  | 5.0746   | CaO   | 11.2274    | 1.9343       |
| Fe           | к          | ED          | 23.6220      | 0.2721      | 0.4499  | 0.0052        | 0.3333    | 0.9436        | 1.0000      | 25.0334   | 0.2884  | 11.3616  | FeO   | 32.2050    | 4.3308       |
| 0            | Ka         | ED          |              |             |         |               |           |               |             | 38.0869   | 0.2368  | 60.3397  |       |            | 23.0000      |
|              |            | Cation sum  | 0.00         |             |         |               |           |               |             |           |         |          |       | 96.5222    | 15.1175      |
| * = <2 Sigma |            |             |              |             |         |               |           |               |             |           |         |          |       |            |              |
|              |            |             |              |             |         |               |           |               |             |           |         |          |       |            |              |
|              |            |             |              |             |         |               |           |               |             |           |         |          |       |            |              |
| AED05H4-an   | alysis 2   |             |              |             |         |               |           |               |             |           |         |          |       |            |              |
| Grunerite    |            |             |              |             |         |               |           |               |             |           |         |          |       |            |              |
| Elmt         | Line       | Spectrum ty | Apparent con | Stat. Sigma | k Ratio | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Mg           | к          | ED          | 0.8380       | 0.0428      | 0.0349  | 0.0018        | 0.4194    | 0.6961        | 1.0000      | 1.2038    | 0.0615  | 1.2276   | MgO   | 1.9960     | 0.4710       |
| Si           | к          | ED          | 26.0080      | 0.1461      | 1.9040  | 0.0107        | 0.2817    | 1.1536        | 1.0000      | 22.5455   | 0.1266  | 19.9010  | SiO2  | 48.2313    | 7.6350       |
| Са           | к          | ED          | 15.3718      | 0.1327      | 0.7120  | 0.0061        | 0.4476    | 0.9609        | 1.0000      | 15.9979   | 0.1381  | 9.8956   | CaO   | 22.3839    | 3.7964       |
| Fe           | к          | ED          | 18.9065      | 0.2473      | 0.3601  | 0.0047        | 0.2876    | 0.9299        | 1.0000      | 20.3309   | 0.2659  | 9.0253   | FeO   | 26.1553    | 3.4626       |
| 0            | Ка         | ED          |              |             |         |               |           |               |             | 38.6884   | 0.2205  | 59.9505  |       |            | 23.0000      |
|              |            | Cation sum  | 0.00         |             |         |               |           |               |             |           |         |          |       | 98.7665    | 15.3650      |
| * = <2 Sigma |            |             |              |             |         |               |           |               |             |           |         |          |       |            |              |
|              |            |             |              |             |         |               |           |               |             |           |         |          |       |            |              |
| AED05H4-an   | alysis 3   |             |              |             |         |               |           |               |             |           |         |          |       |            |              |
| Grunerite    |            |             |              |             |         |               |           |               |             |           |         |          |       |            |              |

| Elmt         | Line      | Spectrum ty | Apparent cond | Stat. Sigma | k Ratio | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
|--------------|-----------|-------------|---------------|-------------|---------|---------------|-----------|---------------|-------------|-----------|---------|----------|-------|------------|--------------|
| Mg           | к         | ED          | 0.8721        | 0.0416      | 0.0363  | 0.0017        | 0.2903    | 0.6345        | 1.0000      | 1.3745    | 0.0655  | 1.4963   | MgO   | 2.2790     | 0.5688       |
| Si           | к         | ED          | 24.1669       | 0.1413      | 1.7692  | 0.0103        | 2.4225    | 1.0844        | 1.0000      | 22.2871   | 0.1304  | 21.0024  | SiO2  | 47.6785    | 7.9842       |
| Са           | к         | ED          | 2.1344        | 0.0655      | 0.0989  | 0.0030        | 0.2857    | 0.9645        | 1.0000      | 2.2129    | 0.0679  | 1.4613   | CaO   | 3.0962     | 0.5555       |
| Fe           | к         | ED          | 31.5195       | 0.3091      | 0.6003  | 0.0059        | 0.3987    | 0.9613        | 1.0000      | 32.7880   | 0.3216  | 15.5388  | FeO   | 42.1811    | 5.9072       |
| 0            | Ka        | ED          |               |             |         |               |           |               |             | 36.5723   | 0.2316  | 60.5012  |       |            | 23.0000      |
|              |           | Cation sum  | 0.00          |             |         |               |           |               |             |           |         |          |       | 95.2349    | 15.0158      |
| * = <2 Sigma |           |             |               |             |         |               |           |               |             |           |         |          |       |            |              |
|              |           |             |               |             |         |               |           |               |             |           |         |          |       |            |              |
| AED05H4-an   | alysis 4  |             |               |             |         |               |           |               |             |           |         |          |       |            |              |
| Ferrohornble | nd        |             |               |             |         |               |           |               |             |           |         |          |       |            |              |
| Elmt         | Line      | Spectrum ty | Apparent cond | Stat. Sigma | k Ratio | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Mg           | к         | ED          | 0.9335        | 0.0447      | 0.0389  | 0.0019        | 0.3226    | 0.6738        | 1.0000      | 1.3854    | 0.0663  | 1.4520   | MgO   | 2.2971     | 0.5536       |
| AI           | к         | ED          | 1.0866        | 0.0521      | 0.0570  | 0.0027        | 0.1642    | 0.7763        | 1.0000      | 1.3997    | 0.0672  | 1.3218   | AI2O3 | 2.6446     | 0.5039       |
| Si           | к         | ED          | 24.3561       | 0.1436      | 1.7830  | 0.0105        | 0.4789    | 1.1055        | 1.0000      | 22.0335   | 0.1299  | 19.9892  | SiO2  | 47.1359    | 7.6212       |
| Са           | к         | ED          | 8.0195        | 0.1022      | 0.3714  | 0.0047        | 0.3810    | 0.9592        | 1.0000      | 8.3605    | 0.1066  | 5.3150   | CaO   | 11.6978    | 2.0264       |
| Fe           | к         | ED          | 24.0019       | 0.2763      | 0.4571  | 0.0053        | 0.2810    | 0.9443        | 1.0000      | 25.4182   | 0.2926  | 11.5970  | FeO   | 32.7000    | 4.4216       |
| 0            | Ка        | ED          |               |             |         |               |           |               |             | 37.8781   | 0.2349  | 60.3250  |       |            | 23.0000      |
|              |           | Cation sum  | 0.00          |             |         |               |           |               |             |           |         |          |       | 96.4753    | 15.1268      |
| * = <2 Sigma |           |             |               |             |         |               |           |               |             |           |         |          |       |            |              |
|              |           |             |               |             |         |               |           |               |             |           |         |          |       |            |              |
| AED05H4-an   | alysis 5  |             |               |             |         |               |           |               |             |           |         |          |       |            |              |
| Ferrohornble | nd        |             |               |             |         |               |           |               |             |           |         |          |       |            |              |
| Elmt         | Line      | Spectrum ty | Apparent cond | Stat. Sigma | k Ratio | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Mg           | к         | ED          | 0.7945        | 0.0423      | 0.0331  | 0.0018        | 0.1452    | 0.6951        | 1.0000      | 1.1429    | 0.0608  | 1.1577   | MgO   | 1.8950     | 0.4441       |
| AI           | к         | ED          | 0.1648        | 0.0445      | 0.0086  | 0.0023        | 0.0746    | 0.7999        | 1.0000      | 0.2061    | 0.0556  | 0.1881   | AI2O3 | 0.3894     | 0.0721       |
| Si           | к         | ED          | 26.0221       | 0.1467      | 1.9050  | 0.0107        | 0.3380    | 1.1503        | 1.0000      | 22.6224   | 0.1276  | 19.8363  | SiO2  | 48.3958    | 7.6083       |
| Са           | к         | ED          | 15.1954       | 0.1326      | 0.7038  | 0.0061        | 0.3048    | 0.9609        | 1.0000      | 15.8140   | 0.1380  | 9.7169   | CaO   | 22.1266    | 3.7270       |
| Fe           | к         | ED          | 19.2791       | 0.2497      | 0.3672  | 0.0048        | 0.0523    | 0.9306        | 1.0000      | 20.7174   | 0.2684  | 9.1358   | FeO   | 26.6525    | 3.5041       |
| 0            | Ка        | ED          |               |             |         |               |           |               |             | 38.9565   | 0.2279  | 59.9652  |       |            | 23.0000      |
|              |           | Cation sum  | 0.00          |             |         |               |           |               |             |           |         |          |       | 99.4593    | 15.3556      |
| * = <2 Sigma |           |             |               |             |         |               |           |               |             |           |         |          |       |            |              |
|              |           |             |               |             |         |               |           |               |             |           |         |          |       |            |              |
| AED05H4-Ar   | nalysis 6 |             |               |             |         |               |           |               |             |           |         |          |       |            |              |
| Grunerite    |           |             |               |             |         |               |           |               |             |           |         |          |       |            |              |
| Elmt         | Line      | Spectrum ty | Apparent cond | Stat. Sigma | k Ratio | k Ratio Sigma | Fit Index | Inten. Corrn. | Std. Corrn. | Element % | Sigma % | Atomic % |       | Compound % | Nos. of ions |
| Mg           | к         | ED          | 1.1480        | 0.0445      | 0.0478  | 0.0019        | 0.0484    | 0.6331        | 1.0000      | 1.8133    | 0.0703  | 1.9449   | MgO   | 3.0065     | 0.7381       |
| Si           | к         | ED          | 24.6108       | 0.1420      | 1.8017  | 0.0104        | 1.0000    | 1.0774        | 1.0000      | 22.8423   | 0.1318  | 21.2084  | SiO2  | 48.8662    | 8.0488       |

| Са           | к  | ED         | 0.5804  | 0.0511 | 0.0269 | 0.0024 | 0.3238 | 0.9631 | 1.0000 | 0.6026  | 0.0530 | 0.3921  | CaO | 0.8432  | 0.1488  |
|--------------|----|------------|---------|--------|--------|--------|--------|--------|--------|---------|--------|---------|-----|---------|---------|
| Fe           | к  | ED         | 32.7130 | 0.3150 | 0.6230 | 0.0060 | 0.6144 | 0.9637 | 1.0000 | 33.9453 | 0.3268 | 15.8503 | FeO | 43.6700 | 6.0154  |
| 0            | Ka | ED         |         |        |        |        |        |        |        | 37.1824 | 0.2340 | 60.6042 |     |         | 23.0000 |
|              |    | Cation sum | 0.00    |        |        |        |        |        |        |         |        |         |     | 96.3860 | 14.9512 |
| * = <2 Sigma |    |            |         |        |        |        |        |        |        |         |        |         |     |         |         |
|              |    |            |         |        |        |        |        |        |        |         |        |         |     |         |         |
|              |    |            |         |        |        |        |        |        |        |         |        |         |     |         |         |
|              |    |            |         |        |        |        |        |        |        |         |        |         |     |         |         |
|              |    |            |         |        |        |        |        |        |        |         |        |         |     |         |         |
|              |    |            |         |        |        |        |        |        |        |         |        |         |     |         |         |

## Appendix 5-2 Monazite Analyses Core and Rim Data Including Standard Deviations

| M1 core |       |      |      |             |                                 |
|---------|-------|------|------|-------------|---------------------------------|
| Pt      | Y     | Pb   | U    | age         | comments                        |
| 1       | 10829 | 6413 | 2486 | 2566        |                                 |
| 2       | 10496 | 6846 | 2694 | 2525        |                                 |
| - 3     | 11342 | 6488 | 2034 | 2564        |                                 |
| 1       | 11166 | 6700 | 2004 | 2504        |                                 |
| 4       | 1100  | 7062 | 2901 | 2040        |                                 |
| 5       | 1120/ | 7063 | 2795 | 25/1        |                                 |
| 6       | 10762 | 5979 | 2655 | 2527        |                                 |
| (       | 11919 | 6382 | 3124 | 2564        |                                 |
| 8       | 12089 | 6874 | 3310 | 2519        |                                 |
| 9       | 10548 | 6727 | 2480 | 2554        |                                 |
| 9       | 11159 | 6619 | 2828 | 2548        | Average                         |
| 9       | 567   | 332  | 283  | 20          | ation of the measurements       |
| 9       | 189   | 111  | 94   | 7           | of the mean or standard error   |
| Ū       | 100   |      | 0.1  | •           |                                 |
| M2 core |       |      |      |             |                                 |
|         | V     | Dh   |      | 200         | comments                        |
| 1       | 11100 | 9416 | 2027 | aye<br>2527 | comments                        |
| י<br>ר  | 1100  | 7905 | 2037 | 2557        |                                 |
| 2       | 10710 | 7695 | 3100 | 2019        |                                 |
| 3       | 10712 | 0408 | 2419 | 2530        |                                 |
| 4       | 10383 | 5961 | 2660 | 2583        |                                 |
| 5       | 11284 | 7530 | 2870 | 2563        |                                 |
| 6       | 11705 | 6695 | 3052 | 2524        |                                 |
| (       | 10926 | 5385 | 2393 | 2562        |                                 |
| 8       | 10784 | 6272 | 2653 | 2541        |                                 |
| 9       | 12045 | 6086 | 2813 | 2565        |                                 |
| 9       | 11206 | 6745 | 2764 | 2547        | Average                         |
| 9       | 576   | 996  | 265  | 21          | ation of the measurements       |
| 9       | 192   | 332  | 88   | 7           | I of the mean or standard error |
|         |       |      |      |             |                                 |
| M3 core |       |      |      |             |                                 |
| Pt      | Y     | Pb   | U    | age         | comments                        |
| 1       | 11646 | 5950 | 3097 | 2553        |                                 |
| 2       | 11725 | 6839 | 3331 | 2556        |                                 |
| 3       | 11603 | 6634 | 3214 | 2540        |                                 |
| 4       | 11265 | 6221 | 3122 | 2533        |                                 |
| 5       | 10496 | 7240 | 2678 | 2557        |                                 |
| 6       | 10374 | 6989 | 2847 | 2521        |                                 |
| 7       | 10576 | 6544 | 2690 | 2555        |                                 |
| 8       | 11055 | 5569 | 2754 | 2507        |                                 |
| a       | 10580 | 7055 | 2773 | 2546        |                                 |
| 0       | 10000 | 1000 | 2110 | 2040        |                                 |
| 9       | 11035 | 6560 | 2945 | 2540        | Average                         |
| 9       | 544   | 553  | 247  | 18          | ation of the measurements       |
| 9       | 181   | 184  | 82   | 6           | i of the mean or standard error |

| M3 rim  |       |              |      |      |                                 |
|---------|-------|--------------|------|------|---------------------------------|
| Pt      | Y     | Pb           | U    | age  | comments                        |
| 1       | 10750 | 3871         | 2662 | 2519 |                                 |
| 2       | 10692 | 4743         | 3806 | 2508 |                                 |
| 3       | 10278 | 4927         | 4123 | 2509 |                                 |
| 4       | 10925 | 4044         | 2731 | 2527 |                                 |
| 5       | 11581 | 4015         | 2873 | 2553 |                                 |
| 6       | 12012 | 4070         | 2075 | 2550 |                                 |
| 7       | 11520 | 4079<br>5152 | 2903 | 2300 |                                 |
| 7       | 11539 | 0754         | 3073 | 2400 |                                 |
| 8       | 10742 | 2/51         | 2075 | 2400 |                                 |
| 9       | 10217 | 3076         | 2095 | 2536 |                                 |
| 9       | 10970 | 4073         | 2927 | 2515 | Average                         |
| 9       | 613   | 801          | 685  | 35   | ation of the measurements       |
| 9       | 204   | 267          | 228  | 12   | l of the mean or standard error |
| Ū       | 201   | 201          | 220  |      |                                 |
| M4      |       |              |      |      |                                 |
| Pt      | Y     | Pb           | U    | age  | comments                        |
| 1       | 10416 | 7908         | 2509 | 2543 |                                 |
| 2       | 10685 | 6348         | 2681 | 2639 |                                 |
| - 3     | 10663 | 5077         | 2312 | 2573 |                                 |
| 4       | 10563 | 4240         | 2342 | 2491 |                                 |
| 5       | 11083 | 4078         | 2042 | 2546 |                                 |
| 6       | 10724 | 7253         | 2232 | 2570 |                                 |
| 7       | 10724 | 7255         | 2000 | 2524 |                                 |
| 7       | 10470 | 7770         | 2499 | 2002 |                                 |
| 8       | 11353 | 7670         | 3132 | 2518 |                                 |
| 8       | 10744 | 6293         | 2575 | 2545 | Average                         |
| 8       | 319   | 1614         | 293  | 45   | ation of the measurements       |
| 8       | 113   | 571          | 104  | 16   | I of the mean or standard error |
|         |       |              |      |      |                                 |
| M5 Core |       |              |      |      |                                 |
| Pt      | Y     | Pb           | U    | age  | comments                        |
| 1       | 11221 | 6107         | 2486 | 2568 |                                 |
| 2       | 10898 | 5952         | 2333 | 2571 |                                 |
| 3       | 11955 | 7463         | 3071 | 2587 |                                 |
| 4       | 10797 | 6205         | 2368 | 2561 |                                 |
| 5       | 11717 | 6173         | 3000 | 2546 |                                 |
| 6       | 11386 | 4725         | 2496 | 2565 |                                 |
| 7       | 10307 | 7071         | 2239 | 2560 |                                 |
| 8       | 10162 | 7042         | 2373 | 2509 |                                 |
| 8       | 11055 | 6342         | 2545 | 2558 | Average                         |
| 8       | 636   | 858          | 314  | 23   | ation of the measurements       |
| 8       | 225   | 303          | 111  | 8    | l of the mean or standard error |
|         | -     |              |      | -    |                                 |

| M5 Rim |       |      |      |      |                                 |
|--------|-------|------|------|------|---------------------------------|
| Pt     | Y     | Pb   | U    | age  | comments                        |
| 1      | 10939 | 3005 | 2150 | 2540 |                                 |
| 2      | 10140 | 4238 | 2390 | 2524 |                                 |
| 3      | 10197 | 3368 | 2029 | 2576 |                                 |
| 4      | 10222 | 2411 | 1577 | 2529 |                                 |
| 5      | 10693 | 4310 | 2483 | 2526 |                                 |
| 6      | 10250 | 4082 | 2453 | 2510 |                                 |
| 7      | 10904 | 3148 | 2329 | 2527 |                                 |
| 8      | 11412 | 3409 | 2769 | 2501 |                                 |
| 9      | 11665 | 4625 | 3079 | 2515 |                                 |
|        |       |      |      |      |                                 |
| 9      | 10713 | 3621 | 2362 | 2527 | Average                         |
| 9      | 563   | 729  | 430  | 21   | ation of the measurements       |
| 9      | 188   | 243  | 143  | 7    | I of the mean or standard error |