Herpaiparius Severtzow, 1858

Herpaiparius Severtzov, 1858:385, 390. Type species Felix yagouarouendi É. Geoffroy, 1803 by monotypy (subgenus elevated to genus by Pocock, 1917:346).

Herpaiparius yagouarouendi (É. Geoffroy, 1803)

Jaguarundi

Felix eyra Fischer, 1814:223. Type locality “Paraguay” (based upon “eyra” of Azara, 1801:177–178, for the red phase).

Felix unicolor Traill, 1819:170. Type locality “Demerary, Guyana.”

Felix darwinii Martin, 1837:3. Type locality “Buenos Ayres, Argentina” (based upon the skin of an immature specimen, gray phase).

Felix cacomimiti Berlandier, 1859:12. Type locality “Matumoros, Tamaulipas, Mexico.”

Felix ameghinaei Holmberg, 1898:485. Type locality “San Luis, Argentina.”

Felix apache Means, 1901:150. Type locality “Mataramoros, Tamaulipas, Mexico.”

Felix fossata Means, 1901:150. Type locality “Merida, Yucatan, Mexico.”

Felix panamensis Allen, 1904:71. Type locality “Boqueron, Chi­riqui, Panama.”

CONTEXT AND CONTENT. Context as noted in original account above. Eight subspecies are recognized (Cabrera, 1957; Hall, 1981):

- *H. y. ameghinaei* (Holmberg, 1898:485), see above.
- *H. y. cacomimiti* (Berlandier, 1859:12), see above (includes apache).
- *H. y. eyra* (Fischer, 1814:228), see above (includes darwinii).
- *H. y. fossata* (Means, 1901:150), see above.
- *H. y. melanchoi* (Thomas, 1914:350). Type locality “Posozoo, Huaturco, Peru (altitude 800 m).”
- *H. y. panamensis* (Allen, 1904:71), see above.
- *H. y. toltec* (Thomas, 1898:41). Type locality “Tatemales, Sinaloa, Mexico.”

DIAGNOSIS. The jaguarundi differs from the flat-headed cat (*Prionailurus planiceps*), its closest relative in appearance, as follows: *H. yagouarouendi* has a longer head and body length of 653.6 mm (range, 498–832, n = 80), compared with 560 mm (410–610); proportionately longer tail, 422.3 mm (275–590, n = 80), compared with 180 mm (130–200); and greater body mass of 5.1 kg (3–7.6, n = 28), compared with 1.5–2.2 kg. In addition, dark lines are absent on the cheeks of the jaguarundi, but are present on the flat-headed cat (Guggisberg, 1975; Kitchener, 1991; Oliveira, in press). From the other smaller species of Neotropical felids of the genera *Leopardus, Lynxaiurus,* and *Oepailurus,* the jaguarundi is distinguished by its elongate body, small rounded ears, short limbs (relative to head and body length), and uniform unpigmented (at any age) polymorphic pelage (Cabrera, 1961; Guggisberg, 1975; Nowak, 1992; Oliveira, in press). The jaguarundi also lacks the rounded contours of the head (which tends to be long in proportion to the body), so characteristic of the other small Neotropical felids (Eisenberg, 1989). The long cranium, which is never convex longitudinally, the possible presence of the P2, and the relatively narrower auditory bullae also are diagnostic (Hall, 1981). The blackish-brown color phase can be mistaken for the mustelid *Eira barbara* (taya). The latter, however, always has a distinct irregular ochre-yellow or orange-yellow spot on the throat, which is lacking in the jaguarundi (Husson, 1978).

GENERAL CHARACTERS. *Herpaiparius yagouarouendi* is a small to medium-sized animal considered to be the cat with relatively few feline features (Guggisberg, 1975). The head is flat, elongate, and low, the ears are small and rounded, and the limbs are proportionally shorter relative to the length of the body (Azara, 1801, 1802; Cabrera, 1961; Hall, 1981; Oliveira, in press; Oliveira and Casarão, 1997; Fig. 1). The tail is about two-thirds the length of head and body (Oliveira, 1994). Of the assemblage of small Neotropical felids, only ocelots (*Leopardus pardalis*) are larger than jaguarundis. Total length of adults in Venezuela is 1.141 mm (range 1,010–1,380 mm, n = 5) for males, and 941.4 mm (range 920–1,025 mm, n = 5) for females (Mondolfi, 1986). Mean measurements (in mm and kg) with range and sample size in parentheses for individuals from Texas, Mexico, Belize, and Honduras are as follows: length of head and body, 683 (620–832, n = 7) for males, 590.1 (430–660, n = 12) for females; length of tail, 504 (430–572, n = 7) for males, 438.2 (400–506, n = 12) for females; and average body mass for both sexes combined is 5.1 (3.75–6.25, n = 4). In northern South America (Colombia, Venezuela, Guyana, Suriname) length of head and body averages 619.3 (574–680, n = 3) for males, 617.3 (533–735, n = 3) for females; length of tail, 431.7 (408–470, n = 3) and 438.3 (366–515, n = 3); and body mass of both sexes combined is 4.6 (3.2–7.6, n = 3). For male specimens from Brazil, length of head and body averages 659.3 (555–750, n = 18), length of tail, 439.8 (310–590, n = 18), and body mass, 5.6 (3.0–7.6, n = 13). For females, length of head and body averages 597.4 (448–668, n = 11), length of tail, 391.8 (275–475, n = 11), and body mass, 4.5 (3.5–5.4, n = 8—Oliveira, 1994, in press).

The narrow and low skull has a short facial area, inconspicuous zygomatic arches, a temporal crest usually apart and forming

FIG. 1. Adult female *Herpaiparius yagouarouendi* eyra from São Paulo, Brazil.
Fig. 2. Dorsal, ventral, and lateral views of cranium and lateral view of mandible of a female *Herpestus yagouroudi* yagouroudi. Museu de Zoologia da Universidade de São Paulo 13698, from Fordândia (08°47'S, 53°28'W) state of Pará, Brazil. Greatest length of cranium is 116.1 mm. Photograph by Fernando T. de Andrade.

a lyriform area that occupies the anterior three-fourths of the braincase, a sagittal crest that is rarely complete, and an occipital crest only slightly concave above the condyles (Cabrera, 1961; Hall, 1981; Fig. 2). The sagittal crest is restricted to the posterior quarter of the braincase (Hussos, 1978). The braincase is enlarged and convex, giving the interorbital region an elevated appearance, and its narrowest part is situated behind the nasomaxillary line; the interorbital region is situated forward. The muzzle is compressed above (Cabrera, 1961; Hall, 1981). The nasals are triangulally produced in the inner part of their anterior margins, obscuring the formula incisiva when viewed from above (Hussos, 1978). The maxilla is rounded, with a nearly horizontal upper edge and an almost vertical anterior border. The mandible is robust (Cabrera, 1961; Hall, 1981). The permanent dental formula is i 3/3, c 1/1,

p 3/2, m 1/1, total 30 (Hussos, 1978). Range of skull measurements (in mm) of North and Central American specimens combined are as follows: greatest length of skull, 89.3–115.5; zygomatic breadth, 60.0–74.5; and crown length of maxillary tooth row, 27.5–32.5 (Hall, 1981). The following cranial measurements (in mm) of 23 individuals are from a sample representing adult specimens from Brazil (mean and range, in parentheses): greatest length of skull, 95.0 (86.7–116.1); condylar length, 94.5 (81.2–109.2); length of palate, 37.4 (33.4–41.6); zygomatic breadth, 61.5 (55.6–72.7); interorbital breadth, 17.9 (13.3–19.8); width of postorbital process, 40.8 (34.1–44.4); postorbital constriction, 29.8 (27.2–33.6); width of braincase, 44.4 (40.3–48.5); length of upper tooth row (C-M1), 29.8 (26.2–33.2); and length of P4, 12.0 (10.5–14.5; Oliveira, in litt.).

The jaguarundi has a dark phase (brownish-black), a gray phase, and a reddish-yellow phase. All phases have varying degrees of shading (Oliveira, 1994, in press; Oliveira and Cassaro, 1997). However, most authors consider only two color phases, a grayish-black and a reddish-brown (Cabrera, 1961; Eisenberg, 1989; Hall, 1981; Kitchener, 1991; Leopold, 1939). Different color phases can be found in the same litter (Cabrera and Yeppes, 1960). The coloration is uniform on the whole body, sometimes with the head and ventral side of the neck slightly lighter. The hairs tend to be light on the base and on the tip, which gives some animals a grizzled appearance. Some specimens show a broad black mediant dorsal band (Hussos, 1978; Oliveira, in press).

DISTRIBUTION. *Herpestus yagouroudi* has a broad geographic distribution, ranging from southern Texas, to the eastern and western lowlands of Mexico, through the inter-Andean valley of Peru, to southern Brazil and Paraguay, to the provinces of Buenos Aires and Rio Negro (approximately 39°S) in Argentina (Cabrera, 1957; Guggisberg, 1975; Hall, 1981; Tewes and Schmidtly, 1987; Ximenez, 1972; Fig. 3). Jaguarundis also have been reported from Arizona (Little, 1938). However, this cat is not known to be a resident in that state (Nowak, 1992), and there is no recent evidence of the presence of jaguarundis in Texas (Tewes and Everett, 1986).
There were a few sightings and one capture of a young jaguarundi in Florida (Neill, 1961; Ray, 1964). At present, a small population may be established in Florida as a result of human introduction (Nowak, 1992; Ray, 1964). In other southeastern states there are sporadic reports of a jaguarundi-like felid (Nowak, 1992). The species ranges from sea level to at least 3,200 m (Cuervo et al., 1986).

Fossil Record. There is a controversy regarding fossil jaguarunids. Originally the species was reported from four late Rancholabrean faunas in Florida and Georgia (Dalquest et al., 1969; Ray, 1964, 1967). However, these specimens also were referred to variously as a new species (Felis amnicola Gillette, 1976) or an extinct subspecies of the margay (Leopardus wiedii amnicola Weid, 1975). Another specimen from Fort Kennedy Cave, Pennsylvania, was formerly referred to as an early representative of the jaguarundi line, probably represents a new species (Werdelin, 1985). Fossilized jaguarunids remains have been found from the late Rancholabrean of Mexico (San Josecito Cave) and Texas (Schultze Cave—Kurtén and Anderson, 1980). Mandibles of the jaguarundi and margay differ in the postdental portion of the lower jaw. The coronoid process is broader and has the anterior border steeply ascending in the former, whereas in the latter the coronoid process is narrow and curving. Additionally, H. yaguarunandi has a deeper coronoid fossa with an associated lingual budge lacking in L. wiedii (Ray, 1964).

FORM AND FUNCTION. The body shape and color suggest that jaguarunids are mainly terrestrial (Ricciuti, 1979), but they are migratory and move about in groups, especially when pursued (McCarthy, 1992; Oliveira, 1994; Reigger, 1830).

The vertebral column is long and slender. It consists of 7 C, 13 T, 7 L, 4 S, and 20 Ga, total 50. The first 10 ribs are vertebral, and the 11th, 12th, and 13th are vertebralscostal. The baculum is truncated and reduced (Ewer, 1973).

The jaguarundi was considered identical, functionally, to the margay based on the relative maximum gape (52 ± 5.2 mm) and jaw length (51.8 mm), characters supposedly related to capture of prey (Kiltie, 1984, 1988). An emphasis on “craniodentimbsular” and “functionally” has been stressed on the basis that jaguarunids are bigger and heavier than margays (634 mm in length and 5.1 kg, as opposed to 543 mm and 3.4 kg—Oliveira, 1994, in press). However, canines are longer in margays (10.89 mm) than in jaguarunids (9.71 mm—Van Valkenburgh and Ruff, 1982). If the length of the lower canines of margays and jaguarunids differ in a manner similar to that of the upper canines, then the gape of a jaguarundi is 1.092 times that of a margay (Dayan et al., 1990). The relative maximum bite force was reported as 611 ± 184 mm’ (Kiltie, 1984).

The eyes are honey-brown and the pupils are rounded when contracted (Azara, 1801; Oliveira, 1994, in press; Ricciuti, 1979). The upper limit of hearing is 100 kHz; however, the relative and absolute upper useful limits are 55 and 70 kHz (Ewer, 1973). Adult jaguarunids have a broad range of vocalizations, including 13 distinctive calls (Hulley, 1976). Studies with diets of dead and live chicks suggest that digestibility is more efficient when animals are fed live animals (Paulo, 1996).

ONTOGENY AND REPRODUCTION. The average length of the estrus period is 3.2 ± 0.8 days (n = 6). The estrous cycle lasts 53.6 ± 2.4 days (n = 8—Mellen, 1993). Gestation was reported to last from 72 to 75 days (Hulley, 1976) and from 63 to 70 days (Nowak, 1992). Litter size varies from one to four (Green, 1991; Guggisberg, 1975; Leopold, 1959), with a mean litter size (n = 27) of 1.9 (Oliveira, 1994). Females have three pairs of nipples (Azara, 1802). Sex ratio of 12 litters was 9:4:9 (males: females: unknown—Mellen, 1993). Young start leaving the nest at 28 days (Green, 1991). Between 21 and 30 days females gave small amounts of food to their cubs, and at 42 days young were capable of eating adult-sized food (Hulley, 1976). Maturity at 1.6 years of age (Mellen, 1993). However, signs of maturity were reported for females 2 to 3 years of age (Hulley, 1976). The number of young potentially produced by a 7-year-old female in her lifetime is nine (Oliveira, 1994). The reproductive period has been reported to be year-round (Hulley, 1973; Weigel, 1975), whereas there are two periods in Mexico (Guggis- berg, 1975; Leopold, 1959), and a late-autumn period in the northern part of its range (Bailey, 1965). Fallen logs, dense thickets, and hollow trees are used as den sites (Cabrera and Yeppes, 1960; Guggisberg, 1975).

ECOLOGY. As its extensive geographical distribution suggests, H. yaguarunandi is found in a variety of habitats. Jaguarunids may be found in a variety of habitats, from tropical rainforests, tropical deciduous and semidesertic forests, subtropical forests, tropical thorny forests, dry and humid premontane forests, rain-saturated Andean scrub (paramo), palmetto thickets, scrub savannas, wet-savanna grasslands, semi-arid thorn scrubs, dense chaparral, and Monte (scrub) desert (Bisbal, 1981; Guggisberg, 1975; Mondolfi, 1980; Peterson and Pine, 1982; Schaller, 1983; Tewes and Everetti, 1986; Willig and Mares, 1989; Zapata, 1982). Their栖息地 (Sabaté and Kennedy, 1978) includes forest edges like stripes of scrub intermingled with spiny boojumlike (Encrukkia, 1830). This species occurs most frequently in oldfield habitats in Belize, although much of their home range encompasses older successional and primary forests (Konecny, 1989). Jaguarunids may be found close to streams (Guggisberg, 1975; Konecny, 1989), and edges of forest, dense brush, and shrubbery. They rarely are found deep in the woods (especially rainforests), but are often found in open areas near cover (Mondolfi, 1986; Nowell and Jackson, 1996). Apparently, access to dense ground vegetation determines habitat suitability. Jaguarunids are considered the feld most characteristic of the Cordillera (savanna) ecosystem and the small Neotropical cat with the highest habitat flexibility (Nowell and Jackson, 1996; Oliveira, 1994).

Home ranges of radiotagged jaguarunids were huge and varied considerably in Belize (99.9 to 863 km² for two adult males, and 20.1 km² for an adult female—Konecny, 1989). In southern Brazil, home ranges of an adult male and an adult female were 17.6 and 6.8 km², respectively (Crawshaw, 1995).

The diet consists mainly of small rodents, birds, and reptiles. Small-sized deer (Mazama) also have been taken (Cabrera and Yeppes, 1960; Leopold, 1959), but this could have been carrion. More than 26 vertebrate items have been listed (Oliveira, 1994). In Belize, the diet consists of 83.4% mammals, and 16.6% birds (Konecny, 1989). In Venezuela, lizards (32.2–35.3%) and birds (29.0–41.2%) are the most common items (Bisbal, 1986; Mondolfi, 1986). However, by volume, mammals are the most common item in Venezuela, comprising 46% of the total (Bisbal, 1986). Nevertheless, birds have been cited as the most common food item (Cabrera and Yeppes, 1960; Leopold, 1959) and jaguarunids are known to prey on poultry throughout most of their range (IUCN/SSC/CBSG, 1994; Oliveira, 1994). In Brazil, prey includes gray short-tailed opossums (Monodelphis domestica), tufted-ear marmosets (Callithrix jacchus), cavies (Cavia aperea, Galea spixii), rock cavies (Kerodon rupestris), birds (inamnous and doves), teix lizards, and annual fish (Ictiobus catostomus) (Mazama and Monteiro-Filho, 1989; Olmos, 1993; Ximenez, 1982). Although anthropods and vegetation (leaves and fruits) are frequently found in local droppings from Belize (7.1 and 17.3%, respectively) they are not common food sources (Konecny, 1989). The standardized breadth of diet of jaguarunids varies from 0.37 in Belize to 0.68 and 0.85 in Venezuela. The mean mass of vertebrate prey per day is 400 g (range, 192–606). Of the small tropical species of Neotropical felids, the mean mass of vertebrate prey of jaguarunids is second only to the ocelot’s (Oliveira, 1994). In captivity, average daily consumption for diets consisting of meat (dead and live chickens) was 405 g, whereas the daily amount defecated was 58 g (Paulo, 1996).

Densities of 0.25 and 0.8 animals/km² were reported for the llanos of Venezuela (Eisenberg et al., 1979), 0.015 for the Pantanal of Brazil (Schaller, 1983), and 0.25–0.8 individuals/km² for Costa Rica (Vaughn, 1983).

Parasites reported for the jaguarundi include bookworms—Anastomum tubiforme, A. pleurodentatum (Diaz-Uranga, 1964; McClure, 1933; Thaxter, 1971); tapeworms—Toxocara cati (Diaz-Uranga, 1964); Sporometa gracilis, S. longisolis, S. mansonioides (Diaz-Uranga, 1964); and Toxoplasma gondii to tropics (Ewer, 1973). Paroxysmal attacks of mouth of captive jaguarunids in Brazil (n = 24) were diseases of the respiratory system (29.2%, especially pneumonia), disorders of the urogenital system (20.8%), and diseases of the cardiovascular sys-
tem and disorders of the digestive system (8.3% each). Other causes, such as cancer, choking, and poisoning accounted for 29.2% (Oliveira, in litt.). In captivity, jaguarundis live up to 15 years (Prater et al., 1983).

In a small, sympatric felid assemblage in Belize, jaguarundis are diurnal, thus showing temporal segregation with ocelots and margays. Jaguarundis are more terrestrial and are found more frequently in oldfield habitats than are margays (Konecny, 1989).

The mean area necessary to support a viable population is 3,521 km² (Oliveira, 1994). Additional calculations show that the maximum possible number of conservation units within the jagu- rundi’s range that could possibly maintain a viable population, based on the species area requirement, is 30 (Oliveira, 1994). The area of jaguarundi’s range protected was estimated at 3-4% (Nowell and Jackson, 1996). Besides habitat loss, hunting to protect poultry is considered to have the highest negative impact on jaguarundis (Bisbal, 1992; Oliveira, 1994).

BEHAVIOR. It has been suggested that *H. yagouaroundi* is nocturnally active, but daytime activity also occurs (Cabrera and Yeppes, 1960; Hall, 1981; Leopold, 1959; Mondolfi, 1980; Tewes and Schmidly, 1987). Overall, jaguarundis are less nocturnal than most cats, hunting mainly in the morning and evening (Guggisberg, 1975). Jaguarundis are mainly diurnally active, according to a tel- ecmetric study in Belize, although they show movement at all hours. Activity peaks between 1400 and 1600 h, and the mean distance moved was 253 m (90 m per 24 h) (Konecny, 1989). In southern Brazil, consecutive locations of radiotagged animals were predominantly <1 km apart for a male and equally <1 km apart and 1–2 km apart for a female (Crawshaw, 1995). It has been suggested that coat color and body shape indicate that jaguarundis are more diurnal and hunt more terrestrially than spotted cats (Guggisberg, 1975; Killing, 1984; Konecny, 1989; Ricciuti, 1979).

Herpailurus yagouaroundi is solitary (Guggisberg, 1975), but there are suggestions that it lives in pairs (Cabrera and Yeppes, 1960; Capito). For species specimens display some gregarious behavior (Hul- ley, 1976). Jaguarundis have the friendly close-range vocalizations found in most small cats, the "gurrun" (gurgle), which is a short, noisy, low-intensity sound with rhythmical amplitude modulation, used for friendly close contact, courtship, mating, and for communication between females and young (Peters, 1984).

The following scent-marking patterns for jaguarundis have been recorded: urine spraying (male), scraping, head rubbing, claw raking, and recumbent head rubbing (Wemmer and Scow, 1977). Several marking behaviors have been recorded for captive jagua- rundis: neck rubbing, sharpening claw, Flehmen, scraping with hind feet for males and females, and cheek rubbing and urine spraying by males (Mellen, 1993).

During reproductive receptivity, the female rolls on her back and deposits urine in various places while giving faint cries. The female screams loudly while mating and the male gently licks the female’s neck (Hulley, 1976). The following social behaviors have been recorded for male and female jaguarundis: hiss, growl, social grooming, social sniff, approach, chase, and face off; aggressonal sniff, follow, and displace have been described only for males, whereas strike with paw, bite, and social head rub were reported only for females (Mellen, 1993). Jaguarundis are easily tamed, becoming good pets (Cabrera and Yeppes, 1960; Guggisberg, 1975).

GENETICS. The jaguarundi, like the majority of felids, has 19 pairs of chromosomes (2n = 38), but its karyotype is distinct. Jaguarundis have FN = 76, with 36 pairs of metacentric or submetacentric autosomes. The X chromosome is medium-sized and submetacentric, whereas the Y chromosome is a small submeta- centric (Hau and Benirschke, 1976; Wurster and Benirschke, 1966; Wurster-Hill, 1973).

CONSERVATION STATUS. The skin of jaguarundis is considered to have no commercial value, so animals are not hunted for skins (Brod, 1987). Annual average trade of live jaguarundis rep- ported to CITES between 1976 and 1990 was 1.5 animals (Nowell and Jackson, 1996).

Herpailurus yagouaroundi is classified globally in category 5c and regionally in category 3 (the lowest conservation priority) by the Species Survival Commission/Cat Specialist Group of IUCN. The species is not listed by IUCN (Nowell and Jackson, 1996). The subspecies occurring in North and Central America are in Appen- dix I of CITES (Thornback and Jenkins, 1982). *H. yagouaroundi* also was classified as vulnerable (IUCN/SSC/BCSG, 1994; Oliveira, 1994). In captivity, jaguarundis were found in 46 zoos in Brazil and in zoos participating in ISIS in 1992; however, only six zoos successfully bred this cat, showing that captive breeding is still poor. The 83.1% population growth between 1989 and 1992 is considered mainly a result of an increase in the number of wild- born animals in captivity (Oliveira, 1994, 1995). The Global Captive Action Plan for Felids listed the east-Mexican jaguarundi (*H. y. cacomithi*) sixth and the overall species tenth (last) in order of priority for captive propagation of Neotropical felids (Wilk et al., 1992). However, the species also has been ranked seventh (Oliveira, 1994, 1995).

REMARKS. There is much controversy on the validity of Geoffroy (1803) as a publication because it does not meet the require- ments of the International Code of Zoological Nomenclature (Wilson and Reeder, 1993). Thus, some authors have used *H. ya- guaroundi* (Lacépède, 1809). The different color phases originally were described as two different species, *H. yagouaroundi* (dark phase) and *H. eyra* (reddish phase). Based on albumin immunono- logical distance, jaguarundis are placed in the *Panthera* lineage, which radiated 4.4–10.6×10⁹ years ago. However, its relationship with- in this group is unclear (Collins and Millen, 1983).

Jaguarundis have at least 41 different common names through- out their range. In northern Brazil, the three different color phases are known by three different names (Oliveira, 1994). The name *Herpailurus* derives from the Latin "herpa" meaning strange (or unknown), and the Greek "clerus" meaning cat. The specific name *yagouaroundi*, is derived from the Guarani word ("yagourundi") used to call this cat (Azara; 1802). The word "yagoua" (or "jagoua, jaguara") refers to all meat-eating animals, and the termi- nation "rundi" is probably derived from the word "rundi," which means number four or, alternatively, may be derived from "hung "r," which means brownish or tawny (Carvalho, 1979; Ti- brić, 1989). Therefore, "yagourundi" would mean the fourth cat (which is a way that has been used by the Guarans to describe other similar species) or the brownish cat.

LITERATURE CITED

Cameron, T. W. M. 1926. Observations on the genus Echinococcu-

Carvalho, C. T. 1979. Diccionario dos mamíferos do Brasil. Edi-
toria Nobel, São Paulo, Brazil, 135 pp.

Crawshaw, P. G. 1995. Comparative ecology of ocelot (Felis par-

Cervera, A. J. Hernández, and A. Cadenas. 1986. Lista actual-

D'Alessandro, A., R. L. Rausch, G. A. Morales, S. Collet, and
D. Angel. 1981. Echinococcus infections in Colombian am-

Eisenberg, J. F. 1989. Mammals of the Neotropics: Panama, Co-

Eisenberg, J. F. M. O'Connell, and V. P. August. 1979. Den-
sity, productivity, and distribution of mammals in two Venezue-

aca, New York, 494 pp.

Fischer, G. 1814. Zoognosia tabalis synoptica illustrata, in usum praedectorum Academiae imperialis medico-chirurgiae mos-
quaiae edita: Typis Nicolai Sergeyevicis Vesevolosky, Moscouae, 3:1-694.

Green, R. 1991. Wild cat species of the world. Basset Publica-
tions, Plymouth, United Kingdom, 163 pp.

Herskovitz, P. 1951. Mammals from British Honduras, Mexico, Jamaica, and Haiti. Fieldiana, Zoology, 31:547-569.

Hsu, T. C., and K. Benirschke. 1976. Order Carnivora: family Felidae. An atlas of mammalian chromosomes. Springer-Ver-
lag, New York, unpagad.

Hulsey, J. T. 1976. Maintenance and breeding of captive ja-
guarundi Felis yaguaraundii at Chester Zoo and Toronto. International Zoo Yearbook, 16:120-122.

Jewett, M. L., J. K. Frenkel, K. M. Johnson, V. Reed, and A.
Ruz. 1972. Development of Toxoplasma oocytes in Neo-

——. 1988. Interspecific size regularities in tropical feline as-

Kitchener, A. 1991. The natural history of the wild cats. Com-

ford and J. F. Eisenberg, eds.). Sandhill Crane Press, Ga-

Lacépede, B. G. É. De la V. 1809. Felis yaguaraundii, Plate 10, in Voyage dans l'Amerique méridionale (F. de Azara). Imprimie-

Manzani, P. R., and E. A. L. Monteiro-Filho. 1989. Notes on the food habits of the jaguarundi Felis yaguaraundii (Mam-

McCarthy, T. J. 1992. Notes concerning the jaguarundi cat (Her-

McClure, G. W. 1933. Nematode parasites from specimens col-

Novell, K., and P. Jackson. 1996. Wild cats: status survey and conservation action plan. IUCN/SSC Cat Specialist Group, Inter-
national Union for Conservation of Nature and Natural Re-
sources (IUCN), Gland, Switzerland, 382 pp.

Oliver, T. G. De. 1994. Neotropical cats: ecology and conser-
vation. Edumf, São Luis, Brazil, 220 pp.

——. 1995. Trends in the captive population of small Neo-
tropical cats. Pp. 38-45, in IUCNZ The World Zoo Organi-
zation 49th annual conference, scientific session. IUDZC, São Paulo, Brazil, 169 pp.

——. In press. Carnivores of the Brasil. Centro Nacional de Pes-
quias para Conservación de Predadores Naturales/Asociación Pró-Carnivoro/UEMA Editora, São Paulo, Brazil.

Oliver, T. G. De, and K. Cassaro. 1997. Guia de identificando los felinos brasileños. Sociedade de Zoológicos do Brasil/In-
dicação Parque Zoológico de São Paulo, São Paulo, Brazil, 60 pp.

Olmos, F. 1993. Notes on the food habits of Brazilian "Gau

Peters, G. 1984. On the structure of friendly close range vocal-

Editors of this account were Elaine Anderson, Leslie N. Carraway, Karl F. Koopman, and Duke S. Rogers. Managing editor was Barbara H. Blake.