Canis latrans Say, 1823

Coyote

Canis latrans Say, in James, 1823:168. Type locality Engineer Cantonment, about 19.2 km SE present town of Blair, Washington Co., Nebraska.

Canis ochratus Eschscholtz (1829:1). Type locality Sacramento River Valley near Sacramento, California.

Lycalopex cagottis Hamilton Smith (1839:164). Type locality Rio Prio, west slope of Mount Iztauculco, Mexico.

Canis frustrus Woodhouse (1850:147). Type locality Red fork of the Arkansas River, probably near 97° west longitude, near Perkins, Payne Co. (now Cameron River), Oklahoma.

Canis lestes Merriam (1897:25). Type locality Toyabe Mountains near Cloverdale, Yve Co., Nevada.

Canis mearnsi Merriam (1897:29). Type locality Quitobaquito, Pima Co., Arizona.

Canis microdon Merriam (1897:29). Type locality Mier, on Rio Grande, Tamaulipas.

Canis peninsularis Merriam (1897:28). Type locality Santa Anita, Cape Saint Lucas, Baja California.

Canis estor Merriam (1897:31). Type locality Noland's Ranch, San Juan River Valley, San Juan Co., Utah.

Canis nigilis Merriam (1897:33). Type locality near Manzanilla, Colima.

Canis cletticus Elliot (1903:225). Type locality San Pedro Martir Mountains, 2,590 m, Baja California.

Canis impanitus Allen (1903:569). Type locality Rio de las Bocas, 2135 m, northwestern Durango.

Canis goldeni Merriam (1904:157). Type locality San Vicente, Chiapas.

Canis jamesi Townsend (1912:130). Type locality Tiburon Island, Sonora.

Canis hondurensis Goldman (1936:33). Type locality Cerro Guinote, NE of Archaga, on the Talanga road north of Tegucigalpa, Honduras.

CONTEST AND CONTENT. Order Carnivora, Family Canidae, Genus Canis, in which there are eight recognized species. There are 19 recognized subspecies of C. latrans, which are referred to as the coyote relative of the jackals (C. aureus, C. mesomelas, and C. adustus) — see Kurten, 1974, and Remarks. For more details on subspecies see Nelson (1932), Jack son (1951), and Hall and Nelson (1959).

C. l. latrans Say (in James, 1823:168), see above (palillus Mer riam and nebracensis Merriam are synonyms).

C. l. ochratus Eschsholtz (1829:1), see above.

C. l. cagottis (Hamilton-Smith, 1839:164), see above.

C. l. frustrus Woodhouse (1850:51:147), see above.

C. l. lestes Merriam (1897:25), see above.

C. l. mearnsi Merriam (1897:29), see above (estor Merriam a synonym).

C. l. microdon Merriam (1897:29), see above.

C. l. peninsularis Merriam (1897:28), see above.

C. l. vigilis Merriam (1897:33), see above.

C. l. cletticus Elliot (1903:225), see above.

C. l. impanitus Allen (1903:609), see above.

C. l. goldeni Merriam (1904:157), see above.

C. l. tebenicus Bailey (1905:175). Type locality Santa Gertrudis, Kleberg Co., Texas.

C. l. lewisi Townsend (1912:130), see above.

C. l. dickeri Nelson (1932:224). Type locality near Cerro Mogote, 3.2 km W Rio Goascoran, La Union (13°30' north latitude), Valdavida.

C. l. colauta Hall (1934:369). Type locality Isaacs Lake, Bowron Lake Region, British Columbia.

C. l. hondurensis Goldman (1936:33), see above.

C. l. thomasi Jackson (1949:33). Type locality Basswood Island, Apostle Islands, Ashland Co., Wisconsin.

DIAGNOSIS. The coyote can be differentiated from other Canis in the Western Hemisphere (gray wolf, C. lupus; red wolf, C. rufus; and domestic dog, C. familiaris) using a number of criteria. The coyote is typically smaller than the gray wolf (see General Characters and also Mech, 1974), but there is overlap when comparing the coyote with the red wolf and the domestic dog. Also, depending on geographic locale, there may be slight overlap with C. lupus (Lawrence and Bossert, 1967). The nose pad of the coyote (approximately 25 mm in diameter) is smaller than that of the wolf as is the diameter of the pad on the hind foot (less than 32 mm as opposed to greater than 38 mm, respectively). The ears of the coyote are longer than those of the gray wolf. The track of the coyote (approximately 70 mm by 60 mm—O. J. Murie, 1954) is more elongated than that of the domestic dog, but shorter than that of both the gray wolf and the red wolf. Riley and McBride (1975) presented mean values of 55.6 mm (57 to 72 mm) for the length of the track (from the back of the heel to the end of the longest claw) for the coyote and red wolf, respectively. The stride of the coyote is less than that of the gray wolf or red wolf. The mean length of the stride of the coyote is approximately 414 mm (324 to 483 mm), whereas that of C. rufus is approximately 658 mm (552 to 762 mm; Riley and McBride, 1975).

Dental characters also have been used to distinguish latrans, lupus, and rufus, but Jackson (1951) stressed that such measurements may not be especially reliable. In the coyote, the tips of the upper canine teeth usually extend below a line drawn through the anterior mental foramina of the mandible when the mandible is articulated and the jaws closed. Howard (1949) suggested a way for differentiating latrans from familiaris that is about 95% reliable, depending on subspecies. A ratio of palatal width (between the inner margins of the alveoli of the upper first molars) to length of the upper molar toothrow (from the anterior margin of the alveolus of the first premolar to the posterior margin of the last molar alveolus) is calculated. If the tooth row is 3.1 times the palatal width, the specimen is a coyote; if the ratio is less than 2.7, the specimen is a dog.

Various cranial measurements have been used to differentiate species of Canis (Lawrence and Bossert, 1967, 1969, 1975; Paradiso, 1968; Paradiso and Nowak, 1971; Wortmann, 1971; Gignoux et al., 1974). The coyote has a relatively larger braincase than does C. lupus (Mech, 1974). Paradiso and Nowak did extensive analyses on skulls of latrans, lupus, and rufus, and demonstrated the usefulness of indices. They found no overlap when comparing the largest coyote to the smallest wolf (lupus) in zygomatic breadth (greatest distance across zygomatica), greatest length of the skull (see figure 1), or bite ratio (the ratio of the width across the outer edges of the alveoli of the anterior lobes of the upper carnassials to the length of the upper molar toothrow, as defined above). C. rufus resembles C. latrans more than C. lupus, but Paradiso and Nowak (1971) regarded latrans and rufus as sufficiently distinct to warrant specific recognition. The differences between the red wolf and the coyote are far greater than those between recognized subspecies of C. latrans. The most reliable feature separating latrans from rufus is lesser size; there is almost no overlap in greatest length of the skull (figure 1). Also, rufus has heavier bone structure, a relatively broader skull, and generally a more pronounced sagittal crest. Lawrence and Robinson (1972) found no consistent character analyses and linear discrimination techniques, found nine cranial and six dental measurements (see Lawrence and Bossert, 1967, table 1 and appendix A, for particulars) that could be used the only to differentiate latrans and rufus; no single character was found without overlap between a pair of species. C. latrans differed more from lupus than rufus differed from familiaris.

The coyote brain differs from that of C. lupus (Radinisky, 1973) in that the wolf has a dipole in the middle of the coronal gyrus, whereas the coyote does not. Using gross cerebellar morphometry, Atkins and Dillon (1971) distinguished latrans from both lupus and rufus (see Remarks). The coyote differs from C. lupus and C. familiaris serologically (Leone and Wiens, 1956; but see also Seal, 1975).

Behaviorally, the coyote can be differentiated from C. lupus and C. familiaris. The coyote shows higher levels of aggression earlier in life than does the wolf or beagle (and probably most
LUPUS
primosolius
irremolus
youni
boleyi
monstrabilis
nubilus
lycooon

RUFUS
(Missouri)
(Oklahoma)
(Arkansas)
(Louisiana)
(Texas)

LATRANS
thamos
lexenis
meornsi
latrans
lacetes
incolatus

<table>
<thead>
<tr>
<th>170</th>
<th>180</th>
<th>190</th>
<th>200</th>
<th>210</th>
<th>220</th>
<th>230</th>
<th>240</th>
<th>250</th>
<th>260</th>
<th>270</th>
<th>280</th>
<th>290</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>5</td>
<td></td>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. The greatest length of skull (mm) in male gray wolves (lupus), red wolves (rufus), and coyotes (latrans).

A similar trend is evident in females (slender line = range; black bar = 2 standard errors of the mean; vertical line on top of black bar = mean; black bar plus white portion on either side indicate one standard deviation on either side of the mean). After Paradiso and Nowak, 1971, with permission.

Other domestic dogs as well and also performs a "species-spec" behavior called the "inguinal response" which consists of rotating a hind-leg outwards or lifting it off the ground in response to light inguinal contact (see figure 2, and Bekoff, 1972a, 1973, 1974c).

GENERAL CHARACTERS. The size of the coyote varies with subspecies and geographic locale (Jackson, 1951; Hall and Kelson, 1959). Adult males usually are heavier and larger than adult females (approximately 8 to 20 kg as opposed to 7 to 18 kg, respectively). In Sagehen Creek Basin (northeastern California), Hawthorne (1971) found that males averaged 11.12 kg (8.17 to 12.49 kg) and females averaged 9.76 kg (7.72 to 12.03 kg), whereas in Texas Daniel (1973b) found that 71 males averaged 16.75 kg (11.35 to 20.45 kg) and 70 females averaged 13.62 kg (10.90 to 17.25 kg). Gier (1975) reported that northern subspecies are larger (approximately 18 kg) than more southern subspecies on the Mexican deserts (11.5 kg). Body length varies from 1.0 to 1.35 m and the tail is about 400 mm long. Females are shorter than males in both length and height. The largest coyote on record was taken in Wyoming. It weighed 33.94 kg and measured 1.60 m from tip of nose to tip of tail (Young, 1951).

Color and texture of the fur vary geographically. The hair is longer and coarser in northern subspecies (see Form). The banded nature of the hair presents blended colors—gray mixed with a reddish tint. Those coyotes at higher altitudes tend toward more gray and black, whereas those in the desert are more fulvous (Jackson, 1951). Black patches may be found on the front of the forefeet and near the base and tip of the tail (Gier, 1968). The belly and throat are paler than the rest of the body. Melanistic coyotes are rare (Young, 1951; van Wormer, 1964; Gipson, 1976).

DISTRIBUTION. Coyotes are Nearctic canids originally inhabiting open country and grasslands (Young, 1951; Gier, 1975). Within historic time, they have occupied many diverse habitats. They now can be found between 10° north latitude (Costa Rica) and 70° north latitude (northern Alaska) and throughout the continental United States and Canada (fig. 3). The range of the coyote is expanding. When considering the expanding range of C. latrans it is important to know whether this reflects true movement of coyotes or whether some recently discovered populations (in some cases a few dens) are the result of animals being transplanted into the region by man. Transplanta-

Fossil Record. Fossils resembling C. latrans were found in Pleistocene deposits in Cumberland Cave, Maryland (Gudley, 1913; Matthew, 1930). Differentiation of modern canids occurred in the Pleistocene and in Recent times (see Giles, 1960; Colbert, 1969; Todd, 1970).

Figure 2. A "species-typical" action, the inguinal response, performed by the coyote on the left. The leg is not being pushed up but is lifted due to light stimulation in the inguinal region.
FORM. Coarse guard hairs are about 50 to 90 mm long (in the mane, 80 to 110 mm) with imbricate scales that are acuminate in the proximal region, crenate medially, and flattened distally. The fine underfur has coronal scales and may be as long as 50 mm (see Adorjan and Kolenosky, 1969; Ogles and Farris, 1973). There usually is one main molt between late spring and autumn, the summer coat (both guard hairs and underfur) is shorter than the winter coat. About 50 mm down from the base of the tail there is an oval tail gland (10 by 3 mm; Hildebrand, 1952). Normally there are eight mammae. The front foot has five toes and the hindfoot four. On the front foot there is a dew claw proximal from the other four toes. P. S. Gipson (personal communication) observed a specimen with a well-developed dew claw on each hindfoot. The toes are non-retractile and the stance digitigrade. There are 42 teeth (i 3/3, c 1/1, p 4/4, m 2/3; for further details on dentition see Slaughte et al., 1974, and Bekoff and Jamieson, 1975). The skull of a mature male weighs between 170 and 210 g and is 180 to 205 mm long (figures 4 and 5) from the tip of the premaxilla to the posterior rim of the coronal crest (Gier, 1968). Males show greater development of the sagittal ridge than do the females.

The structure and evolution of the coyote's brain have been described by Radinsky (1969, 1973), Atkins and Dillon (1971), and Elas and Schwartz (1971). Mossman and Duke (1973) described the ovaries of various canids. The adrenals of canids were studied by Ogles (1971) and Heinrich (1972). Ogles (1971) reported that the left adrenal is heavier than the right in both males and females and that the adrenals of females tend to be heavier than those of males (1.14 ± 0.01 as opposed to 1.06 ± 0.03 g, respectively).

FUNCTION. The coyote's fur is similar in insulative value to that of the gray wolf (Ogles and Farris, 1973). The critical temperature of latrans is −10°C (O2 consumption = 7.35 mm3/g/min; Shield, 1972). The longer winter fur coat conserves heat considerably better than the shorter summer coat, there being a decrease of about 87% in thermal conductivity and an increase in insulative value by a factor of five (for details, see Ogles and Farris, 1973). The coyote can run as fast as 48 km/hr (Sooter, 1948) but usually trots at less than 32 km/hr. Coyotes, like other canids (Kleiman, 1966; Mech, 1974) appear to use olfactory cues during their activities and deposit "marks" (urine, feces, and possibly glandular secretions) on conspicuous objects, possibly for territory demarcation (as yet an unsubstantiated assumption). Ozoga and Harger (1966) reported that the coyotes they observed urinated an average of once per 4.0 km and defecated every 10.4 km. Gipson and Sealander (1972) reported urination and defecation occurring three times per 1.6 km and one time per 3.2 to 4.8 km, respectively. Scratching of the ground is also a common component of the eliminative process in canids and it is possible that scent from interdigital glands is thus deposited.

The coyote has an elaborate vocal repertoire (Tembrock, 1963; Lehner, 1975). The region of maximal sensitivity to auditory stimuli is 100 Hz to 30 kHz with a top limit of 80 kHz (Petersen et al., 1969). The retina is duplex and has a preponderance of rods. The absolute scotopic (rod) threshold is approximately 1.4 foot-candles. The adaptation curve shows distinct rod-cone breaks (Horn and Lehner, 1975). The electrocardiogram of the coyote based on the ventricular activation process is the same as of other carnivores (Szabuniewicz, 1970).

REPRODUCTION AND ONTOGENY. Field data on courtship in coyotes and other species of Canis are scanty. Data on captive animals (Bekoff and Diamond, 1976) indicate that courtship is still relatively infrequent in captivity, at least with respect to the male. The female is monogamous, showing one period of "heat" per year. This usually occurs between January and March, and both males and females show seasonal changes and cycles in reproductive anatomy and physiology (Hamlett, 1938; Gier, 1968; Kennelly, 1972; Dunbar, 1973).
Proestrous lasts between 2 and 3 months (Whitman, 1949; Kennelly and Roberts, 1969; Bekoff and Diamond, 1976), estrus lasts about 2 to 5 days (Kleinman, 1968; personal observations), and ovulation occurs about 2 to 3 days before the end of the female receptivity. The times of, and durations of, proestrous and estrous differ in various locales and the relationship is not clear-cut (Hamlett, 1938). The same is true for the spermatogonic cycle of the male. Behavioral changes that occur during courtship parallel those reported by Golani and Mendelsohn (1971) for the golden jackal (C. aureus). Courtship "rituals" are not so highly specific that hybridization cannot occur. Coyotes can successfully mate with domestic dogs, gray wolves, red wolves, and jackals. Copulation ends with the typical "copulatory tie," during which the male's penis is locked in the female's vagina (Dewolfe, 1972; Grandage, 1972; Fox and Bekoff, 1975). The tie can last 15 to 25 minutes (Kleinman, 1968; Bekoff and Diamond, 1976). It is generally accepted that the same individuals will mate from year to year, but not necessarily for life.

The percentage of females that breed during a given year may vary from 33% to 90% depending on local conditions (Gier, 1968; Knowlton, 1972; Gipson et al., 1975). Both yearling males and females are capable of reproducing, yet yearling females usually breeding later than older females (Gier, 1968) and thus contributing minimally to the population (Knowlton, 1972). Gipson et al. (1975) found that no yearling females bred. However, Gier (1968) reported that in good rodent years, 75% of yearling females may breed. Nellis and Keith (1976) reported pregnancy rates of 94% for adult females and 14% for yearlings, with adults having more (6.0) placental scars than yearlings (5.2)—not a significant difference. Asdell (1964), summarizing the literature, reported the mean number of embryos in 1370 cases to be 6.23 and the number of den young in 1382 cases to be 5.70. Hamlett (1938) reported that the number of young per litter was about 85% of the number of embryos per female. Gier (1975) estimated that the number of young born was equal to about 80% of the ovulated ova depending on whether or not it was a good rodent year. Gipson et al. (1975) reported the mean number of ova per breeding female to be 6.2, with 4.5 becoming implanted.

Gestation lasts approximately 63 days (58 to 65). Coyotes and dogs appear to develop similarly in utero (Gier, 1968). Average litter size is six with a sex ratio of females to males of about 1:1. Nellis and Keith (1976) reported a mean litter size of 5.3 for 26 litters. Litter size is known to be accepted by population density (Knowlton, 1972) and rodent populations (Gier, 1968). Litter size averaged 4.3 at high densities and 6.9 at low densities. In good rodent years mean litter size was 5.8 to 6.2 and in poorer rodent years average litter size was 4.5 to 5.1.

Table 1. Mortality in coyote populations. (After Mathwig, 1973: 184; mean percentage values based on seven studies).

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Percent of population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>41.1</td>
</tr>
<tr>
<td>2</td>
<td>19.1</td>
</tr>
<tr>
<td>3</td>
<td>11.0</td>
</tr>
<tr>
<td>4</td>
<td>6.6</td>
</tr>
<tr>
<td>5</td>
<td>6.6</td>
</tr>
<tr>
<td>6</td>
<td>3.2</td>
</tr>
<tr>
<td>7</td>
<td>2.7</td>
</tr>
<tr>
<td>8</td>
<td>2.1</td>
</tr>
<tr>
<td>9</td>
<td>1.3</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
</tr>
<tr>
<td>12</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Young are born blind and helpless, usually in an excavated den. Favorable den sites are those in which a termite mound is about 4.5 m above the high water mark and which can be reached by steep banks, thickets, hollow logs, rock ledges, or often on south-facing slopes (Gier, 1968). Dens of other animals may be used. Dens are usually about 0.3 m in diameter and may be from 1.5 to 7.5 m deep (van Wormer, 1966). More than one entrance may facilitate the movement of young when the den site is disturbed. The same den may be used from year to year, and dens may be shared. Nellis and Keith (1976) found that 3 of 29 dens had two litters.

Young are nurtured by their mother (see Ewer, 1973:331, for data on the composition of coyote milk) and are weaned at about week 5 to 7 (Snow, 1967: unpublished data). They begin to eat solid food at about week 3, and the female (and possibly the male) begins regurgitating semi-solid food at this time. The male apparently plays some role in rearing the young by bringing food to the lactating bitch and the pups. Pregnant and lactating females require about 900 g, or 1.5 times the "normal" amount, of food per day (Gier, 1975). Weight in g and length of the body (tip of head to base of tail) is about 100 mm (Gier, 1968; Bekoff and Jamieson, 1975). Between birth and week 9 the average weight increase is about 0.31 kg/week (Bekoff and Jamieson, 1975), and the pups reach adult weight at about month 9. Eyes open at about day 14. Teeth erupt as follows (on the average): upper canines (day 14), lower canines and upper incisors (day 15) and lower incisors (day 16) (Bekoff and Jamieson, 1975). The young are able to urinate and defecate without maternal assistance by week 2 or 3. Jackson (1951) described the sequence of the closing of cranial sutures.

Young emerge from the den in week 2 or 3 and may disperse in months 6 to 9. Not all young disperse. Although there are no field data, consistent reports on the development of social behavior in captive coyotes (Bekoff, 1974a, 1975e) indicate that young coyotes form dominance relationships via severe, unritualized fights between 25 and 35 days of age.

Coyotes in captivity may live as long as 18 years (Young, 1951) but in wild populations few individuals live more than 6 to 8 years (Gier, 1966; Mathwig, 1973). Maximum ages known in the wild are 13.5 (Nellis and Keith, 1976) and 14.5 years (Knowlton, 1972). In an unexploited population, Knowlton (1972) found 70% of individuals in spring (pre-whelping) to be less than 3 years old and less than 5% to be more than 9 years old. In autumn, more than 80% of the individuals were less than 3 years old. Knowlton reported a 40% annual mortality rate for coyotes more than a year of age, with relatively high survival between years 4 and 8. Estimated mortality rates in central Alberta (Nellis and Keith, 1976) were 71% through year 1 and 36% to 42% for animals more than a year old (see table 1). In Iowa, Mathwig (1975) found greatest life expectancy at 1½ years and least at 5½. To maintain stability, a net survival of 33% was needed in the populations that Knowlton (1972) studied, whereas Nellis and Keith calculated that 38% survival was necessary. Gier (1968) felt that there were three basic limits on reproduction: 1) climatic factors, 2) parasites and disease, and 3) food. Losses due to predation, accidents, and man are also important.

ECOLOGY. More is known about the ecology of the coyote than perhaps any other carnivore (see Bekoff, 1974b). Many data have been collected because of the economic interests of control and management programs. The coyote is an opportunistic predator and includes a wide variety of food in its diet, the percentage by volume varying individually and also with season and location. Korschgen (1957) listed 56 animal, 28 plant, and six miscellaneous food items in Missouri and A. Murie (1940) and Mathwig (1973) and others have included large numbers of plant species. Individuals in captivity (Gier, 1975) require about 600 g of meat per day.
MAMMALIAN SPECIES 79

TABLE 2. Data on coyote movements from eight representationa
distances (in km).

<table>
<thead>
<tr>
<th>Study</th>
<th>Adult</th>
<th>Juvenile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males</td>
<td>Females</td>
</tr>
<tr>
<td>Garrough, 1940</td>
<td>12.6</td>
<td>17.8</td>
</tr>
<tr>
<td>Robinson and</td>
<td>36.2</td>
<td></td>
</tr>
<tr>
<td>Cummings, 1951</td>
<td>45.3</td>
<td>40.0</td>
</tr>
<tr>
<td>Young, 1951</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robinson and</td>
<td>45.6</td>
<td>34.2</td>
</tr>
<tr>
<td>Grond, 1938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawthorne, 1971</td>
<td>10.1</td>
<td></td>
</tr>
<tr>
<td>Cheness, 1972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gun and</td>
<td>20.5</td>
<td>8.16</td>
</tr>
<tr>
<td>Sealandner, 1972</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nells, 1975</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Because of the varied diet, it is impossible to list all food items that have been found in scats and stomachs or observed being taken in actual kills. Deer, elk, sheep, rabbits, various rodents, ground-nesting birds such as the ferruginous hawk (Angell, 1969), bobwhite quail (Lehmann, 1946), and Canada geese (Vermeir, 1971), amphibians (Mincley, 1966), lizards, snakes, fish, crustaceans, and insects comprise the “meat” items. Various berries, peaches, apples, persimmons, watermelons, cantaloupes, and carrots are included in the vegetables, and leather boots, tin cans and the like are included in the miscellaneous list. Overall, about 90% of their diet is mammalian flesh.

In the winter, much of the coyote’s diet is made up of the carcass of large game animals such as deer (see Sperry, 1953, who reviewed data for 10 western states; O. J. Murie, 1935; A. Murie, 1940; Ozoga and Harger, 1966; Gier, 1968; Ogle, 1971; Mathwig, 1973; Nells and Keith, 1976) and little vegetable food is eaten. In the spring, summer, and autumn there is an increase in the percentage (by volume and weight) of various rodents (A. Murie, 1940; Nells and Keith, 1976). Fichter et al. (1955) noted that a striking seasonal trend in Nebraska was an autumnal increase in the utilization of fruit. Gipson (1974) summarized five studies on the food habits of coyotes in their original range and the compiled percentage data were as follows: rabbits, 41.1; rodents, 36.2; carrion, 25.5; livestock, 21.9; wild birds, 15.0; deer, 7.9; fruits, 6.7; and poultry, 4.8. Most analyses of coyote predation on both large game mammals and domestic livestock indicate that young, old, and sick animals constitute the bulk of this portion of their diet (A. Murie, 1944; Ozoga and Harger, 1966; Knowlton, 1968; Cook, White, Trainer, and Gish, 1971; Ogle, 1971; Hawthorne, 1972; Davenport, Bowns, and Welsh, 1974; and that age, size, and sex limited factor on game and livestock. A. Murie (1935) found that 70.29% of the coyote’s diet in Jackson Hole, Wyoming, was “beneficial” to the prey, 16.22% was “neutral,” and only 11.49% was “harmful.” Similarly, Mathwig (1973) found that 85% of the coyote’s diet in Iowa was not “harmful,” whereas 15% was “detrimental.” Ozoga and Harger (1966) reported that healthy deer could escape from coyotes and bighorn sheep are able to chase off coyotes (Weaver and Mensch, 1970). Davenport et al. (1973) indicated that most lambs lost during spring died from causes other than predation, such as starvation, disease, abandonment, and infection. Daniel (1973) wrote “… although, young survival rates most probably are closely related to coyote predation, there are other factors of perhaps more importance [my emphasis] showing strong influence upon the growth and stability of deer herds. …” There is little evidence that coyote predation is a primary limiting factor on populations of big game or domestic livestock.

Ozoga and Harger (1966) wrote that the average chase of a deer by a coyote was about 55 m and they observed two long futile attempts of 4.32 and 4.64 km by single coyotes. Coyotes will hunt in pairs or in larger groups (Cahalan, 1947; Dobie, 1961; Young, 1951; Ozoga and Harger, 1966; Gier, 1968) and will form hunting relationships with other predators such as golden eagles (Engel, 1960), ravens (A. Murie, 1940), and badgers (Dobie, 1951). Actual coyote attacks are rarely observed and little is known about their predatory habits (White, 1973). A “presumed” coyote kill” is often the kill of some other predator, sometimes a domestic dog (Davenport et al., 1973). Ogle (1971) listed five criteria that can be used to distinguish deer killed by coyotes from those fed on as carrion. Coyote kills may be characterized by: 1) large patches of hide leading to the carcasses; 2) separation of vertebral column in the thoracolumbar region of adults and at the atlas of fawns; 3) nasal and maxillary bones chewed away; 4) ribs, vertebrae, and scapulae chewed; and 5) limbs widely scattered. For adult deer, the first criterion is considered to be the most reliable. Attacks on the head and neck frequently are used on deer (Ozoa and Harger, 1966; White, 1973) as are belly and ramp attacks (Ogle, 1971). A shearing bite is used on deer (Young, 1951), and a bite-and-tear type is used on cattle. The kill is common. For smaller mammals a stalk-and-pounce approach is common. Coyotes generally eat the contents of the stomach and intestines of young but not of adults (Davenport et al., 1973; White, 1973). See Bekoff (1975a, 1975b) for information on the development of predatory behavior in coyote pups.

Coyotes carry a wide variety of parasites (Young, 1951; Gier, 1968; Thornton, Bell, and Reardon, 1974). The most common external parasite— e.g., Pulicoides simillima, Haplopodylis affinis and Cedeopodylis simplex (rabbit flea), Chaeopogon lotorius (raccoon flea), and Juecaphilexus porcinus (javelina flea). Other external parasites include various ticks (Loxosceles similum, I. kings, and Dermacentor variabilis) and lice (Demiodes). Internal parasites include the cestodes Taenia pisiformis (common according to Gier, 1968) and Mesocélostoides corti; roundworms, Physaloptera rara and Filarioidea osteri (in the trachea, bronchi, and rarely in the lungs); intestinal worms such as Toxascaris leonina; dog hookworms, Ancylostoma caninum, that can pass through the plaenata; whipworms, Trichuris vulpis; heartworms, Dirofilaria immitis; pinworms, Oxyuridae; thorpine, necks, Unciecola canis and Spriecera lupi, in the esophagus, stomach, and small intestine; and coccidia fungus. Isopora rivolata. Coyotes also have been found to carry tularemia (Kunkel, 1930). Lundgren et al. (1957), distemper (Harispe and Wainer, 1957), rehymen et al., 1974; and others, and bubonic plague (A. M. Barnes, personal communication). In addition, coyotes suffer from dental anomalies (Nells, 1972, mange A. Murie, 1944; Holmes and Pedestea, 1968), cancer (Trainer et al., 1968; Dietrich and van Pelt, 1972), Q fever (Enright et al., 1971), aortic aneurysms (Thornton et al., 1974), various cardiovascular disorders (Ross and Suzuki, 1973), and serious wounds (for example, bullet wounds), missing limbs, and broken bones.

Coyotes and other carnivores can live in the same area, but coyotes, like other smaller predators, do not compete well with the wolf (Mech, 1966, 1974). Coyotes generally do not tolerate foxes or bobcats (Young, 1951) and puma will kill and eat coyotes (Young, 1940). Coyotes spend a good deal of time on the move. They are active primarily in early evening, especially in winter (Ozoga and Harger, 1966; Cheness, 1972), but do show sporadic activity in the daylight hours (Ozoa and Sealandner, 1972) and have a principal activity peak at sunset with a minor peak at daybreak in Arkansas. In summer, they found animals to be more active by day, with pups more active by day than adults. Coyote movement patterns have been studied in various places and like the movement patterns of wolves (Mech, 1974), they can be classified as travels within a “territory” or home range, as dispersals, or as long migrations. Coyotes tend to have larger home ranges than do females. In Minnesota, Chiness and Bremicker (1974) found home ranges of males to average 41.92 km², whereas those of females averaged 16.84 km². Furthermore, the home ranges of the males overlap considerably but those of the females did not (an implication, but not proof, of ter-
ritorality). In Arkansas, Gipson and Sealander (1972) reported male home ranges from 20.8 to 41.6 km² and female home ranges from 8 to 9.6 km². Other studies have reported home ranges of 20.8 to 32 km² (Nellis and Keith, 1976), 57.6 to 80 km² (Oozga and Harger, 1966) and 9.6 to 12.8 km² (Camminden, 1974). In Mammalian species, home ranges were elongate with mean length about 1.8 times mean width.

Many data have been collected concerning length of movement of marked individuals in all directions, and allows some variation (table 2). No consistent differences between sexes have been seen. Coyote movements of over 160 km are not uncommon. Oozga and Harger (1966) found average daily travel to be about 4.0 km.

Young coyotes (20 to 40 days old) have been studied (table 2). Dispersal usually occurs in autumn and winter (October to February), some pups not dispersing during their first year. Dispersal movements in all directions, and increases in home ranges are as yet unreported.

The relationship of the coyote with early man was one of harmony and mutual respect (Dobie, 1961; Cammenden, 1974), but which social structure of the family. The dominance relations via severe fights between 25 and 35 days of age (figure 6; Fox and Clark, 1971; Bekoff, 1972a, 1974a). The relationship between the mating of coyotes is not clear, but there are rank-related behaviors that may play some role. For example, higher ranking animals are less successful at getting littersmates to play with them and spend less time together (Bekoff, 1972a). These animals also tend to remain at a greater distance from littersmates and frequently are asynchronous in activity with the rest of the group. Such higher ranking individuals may leave the group. In addition, has also been found (unpublished data) that the lowest ranking member of a litter interacts infrequently with littermates and perhaps such individuals would also leave the group. Field testing of these hypotheses is underway. During agonistic interactions, dominant pups and adults approach one another with a stiff-legged gait, ears forward and erect, fur on the back erect (piloerection), the tail at about a 45° angle from the vertical, and frequently snarling and exposing the teeth by vertically retracting the lips. Submission may take the form of flight, active avoidance, or passive submission. Some individuals may leave the group and wait for the dominant to leave.

Coyotes use visual, auditory, olfactory, and probably tactile signals for communication purposes. Alcorn (1946) recognized three distinct calls (squeak, howl call, and distress call). Lehner (1975), through extensive analyses of coyote vocalizations, detailed 11 graded signals. Vocally, the coyote is much like the jackal (Tembrock, 1963). Vocal signals such as postures, gestures, and facial expressions are used in all forms of communication, especially during courtship. The coyote appears to be a more elaborate repertoire of vocal signals than do more solitary canids such as the red fox, Vulpes vulpes, but the elaborate repertoire of the coyote is far from complete and little is known about the function of the various signals. Coyotes do not deposit scent but the use of this for territorial demarcation and identification has not been proven (see Kleiman, 1966, 1975a). Alternative hypothesis is that step using indirect methods and harness both time and energy to more effective, scientifically based programs (Pringle, 1975). Otherwise, indiscriminate attempts at population suppression may once again be resorted to.

Wild coyotes have been studied primarily using radiotelemetry and capture-recapture methods. Both these techniques provide information on movements. Food habits are inferred from scats and stomach contents, and infrasonic monitoring of communal dens, and observation. The use of trapping along with other methods provides information on age, sex, weight, size, and breeding condition. Radiotelemetry includes 20 to 40 days, but the large amount of data is not known.

BEHAVIOR. Because of the elusive nature of the coyote, there have been few direct observations of social behavior(s). Detailed studies of behavior other than those dealing with terrestrial or home range movements have been done on captive animals (Fox, 1970; Fox and Clark, 1971; Bekoff, 1972a, 1972b, 1974a, 1975a; Brown, 1973). Field observations indicate that the coyote is less social than the social family (Riley and McBride, 1975), although large packs of coyotes have been observed. Gipson (1975) wrote that there is no known social unit. The family. The dominance relations via severe fights between 25 and 35 days of age (figure 6; Fox and Clark, 1971; Bekoff, 1972a, 1974a). The relationship between the mating of coyotes is not clear, but there are rank-related behaviors that may play some role. For example, higher ranking animals are less successful at getting littersmates to play with them and spend less time together (Bekoff, 1972a). Such higher ranking individuals may leave the group. In addition, has also been found (unpublished data) that the lowest ranking member of a litter interacts infrequently with littermates and perhaps such individuals would also leave the group. Field testing of these hypotheses is underway. During agonistic interactions, dominant pups and adults approach one another with a stiff-legged gait, ears forward and erect, fur on the back erect (piloerection), the tail at about a 45° angle from the vertical, and frequently snarling and exposing the teeth by vertically retracting the lips. Submission may take the form of flight, active avoidance, or passive submission. Some individuals may leave the group and wait for the dominant to leave.

Coyotes use visual, auditory, olfactory, and probably tactile signals for communication purposes. Alcorn (1946) recognized three distinct calls (squeak, howl call, and distress call). Lehner (1975), through extensive analyses of coyote vocalizations, detailed 11 graded signals. Vocally, the coyote is much like the jackal (Tembrock, 1963). Vocal signals such as postures, gestures, and facial expressions are used in all forms of communication, especially during courtship. The coyote appears to be a more elaborate repertoire of vocal signals than do more solitary canids such as the red fox, Vulpes vulpes, but the elaborate repertoire of the coyote is far from complete and little is known about the function of the various signals. Coyotes do not deposit scent but the use of this for territorial demarcation and identification has not been proven (see Kleiman, 1966, 1975a). Alternative hypothesis is that step using indirect methods and harness both time and energy to more effective, scientifically based programs (Pringle, 1975). Otherwise, indiscriminate attempts at population suppression may once again be resorted to.

Wild coyotes have been studied primarily using radiotelemetry and capture-recapture methods. Both these techniques provide information on movements. Food habits are inferred from scats and stomach contents, and infrasonic monitoring of communal dens, and observation. The use of trapping along with other methods provides information on age, sex, weight, size, and breeding condition. Radiotelemetry includes 20 to 40 days, but the large amount of data is not known.
GENETICS. The coyote has 39 pairs of chromosomes (Wamben and Benirschke, 1960). The chromosomes are acrocentric and the sex chromosomes are submetacentric (Hsu and Benirschke, 1967, cited by Mech, 1974). Fertile hybrids have been produced by crossbreeding coyotes with domestic dogs (Vogt, 1957). Black and Silver and Silver, 1969; Mengel, 1971), with wolves (rufus and lupus—Young, 1951; Kolenosky, 1971; Paradiso and Nowak, 1971; Riley and McBride, 1971). Jackal (Seitz, 1958) and the black-tailed Jackal (Seitz, 1958). In this case, decreased fecundity (Mengel, 1971; Gipson et al., 1976). See Riley and McBride, 1975, for detailed comparisons of external characteristics of red wolves, coyotes, and hybrids. There has been considerable concern about the "New England canid" (see Lawrence and Bossert, 1969; 1975; Silver and Silver, 1969; Richens and Hugie, 1974). This canid differs from known coyote dog hybrids and has incorrectly been referred to as a coy-dog. The general consensus is that the New England canid is an extreme expression of a trend already present in C. l. tannamos and cranial evidence (Lawrence and Bossett, 1969) and data from behavioral development (Bekoff et al., 1975) suggests that New England canids predominantly are coyotes with some introgression of dog and wolf genes.

REMARKS. The word "coyote" means "barking dog" and is taken from the Aztec word "Coiyotl.

The coyote resembles jackals in many respects and Atkinson and Dillon (1971) have grouped C. latrans with C. mesomelas (black-backed jackal) and C. aureus (golden jackal) based on color morphology. During its movements, the coyote may function as a seed-carrier (Young, 1951). Kleiman and Eisenberg (1975) made detailed comparisons of canids and felds and Fox (1975) edited a volume dealing with wild canids. A fairly complete bibliography has been compiled (Bekoff, 1976) and Knowlton (1974) also assembled a useful list of references. Volume 3 of the Coyote Research Newsletter contains abstracts of papers presented at a National Coyote Workshop (Denver, Colorado, November 1974). Many aspects of coyote biology will be dealt with in a forthcoming volume (Bekoff, 1978).

A few references for further study: Frank, D., David M. Armstrong, P. S. Gipson, Carl H. Nellis, and Ronald Nowak for comments on an earlier draft of this report. A number of persons kindly sent me preprints and reprints of their oftentimes hard-to-find papers. Ms. D. Slater kindly typed the manuscript.

LITERATURE CITED

— 1975b. Socialization in mammals with an emphasis on non-primates. In Primate socialization (S. Chevalier-Skolti-
of facial expressions in canids: wolf, coyote, foxes, Behaviour 36:49-73.

Paradiso, J. L. 1968. Canids recently collected in East Texas, with comments on the taxonomy of the red wolf. Amer. Midland Nat. 80:529-534.

Principal editor of this account was SYDNEY ANDERSON.

M. BEKOFF, UNIVERSITY OF COLORADO, DEPARTMENT OF ENVIROMENTAL, POPULATION, AND ORGANISMIC BIOLOGY, ECOLOGY GROUP, BOULDER, COLORADO 80302.