

THE LAPLACE TRANSFORM II

EGR 320: Signals & Systems Lectures 26/27: April 11 and 13, 2011

Topics for Today and Wednesday

- Properties of the ROC
- The Inverse Laplace Xform and partial fraction expansion
- Properties of the Laplace Xform
- Analysis of LTI systems w/ the Laplace Xform
- Unilateral Laplace Xform

Properties of the Laplace Transform's ROC

Property 1: The ROC of X(s) consists of strips parallel to the $j\omega$ axis in the s-plane.

Property 2: For rational Laplace transforms, the ROC does not contain any poles.

Property 3: If x(t) is of finite duration and is absolutely integrable, then the ROC is the entire s-plane.

Properties of the Laplace Transform's ROC

Property 4: If x(t) is right sided, and if the line $\Re\{s\} = \sigma_o$ is in the ROC, then all values of s for which $\Re\{s\} > \sigma_o$ will also be in the ROC.

Property 5: If x(t) is left sided, and if the line $\Re\{s\} = \sigma_o$ is in the ROC, then all values of s for which $\Re\{s\} < \sigma_o$ will also be in the ROC.

Property 6: If x(t) is two sided, and if the line $\Re\{s\} = \sigma_o$ is in the ROC, then the ROC will consist of a strip in the s-plane that includes the line $\Re\{s\} = \sigma_o$.

Property 7: If the Laplace transform X(s) of x(t) is rational, then its ROC is bounded by poles or extends to infinity. In addition, no poles of X(s) are contained in the ROC.

Property 8: If the Laplace transform X(s) of x(t) is rational, then if x(t) is right sided, the ROC is the region in the s-plane to the right of the rightmost pole. If x(t) is left sided, the ROC is the region in the s-plane to the left of the leftmost pole.

The Inverse Laplace Transform

$$x(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + j\infty} X(s) e^{st} ds$$

- Evaluate at a constant σ and from $\omega = -\infty$ to $\omega = \infty$.
- The contour of integration is a line parallel to the $j\omega$ axis.
- General evaluation requires contour integration in the complex plane and is difficult!
- We will use technique of partial-fraction expansion combined with Laplace transform tables to determine inverse transforms.

The Inverse Laplace Transform

$$X(s) = \frac{B(s)}{A(s)}$$

$$= \frac{b_M s^M + b_{M-1} s^{M-1} + \dots + b_1 s + b_o}{s^N + a_{N-1} s^{N-1} + \dots + a_1 s + a_o}$$

$$= \underbrace{\sum_{k=0}^{M-N} c_k s^k}_{\text{term exists only when } M > N} + \sum_{k=1}^{N} \frac{A_k}{s - d_k}$$

Inverse Transform Techniques for Rational Functions

Given an s-domain expression

$$\mathbf{V(s)} = \frac{\mathbf{N(s)}}{\mathbf{D(s)}} = \frac{(s+a_1)(s+a_2)\dots(s+a_m)}{(s+\alpha_1)(s+\alpha_2)\dots(s+\alpha_n)} = \frac{A}{s+\alpha_1} + \frac{B}{s+\alpha_2} + \dots + \frac{N}{s+\alpha_n}$$

- N(s) and D(s) are polynomials in s
- Zeros: values of s for which N(s)=0
- Poles: values of s for which D(s)=0
- The degree of the numerator is less than the degree of the denominator (i.e., n > m)

Partial Fraction Expansion for Simple Poles

$$\mathbf{F(s)} = \frac{N(s)}{(s+p_1)(s+p_2)\cdots(s+p_n)}$$

$$\mathbf{F(s)} = \frac{k_1}{s+p_1} + \frac{k_2}{s+p_2} + \cdots + \frac{k_n}{s+p_n}$$

We need to find the $k_1, k_2, \cdots k_n$.

$$(s+p_1)\mathbf{F(s)} = k_1 + \frac{(s+p_1)k_2}{s+p_2} + \dots + \frac{(s+p_1)k_n}{s+p_n}$$

Since $p_i \neq p_j$, setting $s = -p_i$ leaves only k_1 on the right-hand side.

$$(s+p_1)\mathbf{F(s)}|_{s=-p_1}=k_1$$

In general,

$$k_i = (s+p_i)\mathbf{F}(\mathbf{s})|_{s=-p_i}$$

Partial Fraction Expansion Example: Distinct Pole Case (H & K Text Example 8.16)

Determine the inverse Laplace transform x(t) when

$$X(s) = \frac{s+2}{s^3+4s^2+3s} = \frac{s+2}{s(s+1)(s+3)} \qquad \text{Re}\{s\} > 0$$

$$X(s) = \frac{c_1}{s} + \frac{c_2}{s+1} + \frac{c_3}{s+3}$$

Partial Fraction Expansion Example: Repeated Pole Case

Determine the inverse Laplace transform x(t) when

$$X(s) = \frac{3s+4}{(s+1)(s+2)^2}$$
 Re $\{s\}$ >-1
= $\frac{A_1}{s+1} + \frac{A_2}{(s+2)} + \frac{A_3}{(s+2)^2}$

Text examples 9.9, 9.10, 9.11 (you should do them)

Laplace Transform Properties

Section	Property	Signal	Laplace Transform	ROC
		x(t)	X(s)	R
		$x_1(t)$	$X_1(s)$	R ₁
		$x_2(t)$	$X_2(s)$	R ₂
9.5.1	Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$
9.5.2	Time shifting	$x(t-t_0)$	$e^{-st_0}X(s)$	R
9.5.3	Shifting in the s-Domain	$e^{s_0t}x(t)$	$X(s-s_0)$	Shifted version of R (i.e., s is in the ROC if $s - s_0$ is in R)
9.5.4	Time scaling	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	Scaled ROC (i.e., s is in the ROC if s/a is in R)
9.5.5	Conjugation	x*(t)	X*(s*)	R ROC II 3/4 IS III K)
9.5.6	Convolution	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$
9.5.7	Differentiation in the Time Domain	$\frac{d}{dt}x(t)$	sX(s)	At least R
9.5.8	Differentiation in the s-Domain	-tx(t)	$\frac{d}{ds}X(s)$	R
9.5.9	Integration in the Time Domain	$\int_{-\infty}' x(\tau)d(\tau)$	$\frac{1}{s}X(s)$	At least $R \cap \{\Re e\{s\} > 0\}$
1		Table 1 and Tri	nal-Value Theorems	
9.5.10	If $x(t) = 0$ for $t < 0$ and $x(t) = 0$			r singularities at $t = 0$, then
		$x(0^+) =$	$\lim sX(s)$	
	If $x(t) = 0$ for $t < 0$ and $x(t) = 0$	t) has a finite limit	$as t \xrightarrow{\infty} \infty$, then	
		$\lim x(t)$	$= \lim_{s \to 0} sX(s)$	

Special Case of Time Scaling: Time Reversal

Time Reversal: $x(-t) \leftrightarrow X(-s)$, with ROC=-R

Example: Determine x(t) that corresponds to X(s).

$$X(s) = \frac{s}{s^2 + 9}$$
, ROC: $\Re\{s\} < 0$
 $X(s) = \frac{s + 1}{(s + 1)^2 + 9}$, ROC: $\Re\{s\} < -1$

See HW problems 9.22 (a,b,e)

Convolution Example (adapted from H&K 8.14)

Determine x(t) * x(t) given x(t) = u(t) - u(t-1), and sketch both x(t) and x(t) * x(t).

Approach 1: Use the property $x(t)*x(t) \leftrightarrow X^2(s).$

Approach 2: Compute $x(t) * x(t) = \int_{-\infty}^{\infty} x(\tau)x(t-\tau)d\tau$.

Initial- and Final-Value Theorems

(requires that x(t) = 0 for t < 0)

$$\lim_{s \to \infty} sX(s) = x(0^+)$$
$$\lim_{s \to 0} sX(s) = x(t \to \infty)$$

Determine the final and intial values for x(t) where $x(t) \leftrightarrow X(s)$ and

$$X(s) = \frac{3s^2 + 4s + 1}{s^4 + 3s^3 + 3s^2 + 2s}$$

Final-Value Theorem Example

Determine the final and intial values for x(t) where $x(t) \leftrightarrow X(s)$ and

$$X(s) = \frac{4}{s(s-1)}$$

Analysis and characterization of LTI systems using the Laplace Transform (9.7)

Important points from Section 9.7

1. System Function (transfer function)

$$Y(s) = H(s)X(s)$$

- 2. Causality: The ROC associated with the system function for a causal system is a right-half plane to the right of the rightmost pole.
- 3. **Stability:** An LTI system is stable if and only if the ROC of its system function H(s) inclues the entire $j\omega$ axis.
- 4. Causality and Stability: A causal system with system function H(s) is stable if and only if all of the poles of H(s) lie in the left-half of the s-plane i.e., all of the poles have negative real parts.

Eigenfunction Property of est

The response of an LTI system to a complex exponential is the same complex exponential multiplied by a complex amplitude

$$e^{st}$$
 \longrightarrow LTI \mapsto $H(s)e^{st}$

- Recall: $e^{st} = e^{(\sigma + j\omega)t} = e^{\sigma t}e^{j\omega t} = e^{\sigma t}[\cos\omega t + j\sin\omega t]$
- e^{st} is an eigenfunction (eigenvector) of the system
- H(s) is a complex amplitude and an eigenvalue of the system

Proof: The response of an LTI system to a complex exponential is the same complex exponential multiplied by a complex amplitude.

$$x(t)$$

$$e^{st}$$

$$h(t)$$

$$LTI$$

$$y(t)$$

$$= \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)}d\tau$$

$$= e^{st}\underbrace{\int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau}_{H(s)}$$

For a specific value of s, the complex constant H(s) is the eigenvalue associated with the eigenfunction e^{st} .

Transfer Function Representation

$$\begin{array}{ccc}
x(t) & & y(t) \\
e^{st} & & H(s)e^{st}
\end{array}$$

$$X(s) \longrightarrow H(s) \longrightarrow Y(s)$$

- H(s) is the transfer function when the system is linear and time invariant
- H(s) is the Laplace Transform of the impulse response h(t)
- H(s)=Y(s)/X(s)

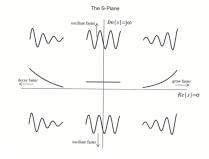
The poles of the transfer function H(s) determine the form of the system's impulse response h(t). For a causal system:

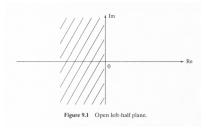
- 1. If H(s) has a nonrepeated pole p that is real, then h(t) contains a term of the form ce^{pt} for some constant c.
- 2. If H(s) has a pole p that is real and repeated two times, then h(t) contains a term of the form $c_1e^{pt} + c_2te^{pt}$ for some constant c.
- 3. If H(s) has a nonrepeated pair of complex poles $p = \sigma \pm j\omega$, then h(t) contains a term of the form $ce^{\sigma t}\cos(\omega t + \theta)$ for some constants c and θ .

What condition is required for the impulse response to converge to zero as $t \to \infty$?

$$Re(p_i) < 0$$
 for $i = 1, 2, \dots, N$

The condition requires that all poles of the system are located in the open left-half plane.





Causality and Stability

These statements assume the system is causal.

- 1. **Stable:** A system with transfer function H(s) is stable if its impulse response h(t) converges to zero as $t \to \infty$. A system is stable if and only if all its poles are located in the open left-half plane.
- 2. Marginally stable: A system with transfer function H(s) is marginally stable if its impulse response h(t) is bounded; that is, there exists a finite positive constant c such that $|h(t)| \le c$ for all t. A system is stable if and only if all its poles are located in the open left-half plane and non-repeated poles only can be located on the $j\omega$ axis.
- 3. Unstable: A system with transfer function H(s) is unstable if its impulse response h(t) grows without bound as $t \to \infty$. Thus, a system is unstable if and only if there is at least one pole located in the open right-half plane or if there are repeated poles on the $j\omega$ -axis.

The One-sided or uni-lateral Laplace Transform

$$X(s) = \int_0^\infty x(t)e^{-st}dt$$

- Useful for solving differential equations with initial conditions (section 9.9.3).
- ROC is always a right half plane

Properties of the Laplace Transform

D.2 Laplace Transform Properties

	Unilateral Transform	Bilateral Transform	ROC
	$x(t) \stackrel{\mathcal{L}_u}{\longleftrightarrow} X(s)$	$x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} X(s)$	$s \in R_x$
Signal	$y(t) \stackrel{\mathcal{L}_u}{\longleftrightarrow} Y(s)$	$y(t) \stackrel{\mathcal{L}}{\longleftrightarrow} Y(s)$	$s \in R_y$
ax(t) + by(t)	aX(s) + bY(s)	aX(s) + bY(s)	At least $R_x \cap R_y$
x(t- au)	$e^{-s\tau}X(s)$ if $x(t-\tau)u(t) = x(t-\tau)u(t-\tau)$	$e^{-s\tau}X(s)$	R_x
$e^{s_o t} x(t)$	$X(s-s_o)$	$X(s-s_o)$	$R_x + \text{Re}\{s_o\}$
x(at)	$\frac{1}{a}X\left(\frac{s}{a}\right), a > 0$	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	$\frac{R_x}{ a }$
x(t) * y(t)	if x(t) = y(t) = 0 for t < 0	X(s)Y(s)	At least $R_x \cap R_y$
-tx(t)	$\frac{d}{ds}X(s)$	$\frac{d}{ds}X(s)$	R_x
$\frac{d}{dt}x(t)$	sX(s) - x(0)	sX(s)	At least R_x
$\int_{-\infty}^t x(\tau) d\tau$	$\frac{1}{s}\int_{-\infty}^{0^{-}}x(\tau)d\tau+\frac{X(s)}{s}$	$\frac{X(s)}{s}$	At least $R_x \cap \{\text{Re}\{s\} > 0\}$

Transform of the Input/Output Differential Equation (Haykin and Van Veen 6.10)

the given conditions

$$\frac{d}{dt}y(t) + 5y(t) = 5x(t)$$

$$x(t) = \frac{3}{5}e^{-2t}u(t)$$

$$y(0^{-}) = -2$$

Transform of the Input/Output Differential Equation

Problem 8.14 (g) (H&K text). Compute the solution to the differential equation using the Laplace Transform.

$$\frac{d^{2}y(t)}{dt^{2}} + 6\frac{dy(t)}{dt} + 13y(t) = x(t)$$

$$x(t) = u(t)$$

$$y(0) = 1$$

$$dy(0)/dt = 1$$

Take the Laplace Transform of both sides.

$$\left[s^2 Y(s) - sy(0-) - dy(0-)/dt \right] + 6 \left[sY(s) - y(0-) \right] + 13Y(s) \right] = X(s)$$

$$Y(s) \left[s^2 + 6s + 13 \right] - \left[sy(0-) + dy(0-)/dt + 6y(0-) \right] = X(s)$$

$$Y(s) = \underbrace{\frac{X(s)}{s^2 + 6s + 13}}_{\text{forced response}} + \underbrace{\frac{sy(0-) + dy(0-)/dt + 6y(0-)}{s^2 + 6s + 13}}_{\text{natural response}}$$

Transform of the Input/Output Differential Equation

$$Y(s) = \underbrace{\frac{X(s)}{s^2 + 6s + 13}}_{\text{forced response}} + \underbrace{\frac{sy(0-) + dy(0-)/dt + 6y(0-)}{s^2 + 6s + 13}}_{\text{natural response}}$$

Substitute for X(s) = 1/s, y(0-) = 1, and dy(0-)/dt = 1.

$$Y(s) = \frac{1}{s(s^2 + 6s + 13)} + \frac{s + 7}{s^2 + 6s + 13}$$

$$Y(s) = \frac{s^2 + 7s + 1}{s(s^2 + 6s + 13)}$$

$$Y(s) = \frac{s^2 + 7s + 1}{s[(s + 3)^2 + 4]}$$

$$Y(s) = \frac{A}{s} + \frac{Bs + C}{(s + 3)^2 + 4}$$

Transform of the Input/Output Differential Equation

$$Y(s) = \frac{1}{s(s^2 + 6s + 13)} + \frac{s + 7}{s^2 + 6s + 13}$$
$$Y(s) = \frac{A}{s} + \frac{Bs + C}{(s + 3)^2 + 4}$$

$$Y(s) = \frac{\frac{1}{13}}{s} + \frac{\frac{12}{13}s + \frac{85}{13}}{(s+3)^2 + 4}$$

$$Y(s) = \frac{1}{13}\frac{1}{s} + \frac{12}{13}\frac{s+3}{(s+3)^2 + 4} + \frac{49}{26}\frac{2}{(s+3)^2 + 4}$$

$$y(t) = \frac{1}{13}u(t) + \frac{12}{13}e^{-3t}\cos(2t)u(t) + \frac{49}{26}e^{-3t}\sin(2t)u(t)$$

Pole Locations and the Form of a Signal

- 1. If X(s) has a nonrepeated pole p that is real, then x(t) contains a term of the form ce^{pt} for some constant c.
- 2. If X(s) has a pole p that is real and repeated two times, then x(t) contains a term of the form $c_1e^{pt} + c_2te^{pt}$ for some constant c.
- 3. If X(s) has a nonrepeated pair of complex poles $p = \sigma \pm j\omega$, then x(t) contains a term of the form $ce^{\sigma t}\cos(\omega t + \theta)$ for some constants c and θ .