Constant symplectic 2-groupoids

Rajan Mehta

Smith College

April 17, 2017

Poisson manifolds integrate to symplectic groupoids

- Poisson manifolds integrate to symplectic groupoids
- Poisson manifolds are equivalent to degree 1 symplectic dg-manifolds

- Poisson manifolds integrate to symplectic groupoids
- Poisson manifolds are equivalent to degree 1 symplectic dg-manifolds
- Courant algebroids are equivalent to degree 2 symplectic dg-manifolds

- Poisson manifolds integrate to symplectic groupoids
- Poisson manifolds are equivalent to degree 1 symplectic dg-manifolds
- Courant algebroids are equivalent to degree 2 symplectic dg-manifolds

Therefore, one might expect Courant algebroids to integrate to "symplectic 2-groupoids". We are beginning to understand what this means.

- Poisson manifolds integrate to symplectic groupoids
- Poisson manifolds are equivalent to degree 1 symplectic dg-manifolds
- Courant algebroids are equivalent to degree 2 symplectic dg-manifolds

Therefore, one might expect Courant algebroids to integrate to "symplectic 2-groupoids". We are beginning to understand what this means.

This is joint work with Xiang Tang.

Differential forms on simplicial manifolds

Let X_{\bullet} be a simplicial manifold. Let $f_i^q : X_q \to X_{q-1}$ denote the face maps, and let $\sigma_i^q : X_q \to X_{q+1}$ denote the degeneracy maps.

Differential forms on simplicial manifolds

Let X_{\bullet} be a simplicial manifold. Let $f_i^q : X_q \to X_{q-1}$ denote the face maps, and let $\sigma_i^q : X_q \to X_{q+1}$ denote the degeneracy maps.

There is a simplicial coboundary operator $\delta : \Omega^{\bullet}(X_q) \to \Omega^{\bullet}(X_{q+1})$:

$$\delta \alpha := \sum_{i=0}^{q+1} (-1)^i (f_i^{q+1})^* \alpha$$

Differential forms on simplicial manifolds

Let X_{\bullet} be a simplicial manifold. Let $f_i^q : X_q \to X_{q-1}$ denote the face maps, and let $\sigma_i^q : X_q \to X_{q+1}$ denote the degeneracy maps.

There is a simplicial coboundary operator $\delta : \Omega^{\bullet}(X_q) \to \Omega^{\bullet}(X_{q+1})$:

$$\delta \alpha := \sum_{i=0}^{q+1} (-1)^i (f_i^{q+1})^* \alpha$$

Definition

A differential form $\alpha \in \Omega^{\bullet}(X_q)$ is called

• multiplicative if $\delta \alpha = 0$,

• normalized if
$$(\sigma_{q-1}^i)^* \alpha = 0$$
 for all *i*.

For $x \in X_0$ and $q \ge 0$, let $\sigma^q := \sigma_0^{q-1} \cdots \sigma_0^0$, and

$$T_{x,q}X := T_{\sigma^q(x)}X_q.$$

Then $T_{x,\bullet}X$ is a simplicial vector space.

For $x \in X_0$ and $q \ge 0$, let $\sigma^q := \sigma_0^{q-1} \cdots \sigma_0^0$, and

$$T_{x,q}X := T_{\sigma^q(x)}X_q.$$

Then $T_{x,\bullet}X$ is a simplicial vector space.

There is a boundary map $\partial_q: T_{x,q}X \to T_{x,q-1}X$:

$$\partial_q(v) = \sum_i (-1)^i (f_i^q)_* v.$$

For $x \in X_0$ and $q \ge 0$, let $\sigma^q := \sigma_0^{q-1} \cdots \sigma_0^0$, and

$$T_{x,q}X := T_{\sigma^q(x)}X_q.$$

Then $T_{x,\bullet}X$ is a simplicial vector space.

There is a boundary map $\partial_q: T_{x,q}X \to T_{x,q-1}X$:

$$\partial_q(v) = \sum_i (-1)^i (f_i^q)_* v.$$

The normalized tangent space is

$$\hat{T}_{x,q}X := (T_{x,q}X) / \left(\sum_{i} (\sigma_i^{q-1})_* T_{x,q-1}X \right)$$

.

For $x \in X_0$ and $q \ge 0$, let $\sigma^q := \sigma_0^{q-1} \cdots \sigma_0^0$, and

$$T_{x,q}X := T_{\sigma^q(x)}X_q.$$

Then $T_{x,\bullet}X$ is a simplicial vector space.

There is a boundary map $\partial_q: T_{x,q}X \to T_{x,q-1}X$:

$$\partial_q(v) = \sum_i (-1)^i (f_i^q)_* v.$$

The normalized tangent space is

$$\hat{T}_{x,q}X := (T_{x,q}X) / \left(\sum_{i} (\sigma_i^{q-1})_* T_{x,q-1}X \right)$$

The *tangent complex* of X_{\bullet} at x is

$$\cdots \to \hat{T}_{x,q} X \xrightarrow{\partial} \hat{T}_{x,q-1} \xrightarrow{\partial} \cdots \hat{T}_{x,0} X = T_x X_0.$$

Lie 2-groupoids

Recall that the *horn map* $\lambda_{q,k}$ takes an element of X_q to its horn of faces, excluding the *k*th face.

Lie 2-groupoids

Recall that the *horn map* $\lambda_{q,k}$ takes an element of X_q to its horn of faces, excluding the *k*th face.

Definition

A Lie 2-groupoid is a simplicial manifold whose horn maps are

- **1.** surjective submersions for q = 1, 2,
- **2.** diffeomorphisms for q > 2.

Lie 2-groupoids

Recall that the *horn map* $\lambda_{q,k}$ takes an element of X_q to its horn of faces, excluding the *k*th face.

Definition

A Lie 2-groupoid is a simplicial manifold whose horn maps are

- **1.** surjective submersions for q = 1, 2,
- **2.** diffeomorphisms for q > 2.

The tangent complex of a Lie 2-groupoid vanishes above degree 2, so we have a 3-term complex of vector bundles

$$\hat{T}_2 X \xrightarrow{\partial} \hat{T}_1 X \xrightarrow{\partial} \hat{T}_0 X = T X_0.$$

Simplicial nondegeneracy

Let X_{\bullet} be a Lie 2-groupoid, and let ω be a normalized 2-form on X_2 . Define two associated pairings:

1. For $v \in T_x X_0$ and $w \in T_{x,2} X$,

$$A_{\omega}(\mathbf{v},[\mathbf{w}]) = \omega(\sigma_*^2 \mathbf{v},\mathbf{w}),$$

Simplicial nondegeneracy

Let X_{\bullet} be a Lie 2-groupoid, and let ω be a normalized 2-form on X_2 . Define two associated pairings:

1. For $v \in T_x X_0$ and $w \in T_{x,2} X$,

$$A_{\omega}(\mathbf{v},[\mathbf{w}]) = \omega(\sigma_*^2 \mathbf{v},\mathbf{w}),$$

2. For $\theta, \eta \in T_{x,1}X$, $B_{\omega}([\theta], [\eta]) = \omega((\sigma_1^1)_*\theta, (\sigma_0^0)_*\eta) + \omega((\sigma_1^1)_*\eta, (\sigma_0^0)_*\theta).$

Simplicial nondegeneracy

Let X_{\bullet} be a Lie 2-groupoid, and let ω be a normalized 2-form on X_2 . Define two associated pairings:

1. For $v \in T_X X_0$ and $w \in T_{x,2} X$,

$$A_{\omega}(\mathbf{v},[\mathbf{w}]) = \omega(\sigma_*^2 \mathbf{v},\mathbf{w}),$$

2. For
$$\theta, \eta \in T_{x,1}X$$
,

$$B_{\omega}([\theta], [\eta]) = \omega((\sigma_1^1)_*\theta, (\sigma_0^0)_*\eta) + \omega((\sigma_1^1)_*\eta, (\sigma_0^0)_*\theta).$$

Definition

 ω is simplicially nondegenerate if A_{ω} and B_{ω} are nondegenerate pairings for all $x \in X_0$.

Symplectic 2-groupoids

Definition

A symplectic 2-groupoid is a Lie 2-groupoid X_{\bullet} equipped with a closed, multiplicative, normalized, and simplicially nondegenerate $\omega \in \Omega^2(X_2)$.

Symplectic 2-groupoids

Definition

A symplectic 2-groupoid is a Lie 2-groupoid X_{\bullet} equipped with a closed, multiplicative, normalized, and simplicially nondegenerate $\omega \in \Omega^2(X_2)$.

If $\alpha \in \Omega^2(X_1)$ is closed, normalized, and satisfies $A_{\delta\alpha} = B_{\delta\alpha} = 0$, then $\omega' = \omega + \delta \alpha$ is considered equivalent to ω .

Linear 2-groupoids

A linear 2-groupoid is a 2-groupoid V_{\bullet} that is also a simplicial vector space. The Dold-Kan correspondence gives a bijection between linear 2-groupoids and 3-term chain complexes of vector spaces:

Linear 2-groupoids

A linear 2-groupoid is a 2-groupoid V_{\bullet} that is also a simplicial vector space. The Dold-Kan correspondence gives a bijection between linear 2-groupoids and 3-term chain complexes of vector spaces:

Linear 2-groupoids

A linear 2-groupoid is a 2-groupoid V_{\bullet} that is also a simplicial vector space. The Dold-Kan correspondence gives a bijection between linear 2-groupoids and 3-term chain complexes of vector spaces:

So structures on linear 2-groupoids can be translated into structures on 3-term chain complexes.

Theorem

There is a one-to-one correspondence between constant normalized multiplicative 2-forms $\omega \in \Omega(V_2)$ and pairs (C_{41}, C_{32}) , where C_{41} is a bilinear pairing of W_0 with W_2 and C_{32} is a bilinear form on W_1 such that

 $C_{41}(\partial w_1, w_2) = C_{32}(\partial w_2, w_1) + C_{32}(w_1, \partial w_2).$

Theorem

There is a one-to-one correspondence between constant normalized multiplicative 2-forms $\omega \in \Omega(V_2)$ and pairs (C_{41}, C_{32}) , where C_{41} is a bilinear pairing of W_0 with W_2 and C_{32} is a bilinear form on W_1 such that

$$C_{41}(\partial w_1, w_2) = C_{32}(\partial w_2, w_1) + C_{32}(w_1, \partial w_2).$$

Furthermore, ω is simplicially nondegenerate if and only if C_{41} and the symmetric part of C_{32} are both nondegenerate.

Theorem

There is a one-to-one correspondence between constant normalized multiplicative 2-forms $\omega \in \Omega(V_2)$ and pairs (C_{41}, C_{32}) , where C_{41} is a bilinear pairing of W_0 with W_2 and C_{32} is a bilinear form on W_1 such that

$$C_{41}(\partial w_1, w_2) = C_{32}(\partial w_2, w_1) + C_{32}(w_1, \partial w_2).$$

Furthermore, ω is simplicially nondegenerate if and only if C_{41} and the symmetric part of C_{32} are both nondegenerate.

$$\omega = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & 0 \\ C_{31} & C_{32} & 0 & 0 \\ C_{41} & 0 & 0 & 0 \end{bmatrix}$$

Theorem

There is a one-to-one correspondence between constant normalized multiplicative 2-forms $\omega \in \Omega(V_2)$ and pairs (C_{41}, C_{32}) , where C_{41} is a bilinear pairing of W_0 with W_2 and C_{32} is a bilinear form on W_1 such that

$$C_{41}(\partial w_1, w_2) = C_{32}(\partial w_2, w_1) + C_{32}(w_1, \partial w_2).$$

Furthermore, ω is simplicially nondegenerate if and only if C_{41} and the symmetric part of C_{32} are both nondegenerate.

$$\omega = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & 0 \\ C_{31} & C_{32} & 0 & 0 \\ C_{41} & 0 & 0 & 0 \end{bmatrix}$$

Degeneracy vs simplicial nondegeneracy.

Minimal description of constant symplectic 2-groupoids

Theorem

There is a one-to-one correspondence between constant symplectic 2-groupoids and tuples $(W_1, W_0, \langle \cdot, \cdot \rangle, \partial, r)$, where

- ▶ W₁ and W₀ are vector spaces,
- $\langle \cdot, \cdot \rangle$ is a nondegenerate symmetric bilinear form on W_1 ,
- $\partial: W_1 \to W_0$ is a linear map such that the image of ∂^* in $W_1^* \cong W_1$ is isotropic,
- $r \in \wedge^2 W_1^*$.

Minimal description of constant symplectic 2-groupoids

Theorem

There is a one-to-one correspondence between constant symplectic 2-groupoids and tuples ($W_1, W_0, \langle \cdot, \cdot \rangle, \partial, r$), where

- ▶ W₁ and W₀ are vector spaces,
- $\langle \cdot, \cdot \rangle$ is a nondegenerate symmetric bilinear form on W_1 ,
- $\partial: W_1 \to W_0$ is a linear map such that the image of ∂^* in $W_1^* \cong W_1$ is isotropic,
- $r \in \wedge^2 W_1^*$.

Furthermore, equivalences change r arbitrarily and nothing else.

Minimal description of constant symplectic 2-groupoids

Theorem

There is a one-to-one correspondence between constant symplectic 2-groupoids and tuples $(W_1, W_0, \langle \cdot, \cdot \rangle, \partial, r)$, where

- ▶ W₁ and W₀ are vector spaces,
- $\langle \cdot, \cdot \rangle$ is a nondegenerate symmetric bilinear form on W_1 ,
- $\partial: W_1 \to W_0$ is a linear map such that the image of ∂^* in $W_1^* \cong W_1$ is isotropic,
- $r \in \wedge^2 W_1^*$.

Furthermore, equivalences change r arbitrarily and nothing else.

When r = 0, we call the symplectic 2-groupoid symmetric. Note that in this case ω is genuinely nondegenerate.

Constant Courant algebroids

Given a (symmetric) constant symplectic 2-groupoid with data $(W_1, W_0, \langle \cdot, \cdot \rangle, \partial)$, we can form a Courant algebroid structure on $W_1 \times W_0 \to W_0$, where

- The bilinar form is $\langle \cdot, \cdot \rangle$,
- The anchor map $\rho: W_1 \times W_0 \to TW_0 = W_0 \times W_0$ is given by $\rho(w_1, w_0) = (\partial w_1, w_0)$,
- The Courant bracket vanishes on constant sections.

Constant Courant algebroids

Given a (symmetric) constant symplectic 2-groupoid with data $(W_1, W_0, \langle \cdot, \cdot \rangle, \partial)$, we can form a Courant algebroid structure on $W_1 \times W_0 \to W_0$, where

- The bilinar form is $\langle \cdot, \cdot \rangle$,
- The anchor map $\rho: W_1 \times W_0 \to TW_0 = W_0 \times W_0$ is given by $\rho(w_1, w_0) = (\partial w_1, w_0)$,
- The Courant bracket vanishes on constant sections.

So, in some sense we can say that say that constant symplectic 2-groupoids integrate these *constant Courant algebroids*.

Constant Courant algebroids

Given a (symmetric) constant symplectic 2-groupoid with data $(W_1, W_0, \langle \cdot, \cdot \rangle, \partial)$, we can form a Courant algebroid structure on $W_1 \times W_0 \to W_0$, where

- The bilinar form is $\langle \cdot, \cdot \rangle$,
- The anchor map $\rho: W_1 \times W_0 \to TW_0 = W_0 \times W_0$ is given by $\rho(w_1, w_0) = (\partial w_1, w_0)$,
- The Courant bracket vanishes on constant sections.

So, in some sense we can say that say that constant symplectic 2-groupoids integrate these *constant Courant algebroids*.

Theorem

There is a one-to-one correspondence between constant Courant algebroids and equivalence classes of constant symplectic 2-groupoids.

Linear Lagrangian sub-2-groupoids

Let (V_{\bullet}, ω) be a symmetric constant symplectic 2-groupoid with data $(W_1, W_0, \langle \cdot, \cdot \rangle, \partial)$.

Proposition

Linear Lagrangian sub-2-groupoids $L_{\bullet} \subseteq V_{\bullet}$ are in one-to-one correspondence with pairs (U_1, U_0) , $U_i \subseteq W_i$, such that $U_1^{\perp} = U_1$ and $\partial U_1 \subseteq U_0$.

Linear Lagrangian sub-2-groupoids

Let (V_{\bullet}, ω) be a symmetric constant symplectic 2-groupoid with data $(W_1, W_0, \langle \cdot, \cdot \rangle, \partial)$.

Proposition

Linear Lagrangian sub-2-groupoids $L_{\bullet} \subseteq V_{\bullet}$ are in one-to-one correspondence with pairs (U_1, U_0) , $U_i \subseteq W_i$, such that $U_1^{\perp} = U_1$ and $\partial U_1 \subseteq U_0$.

In the case where L_{\bullet} is *wide*, i.e. $U_0 = W_0$, then $U_1 \times W_0 \subseteq W_1 \times W_0$ is a Dirac structure. We call this a *constant* Dirac structure.

Linear Lagrangian sub-2-groupoids

Let (V_{\bullet}, ω) be a symmetric constant symplectic 2-groupoid with data $(W_1, W_0, \langle \cdot, \cdot \rangle, \partial)$.

Proposition

Linear Lagrangian sub-2-groupoids $L_{\bullet} \subseteq V_{\bullet}$ are in one-to-one correspondence with pairs (U_1, U_0) , $U_i \subseteq W_i$, such that $U_1^{\perp} = U_1$ and $\partial U_1 \subseteq U_0$.

In the case where L_{\bullet} is *wide*, i.e. $U_0 = W_0$, then $U_1 \times W_0 \subseteq W_1 \times W_0$ is a Dirac structure. We call this a *constant* Dirac structure.

Theorem

There is a one-to-one correspondence between constant Dirac structures and wide linear Lagrangian sub-2-groupoids.

Thanks!