Homotopy Poisson actions

Rajan Mehta

November 8, 2010

Conventional perspectives

Definition

A *Poisson structure* on a manifold M is a Lie bracket on $C^{\infty}(M)$ that satisfies the Leibniz rule.

Equivalently,

Definition

A Poisson structure on a manifold M is a bivector field $\pi \in \mathfrak{X}^2(M) = \Gamma(\wedge^2 TM)$ such that $[\pi, \pi]_{\text{Schouten}} = 0$.

Derived bracket formula:

$${f,g}_{\pi} = [[\pi, f], g].$$

Differential perspective

 $d_{\pi} := [\pi, \cdot]$ is a degree 1 operator on $\mathfrak{X}^{\bullet}(M) = \Gamma(\wedge TM)$.

•
$$[\pi,\pi] = 0 \iff d_{\pi}^2 = 0 \pmod{T^*M}$$
.

*d*_π is a graded derivation with respect to the wedge product and the Schouten bracket.

Derived bracket formula:

$$\{f,g\}_{\pi} = [[\pi,f],g] = [d_{\pi}f,g].$$

Graded geometry perspective

 $\mathfrak{X}^{\bullet}(M) =$ algebra of "smooth functions" on $T^*[1]M$.

 d_{π} is a derivation of the product structure $\iff d_{\pi}$ is a vector field on $T^*[1]M$.

- d_{π} is deg. 1 and $d_{\pi}^2 = 0 \iff d_{\pi}$ is homological $((T^*[1]M, d_{\pi}) \text{ is an } NQ\text{-manifold}).$
- d_{π} is a derivation of Schouten $\iff d_{\pi}$ is symplectic.

Definition

A Poisson structure on M is a homological symplectic vector field on $T^*[1]M$. $((T^*[1]M, \omega, d_{\pi})$ is a deg. 1 symplectic NQ-manifold.)

Definition

A Poisson structure on M is a degree 2 function π on $T^*[1]M$ such that $[\pi, \pi] = 0$.

Poisson reduction via supersymplectic reduction

Cattaneo-Zambon: Poisson reduction = (super)symplectic reduction of $T^*[1]M$

For moment map reduction, they considered DGLA actions. If the comoment map $\mathfrak{g} \to C^{\infty}(T^*[1]M)$ is a DGLA map, then π passes to the quotient.

We also want to include Poisson-Lie group/Lie bialgebra actions.

- dg-group = Q-group = (graded) Lie group with multiplicative vector field, $[Q, Q] = 2Q^2 = 0$.
- Poisson-Lie group = Lie group with multiplicative bivector field, [π, π] = 0.
- homotopy Poisson-Lie group = Lie group with multiplicative multivector field, $[\pi, \pi] = 0$.

Homotopy Poisson manifolds

Let $\ensuremath{\mathcal{M}}$ be a graded manifold.

Definition

A homotopy Poisson (hPoisson) structure on \mathcal{M} is any of the following equivalent things:

- an L_{∞} algebra structure on $C^{\infty}(\mathcal{M})$ where the brackets satisfy the Leibniz rule.
- a homological symplectic vector field on $T^*[1]M$.
- a degree 2 function π on $T^*[1]\mathcal{M}$ such that $[\pi,\pi]=0$.

Write $\pi = \sum \pi_k$, where $\pi_k \in \mathfrak{X}^k(\mathcal{M})$. Then we have the derived bracket formula

$$\{f_1,\ldots,f_k\}_{\pi} = [\cdots [[\pi_k,f_1],f_2],\cdots f_k] = [\cdots [d_{\pi}f_1,f_2],\cdots f_k].$$

Note: the "homological" degree of π_k is 2 - k.

Examples

Example

A graded (deg. 0) Poisson manifold is an hPoisson manifold. Note: For ordinary manifolds, then hPoisson = Poisson.

Example

Q-manifolds/dg-manifolds, e.g. A[1] if A is a Lie algebroid.

Example

A *QP*-manifold is a Poisson manifold equipped with a homological Poisson vector field, e.g. $T^*(A[1])$ if A is a Lie algebroid.

Another example

Example

If $\mathcal{V} = \bigoplus V_i[i]$ is an L_{∞} -algebra, then $\mathcal{V}^* = \bigoplus V_i^*[-i]$ is a (linear) hPoisson manifold. $\mathcal{T}^*[1](\mathcal{V}[1]) = \mathcal{T}^*[1](\mathcal{V}^*)$.

Remark If \mathcal{M} is hPoisson, then $T^*[1]\mathcal{M}$ is a degree 1 symplectic Q-manifold, but generally has negative degree coordinates even if \mathcal{M} is \mathbb{N} -graded.

c.f. Roytenberg-Severa correspondence

{Poisson manifolds} \langle {deg. 1 symplectic NQ-manifolds}

Morphisms

Definition

A (strict) morphism of hPoisson manifolds from (\mathcal{M}, π) to (\mathcal{M}', π') is a graded manifold morphism $\psi : \mathcal{M} \to \mathcal{M}'$ such that

$$\psi^* \{ f_1, \ldots, f_k \}_{\pi'} = \{ \psi^* f_1, \ldots, \psi^* f_k \}_{\pi}$$

for $f_1, \ldots f_k \in C^{\infty}(\mathcal{M}')$. Equivalently, $\pi \stackrel{\psi}{\sim} \pi'$.

Weak morphisms??

hPoisson-Lie groups

Definition

A *hPoisson-Lie group* is a graded Lie group \mathcal{G} equipped with a hPoisson structure such that the multiplication map $\mu : \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ is a hPoisson morphism.

Examples

Poisson-Lie groups, *Q*-groups/dg-groups,...

Definition

A *hPoisson-Lie group* is a graded Lie group \mathcal{G} where $\mathcal{T}^*[1]\mathcal{G}$ is equipped with a multiplicative homological symplectic vector field, or equivalently, a degree 2 multiplicative function ϕ such that $[\phi, \phi] = 0$.

"Multiplicative" refers to the groupoid structure $T^*[1]\mathcal{G} \rightrightarrows \mathfrak{g}^*[1]$.

Homotopy Lie bialgebras

A multiplicative homological symplectic vector field d_{ϕ} on $\mathcal{T}^*[1]\mathcal{G} \rightrightarrows \mathfrak{g}^*[1]$ lives over a homological Poisson vector field \hat{d}_{ϕ} on $\mathfrak{g}^*[1]$, which can be thought of as a differential on $\mathcal{C}^{\infty}(\mathfrak{g}^*[1]) = \mathrm{S}(\mathfrak{g}[-1])$ (think $\bigwedge \mathfrak{g}$).

 \hat{d}_{ϕ} Poisson \iff derivation of the Schouten-Lie bracket.

Definition

A homotopy Lie bialgebra is a graded Lie algebra \mathfrak{g} equipped with a differential δ on $S(\mathfrak{g}[-1])$ that is a derivation of symmetric product and the Schouten-Lie bracket.

- If δ is linear, then \mathfrak{g} is a DGLA (= Lie *Q*-algebra).
- If δ is quadratic, then \mathfrak{g} is a graded Lie bialgebra.
- In general, the derivation property expresses a compatibility between a graded Lie algebra structure on g and an L_{∞} -algebra structure on g^* .

hPoisson actions

Let ${\mathcal M}$ be a hPoisson manifold, and let ${\mathcal G}$ be a hPoisson-Lie group.

Definition

An action $\sigma: \mathcal{M} \times \mathcal{G} \to \mathcal{M}$ is *hPoisson* if σ is a hPoisson morphism.

Infinitesimal version: Let \mathfrak{g} be a homotopy Lie bialgebra.

Definition

An action $\rho : \mathfrak{g} \to \mathfrak{X}(\mathcal{M})$ is a homotopy Lie bialgebra action if the extension $\hat{\rho} : \mathrm{S}(\mathfrak{g}[-1]) \to \mathfrak{X}^{\bullet}(\mathcal{M})$ respects differentials.

Lemma

Suppose that \mathcal{G} has a free and proper hPoisson action on \mathcal{M} . Then the quotient \mathcal{M}/\mathcal{G} inherits a hPoisson structure.

Hamiltonian actions

Let S be a degree 1 symplectic Q-manifold. Let (\mathcal{G}, ϕ) be a connected hPoisson-Lie group with a Hamiltonian action on S with moment map $\mu : S \to \mathfrak{g}^*[1]$.

Recall that $\mathfrak{g}^*[1]$ has a homological vector field \hat{d}_{ϕ} .

Definition

The action is called *Q*-Hamiltonian if μ is a *Q*-manifold morphism. Equivalently, $\mu^* : S(\mathfrak{g}[-1]) \to C^{\infty}(S)$ respects differentials.

Theorem

If \mathcal{G} is flat and the action is Q-Hamiltonian (+ regular value, etc.), then the homological vector field on \mathcal{S} descends to the quotient $\mu^{-1}(0)/\mathcal{G}$.

Nonflat « reduction at nonzero values?

hPoisson actions revisited

Let \mathcal{M} be a hPoisson manifold, and let \mathcal{G} be a flat hPoisson-Lie group with a free and proper hPoisson action on \mathcal{M} .

 $\rightsquigarrow \text{(shifted) cotangent lift action } \mathcal{G} \circlearrowright T^*[1]\mathcal{M}.$

Theorem

The cotangent lift action is Q-Hamiltonian, and the reduced symplectic Q-manifold is $T^*[1](\mathcal{M}/\mathcal{G})$.

Example

If *M* is a Poisson manifold and *G* is a Poisson-Lie group with a free and proper Poisson action on *M*, then the Poisson quotient M/Gcan be interpreted as arising from the "*Q*-symplectic quotient" $T^*[1]M//G$.

Higher hPoisson structures

Let \mathcal{M} be a graded manifold.

Definition

A degree *n* hPoisson structure on \mathcal{M} is a degree n + 1 function π on $\mathcal{T}^*[n]\mathcal{M}$ such that $[\pi, \pi] = 0$.

degree n hPoisson-Lie groups can do Q-symplectic reduction on degree n symplectic Q-manifolds.

Example

Bursztyn-Cavalcanti-Gualtieri notion of "extended action with moment map" for reduction of Courant algebroids. (In this case, the deg. 2 homotopy Lie bialgebra is a DGLA.)

The quadratic case

Example

Quadratic deg. 2 homotopy Lie bialgebras correspond to "matched pairs" of Lie algebras.

Interesting example of Courant reduction by "matched pair action"?

Thanks.