Double Lie groupoids, Lie 2-groupoids, and integration of Courant algebroids

Rajan Mehta (joint with X. Tang)

Pennsylvania State University

October 30, 2011

Lie bialgebroids

A *Lie bialgebroid* is a compatible dual pair (A, A^*) of Lie algebroids [Mackenzie-Xu].

Examples: Lie bialgebras, (TM, T^*M) when M Poisson.

Lie bialgebroids are the infinitesimal objects associated to Poisson groupoids.

Poisson groupoids are the infinitesimal objects associated to *symplectic double groupoids* [Lu-Weinstein, Mackenzie, Stefanini].

The "double" of a Lie bialgebroid

Liu-Weinstein-Xu: If (A, A^*) is a Lie bialgebroid, then there is an induced Courant algebroid structure on $A \oplus A^*$.

Question (Liu-Weinstein-Xu)

"What is the global, groupoid-like object corresponding to a Courant algebroid? In particular, what is the double of a Poisson groupoid?"

Ševera, Roytenberg: symplectic 2-groupoid?

Double Lie groupoids

A double Lie groupoid is a square

where all four sides are Lie groupoids, satisfying a compatibility condition. An element $\alpha \in D$ can be depicted as a square

and squares can be composed in two different ways: $\Box\Box$ and $\overleftrightarrow{\Box}$

The compatibility condition says that 4-fold products are well-defined: $\Box \Box$ (+ filling condition)

2-categories

- A (weak) 2-category consists of:
 - Objects
 - Morphisms
 - 2-simplices

Each 2-simplex gives a composition of morphisms:

$$g \underbrace{\eta}_{h}^{k} \qquad \qquad k = g \cdot_{\eta} h$$

2-groupoids

2-groupoid axioms:

- For any appropriately compatible pair of morphisms, composition/division exists (but not uniquely!).
- In equations of the form

$$(g \cdot_{\eta_1} h) \cdot_{\eta_2} k = g \cdot_{\eta_3} (h \cdot_{\eta_4} k),$$

any three of the η_i uniquely determines the fourth.

• There are distinguished identity morphisms and 2-simplices corresponding to left/right composition by identity.

Definition

A *Lie* 2*-groupoid* is a 2-groupoid where the objects, morphisms, and 2-simplices form manifolds, and all the "face maps" are submersions.

The bar functor [Artin-Mazur]

Given a double Lie groupoid

$$V \stackrel{\text{def}}{=} D$$
$$\downarrow \downarrow \qquad \downarrow \downarrow$$
$$M \stackrel{\text{def}}{=} H$$

h

we can form a Lie 2-groupoid as follows:

•
$$G_0 = {\text{objects}} = M$$
,
• $G_1 = {\text{morphisms}} = V \times_M H$,
• $G_2 = {2\text{-simplices}} = V \times_M D \times_M H$.
• $V \times_M D \times_M H$.

 $s_V \alpha h$

Symplectic double groupoids

A symplectic double groupoid is a double Lie groupoid

where D is equipped with a symplectic form ω , making both $D \rightrightarrows V$ and $D \rightrightarrows H$ into symplectic groupoids.

When M has the trivial Poisson structure, (TM, T^*M) integrates to

$$\begin{array}{c}
T^*M & \overleftarrow{} T^*M \times T^*M \\
\downarrow & \downarrow \\
M & \overleftarrow{} M \times M
\end{array}$$

Applying the bar functor

If we apply the bar functor to a symplectic double groupoid, then the 2-form on D can be pulled back to a 2-form Ω on the space of 2-simplices G_2 . Properties:

- Multiplicativity: Let G_3 be the space of "tetrahedral quadruplets" of 2-simplices, with face maps $f_i : G_3 \to G_2$, i = 0, ..., 3. Then $\sum (-1)^i f_i^* \Omega = 0$.
- $d\Omega = 0.$
- Ω is degenerate, but we can write down conditions (in terms of the face/degeneracy maps) that control the degeneracy (c.f. Xu's *quasi-symplectic groupoids*).

Definition

A symplectic 2-groupoid is a Lie 2-groupoid equipped with a multiplicative, closed 2-form Ω on G_2 satisfying the "controlled degeneracy" conditions.

Integrating the standard Courant algebroid

The symplectic 2-groupoid integrating the standard Courant algebroid $TM \oplus T^*M$ has the following form:

- $G_0 = M$,
- $G_1 = M \times T^*M$,
- $G_2 = M \times T^*M \times (T^*M \oplus T^*M).$

The "symplectic" form on G_2 is supported along the middle two copies of T^*M .

- Li-Bland, Severa: Differentiation process, $TM \oplus T^*M$ twisted by closed 3-forms.
- Sheng, Zhu: Interpretation in terms of integrating representations up to homotopy (no symplectic form)

Thanks.