Representing Representations up to Homotopy

Rajan Mehta
Smith College

November 9, 2014

History

- Problem: No natural adjoint representation for Lie algebroids
- Evens, Lu, Weinstein: Can define an adjoint "representation up to homotopy" on the 2-term complex $A \xrightarrow{\rho} T M$. Used it to define the modular class of a Lie algebroid.
- Crainic, Fernandes: Used adjoint representation up to homotopy to construct higher characteristic classes.
- Arias Abad, Crainic: Stronger definition of representation up to homotopy (strong homotopy)
- Gracia-Saz, M.: Same definition but different name "Superrepresentations", showed relationship to $\mathcal{V} \mathcal{B}$-algebroids in the 2-term case. Gave a general construction for characteristic classes.

Definition

$A \rightarrow M$ a Lie algebroid, $\left(\mathcal{E}=\bigoplus E_{i}, \partial\right)$ a complex of vector bundles.

Definition

A representation up to homotopy of A on \mathcal{E} consists of:

- An A-connection $\nabla: \Gamma(A) \otimes \Gamma(\mathcal{E}) \rightarrow \Gamma(\mathcal{E})$,
- Endormorphism-valued forms $\omega_{i} \in \Gamma\left(\wedge^{i} A^{*}\right) \otimes$ End $_{1-i} \mathcal{E}$ for $i \geq 2$, such that
(1) ∇ is compatible with ∂,
(2) The curvature of ∇ is $\omega_{2} \partial+\partial \omega_{2}$,
(3) Higher conditions.

Motivation

A representation of a Lie algebra \mathfrak{g} on a vector space V is given by a Lie algebra morphism

$$
\mathfrak{g} \rightarrow \mathfrak{g l}(V)
$$

This perspective immediately implies various "naturality" results:

- Representations can be pulled back under $\mathfrak{h} \rightarrow \mathfrak{g}$
- Classes in $H^{\bullet}(\mathfrak{g l}(V))$ are "universal" characteristic classes
- Universal characteristic classes are natural under pullback

Question

Can a representation up to homotopy be similarly described by a morphism

$$
A \rightarrow ? ? ?
$$

DG Lie algebroids

M a manifold.

Definition

A DG Lie algebroid (DGLAoid) over M is a graded vector bundle $\mathcal{A}=\bigoplus A_{i}$ equipped with:

- An anchor map $\rho: A_{0} \rightarrow T M$,
- A differential $\partial: A_{\bullet} \rightarrow A_{\bullet+1}$,
- A graded Lie bracket $[\cdot, \cdot]$ (degree 0),
such that
(1) The differential is a derivation of the bracket (so $\Gamma(\mathcal{A})$ is a DGLA)
(2) Brackets involving a degree 0 section satisfy a Leibniz rule, and are otherwise $C^{\infty}(M)$-linear

Special case of a Q-algebroid.

The operator DG Lie algebroid

$\left(\mathcal{E}=\bigoplus E_{i}, \partial\right)$ a complex of vector bundles over M. Construct the operator DG Lie algebroid $\mathcal{O}(\mathcal{E})$:

- Sections of $\mathcal{O}_{0}(\mathcal{E})$ are derivation operators on \mathcal{E}
- For $i \neq 0$, sections of $\mathcal{O}_{i}(\mathcal{E})$ are degree i endomorphisms of \mathcal{E}
- Anchor map $\sigma: \mathcal{O}_{0}(\mathcal{E}) \rightarrow T M$ is the symbol map
- Bracket is graded commutator bracket
- Differential is $\tilde{\partial}=[\partial, \cdot]$

Representing representations up to homotopy

$A \rightarrow M$ a Lie algebroid, $\left(\mathcal{E}=\bigoplus E_{i}, \partial\right)$ a complex of vector bundles.

Definition

An L_{∞} map from A to $\mathcal{O}(\mathcal{E})$ consists of bundle maps
$\beta_{k}: \wedge^{k} A \rightarrow \mathcal{O}_{1-k}(\mathcal{E})$ for $k>0$, such that $\sigma \circ \beta_{1}=\rho$ (where $\rho: A \rightarrow T M$ is the anchor map of A), and such that the induced maps of sections form an L_{∞}-algebra morphism.

Theorem

There is a one-to-one correspondence between representations up to homotopy of A on (\mathcal{E}, ∂) and L_{∞} maps from A to $\mathcal{O}(\mathcal{E})$.

Immediate consequences

- Representations up to homotopy can be pulled back under Lie algebroid morphisms
- Classes in (appropriately-defined) $H^{\bullet}(\mathcal{O}(\mathcal{E}))$ are "universal" characteristic classes
- Universal characteristic classes are natural under pullback

Also: equivalences of representations up to homotopy

More potential consequences

Can define maps over different base manifolds. So a Lie algebroid $A \rightarrow M$ can have a representation up to homotopy on $\mathcal{E} \rightarrow N$. Could be useful for applying tools of ordinary representation theory (e.g. weights).

