Representing Representations up to Homotopy

Rajan Mehta

Smith College

November 9, 2014

History

- Problem: No natural adjoint representation for Lie algebroids
- Evens, Lu, Weinstein: Can define an adjoint "representation up to homotopy" on the 2-term complex A → TM. Used it to define the modular class of a Lie algebroid.
- Crainic, Fernandes: Used adjoint representation up to homotopy to construct higher characteristic classes.
- Arias Abad, Crainic: Stronger definition of representation up to homotopy (strong homotopy)
- Gracia-Saz, M.: Same definition but different name "Superrepresentations", showed relationship to VB-algebroids in the 2-term case. Gave a general construction for characteristic classes.

Definition

A o M a Lie algebroid, ($\mathcal{E} = \bigoplus E_i, \partial$) a complex of vector bundles.

Definition

A representation up to homotopy of A on \mathcal{E} consists of:

- An A-connection $\nabla : \Gamma(A) \otimes \Gamma(\mathcal{E}) \to \Gamma(\mathcal{E})$,
- Endormorphism-valued forms $\omega_i \in \Gamma(\wedge^i A^*) \otimes \operatorname{End}_{1-i} \mathcal{E}$ for $i \geq 2$,

such that

- ∇ is compatible with ∂ ,
- 2 The curvature of ∇ is $\omega_2 \partial + \partial \omega_2$,
- I Higher conditions.

Motivation

A representation of a Lie algebra ${\mathfrak g}$ on a vector space V is given by a Lie algebra morphism

$$\mathfrak{g}
ightarrow \mathfrak{gl}(V).$$

This perspective immediately implies various "naturality" results:

- \bullet Representations can be pulled back under $\mathfrak{h} \to \mathfrak{g}$
- Classes in $H^{\bullet}(\mathfrak{gl}(V))$ are "universal" characteristic classes
- Universal characteristic classes are natural under pullback

Question

Can a representation up to homotopy be similarly described by a morphism

$$A \rightarrow ???$$

DG Lie algebroids

M a manifold.

Definition

A *DG Lie algebroid* (DGLAoid) over *M* is a graded vector bundle $\mathcal{A} = \bigoplus \mathcal{A}_i$ equipped with:

- An anchor map $\rho: A_0 \rightarrow TM$,
- A differential $\partial : A_{\bullet} \to A_{\bullet+1}$,
- A graded Lie bracket $[\cdot, \cdot]$ (degree 0),

such that

- **(**) The differential is a derivation of the bracket (so $\Gamma(A)$ is a DGLA)
- **②** Brackets involving a degree 0 section satisfy a Leibniz rule, and are otherwise $C^{\infty}(M)$ -linear

Special case of a *Q*-algebroid.

The operator DG Lie algebroid

 $(\mathcal{E} = \bigoplus E_i, \partial)$ a complex of vector bundles over *M*. Construct the operator *DG* Lie algebroid $\mathcal{O}(\mathcal{E})$:

- Sections of $\mathcal{O}_0(\mathcal{E})$ are derivation operators on \mathcal{E}
- For $i \neq 0$, sections of $\mathcal{O}_i(\mathcal{E})$ are degree i endomorphisms of \mathcal{E}
- Anchor map $\sigma: \mathcal{O}_0(\mathcal{E}) \to TM$ is the symbol map
- Bracket is graded commutator bracket
- Differential is $\tilde{\partial} = [\partial, \cdot]$

Representing representations up to homotopy

 $A \rightarrow M$ a Lie algebroid, ($\mathcal{E} = \bigoplus E_i, \partial$) a complex of vector bundles.

Definition

An L_{∞} map from A to $\mathcal{O}(\mathcal{E})$ consists of bundle maps $\beta_k : \wedge^k A \to \mathcal{O}_{1-k}(\mathcal{E})$ for k > 0, such that $\sigma \circ \beta_1 = \rho$ (where $\rho : A \to TM$ is the anchor map of A), and such that the induced maps of sections form an L_{∞} -algebra morphism.

Theorem

There is a one-to-one correspondence between representations up to homotopy of A on (\mathcal{E}, ∂) and L_{∞} maps from A to $\mathcal{O}(\mathcal{E})$.

Immediate consequences

- Representations up to homotopy can be pulled back under Lie algebroid morphisms
- Classes in (appropriately-defined) H[●](O(E)) are "universal" characteristic classes
- Universal characteristic classes are natural under pullback
- Also: equivalences of representations up to homotopy

More potential consequences

Can define maps over different base manifolds. So a Lie algebroid $A \to M$ can have a representation up to homotopy on $\mathcal{E} \to N$. Could be useful for applying tools of ordinary representation theory (e.g. weights).