FROBENIUS OBJECTS IN THE CATEGORY OF SPANS

Rajan Mehta

August 1, 2024

Smith College ECOGyT 2024

Monoids

A monoid is a set X equipped with maps

- $\eta: \{pt\} \to X \text{ (unit)}$
- $\mu: X \times X \to X$ (multiplication)

satisfying:

- 1. Unitality: $\mu \circ (\eta \otimes id) = id = \mu \circ (id \otimes \eta)$,
- 2. Associativity: $\mu \circ (\mu \otimes id) = \mu \circ (id \otimes \mu)$.

1

Monoid objects

Let $(\mathcal{C}, \otimes, I)$ be a monoidal category. A monoid in \mathcal{C} is an object X equipped with morphisms

- $\eta: I \to X$ (unit)
- $\mu: X \otimes X \to X$ (multiplication)

satisfying:

- 1. Unitality: $\mu \circ (\eta \otimes id) = id = \mu \circ (id \otimes \eta)$,
- 2. Associativity: $\mu \circ (\mu \otimes id) = \mu \circ (id \otimes \mu)$.
 - A monoid in (\mathbf{Set}, \times) is a monoid.
 - A monoid in (\mathbf{Vect}, \otimes) is an algebra.
 - If $\mathcal C$ is symmetric monoidal then we can define commutativity.

FROBENIUS ALGEBRAS

A Frobenius algebra is a finite-dimensional algebra A equipped with a map $\varepsilon:A\to \Bbbk$ (counit) such that the bilinear form $\varepsilon\circ \mu:A\otimes A\to \Bbbk$ is nondegenerate.

Examples:

- $A = \{n \times n \text{ matrices}\}, \varepsilon = \text{tr.}$
- G finite group \leadsto group algebra $A = \Bbbk[G]$.
- M compact oriented manifold \leadsto cohomology $H^{\bullet}(M)$, $\varepsilon = \int_M$.

FROBENIUS OBJECTS

A Frobenius object in $\mathcal C$ is a monoid X in $\mathcal C$ equipped with a morphism $\varepsilon:X\to I$ (counit) satisfying the following nondegeneracy condition:

$$\exists \beta: I \to X \otimes X \text{ such that } ((\varepsilon \circ \mu) \otimes \operatorname{id}) \circ (\operatorname{id} \otimes \beta) = \operatorname{id} = (\operatorname{id} \otimes (\varepsilon \circ \mu)) \circ (\beta \otimes \operatorname{id}).$$

FROBENIUS OBJECTS VIA STRING DIAGRAMS

We'll use the following string diagrams to represent the unit, multiplication, and counit:

Then the axioms can be written as follows:

· Unit:

Associativity:

FROBENIUS OBJECTS VIA STRING DIAGRAMS, CONTINUED

Represent $\beta: I \to X \otimes X$ by

Nondegeneracy:



Can show β is unique, so can also define a comultiplication by

and can prove it's counital & coassociative.

WHY FROBENIUS OBJECTS?

- A TQFT is a symmetric monoidal functor $\mathbf{Cob} \to \mathbf{Vect}$.
- More generally, a \mathcal{C} -valued TFT is a symmetric monoidal functor $\mathbf{Cob} \to \mathcal{C}$.
- (Dijkgraaf, Abrams) 2D oriented TQFTs correspond to commutative Frobenius algebras.
- 2D oriented C-valued TFTs correspond to commutative Frobenius objects in C. (See Kock, "Frobenius algebras and 2D TQFTs")

SURFACE INVARIANTS

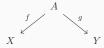
A commutative Frobenius object gives invariants of closed surfaces:

$$\{\operatorname{Closed surfaces}\} = \operatorname{End}_{\mathbf{Cob}}(\varnothing) \to \operatorname{End}_{\mathcal{C}}(I)$$

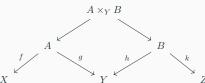
Note: $\mathrm{End}_{\mathbf{Vect}}(\Bbbk) = \Bbbk$ so you get numerical invariants from Frobenius algebras.

THE CATEGORY Span

 Objects are sets, morphisms are isomorphism classes of spans



Composition of morphisms is obtained by pullback/fiber product:

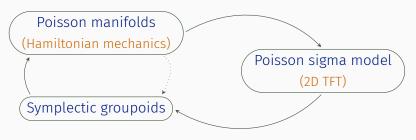


- Symmetric monoidal structure given by \times .
- $\operatorname{Hom}_{\mathbf{Span}}(\{pt\}, \{pt\}) = \{\text{Iso classes of sets}\}, \text{ contains } \mathbb{N}$

WHY Span?

Ultimately would like to consider the symplectic category.

- Objects: symplectic manifolds
- · Morphisms (naïve): Lagrangian relations $L \subseteq \bar{M} \times N$
- \cdot Symmetric monoidal structure given by \times .



Observation: A symplectic groupoid is a Frobenius object in the symplectic category!

WHY Span, CONTINUED

- However! Compositions of Lagrangian relations might not be smooth (require "strong transversality").
- (Wehrheim, Woodward) Morphisms are formal sequences of Lagrangian relations, modulo strongly transversal compositions.
- This works, but it's complicated! Even $\operatorname{Hom}_{\mathbf{Symp}}(\{pt\}, \{pt\})$ is not well-understood.
- (Li-Bland, Weinstein) There is a symmetric monoidal functor Symp → Span, so structures in Symp induce structures in Span.
- If finite, can obtain (Frobenius) algebras via "decategorification".

MONOIDS IN Span FROM SIMPLICIAL SETS

Let X_{ullet} be a simplicial set, define unit and multiplication spans by

$$\{pt\} \leftarrow X_0 \xrightarrow{s_0} X_1 \qquad X_1 \times X_1 \xleftarrow{(d_2,d_0)} X_2 \xrightarrow{d_1} X_1$$

Lemma: The unit axiom holds if and only if the diagrams

$$\begin{array}{cccc} X_1 & \xrightarrow{d_0} & X_0 & & X_1 & \xrightarrow{d_1} & X_0 \\ \downarrow^{s_1} & & \downarrow^{s_0} & & \downarrow^{s_0} & & \downarrow^{s_0} \\ X_2 & \xrightarrow{d_0} & X_1 & & X_2 & \xrightarrow{d_2} & X_1 \end{array}$$

are pullbacks.

ASSOCIATIVITY

Consider the "taco spaces"

$$T_{02} = X_2 d_1 \times d_0 X_2,$$

 $T_{13} = X_2 d_2 \times d_1 X_2.$

They correspond to the two triangulations of the square:

There are four edge maps $e_1, e_2, e_3, e_{\mathrm{out}}: T_{02} \to X_1$, and similarly for T_{13} .

Lemma: Associativity holds if and only if there exists an isomorphism $T_{02} \rightarrow T_{13}$ that commutes with the edge maps.

MONOIDS IN Span come from simplicial sets

So: given a simplicial set satisfying the unit and associativity conditions, we get a monoid in **Span**.

Theorem (Contreras, Keller, M.)

Every monoid in **Span** arises from a simplicial set in this way.

FROBENIUS STRUCTURES

Let X_{\bullet} be a simplicial set satisfying the associativity and unitality conditions.

Let τ be an automorphism of X_1 . Define a counit span by

$$X_1 \stackrel{\tau \circ s_0}{\longleftarrow} X_0 \to \{pt\}.$$

Lemma: This gives a Frobenius structure if and only if there exists $\gamma: X_1 \to X_2$ such that

- 1. $d_0 \circ \gamma = \tau$,
- 2. $d_1 \circ \gamma = \tau \circ s_0 \circ d_1$,
- 3. $d_2 \circ \gamma = \mathrm{id}$,

4. and the diagram
$$\begin{array}{c} X_1 \stackrel{d_1}{\longrightarrow} X_0 \\ \downarrow^{\gamma} & \downarrow^{\tau \circ s_0} \text{ is a pullback.} \\ X_2 \stackrel{d_1}{\longrightarrow} X_1 \end{array}$$

FROBENIUS OBJECTS IN Span COME FROM SIMPLICIAL SETS

So: given a simplicial set X_{\bullet} equipped with an automorphism of X_1 , satisfying the unit, associativity, and Frobenius conditions, we get a Frobenius object in **Span**.

Theorem (Contreras, Keller, M.)

Every Frobenius object in **Span** arises from a simplicial set in this way.

EXAMPLE: GROUPS

 \cdot If G is a group, can take the nerve

$$\cdots G \times G \not \rightrightarrows G \rightrightarrows \{pt\}$$

This satisfies the unit and associativity conditions.

- For any fixed $\omega \in G$, can take $\tau(g) = g^{-1}\omega$. This satisfies the Frobenius condition with $\gamma(g) = (g, g^{-1}\omega)$.
- If G finite, abelian, can compute surface invariants in \mathbb{N} :

$$Z(\Sigma_g) = \begin{cases} |G|^g & \text{if } \omega^g = \omega, \\ 0 & \text{otherwise.} \end{cases}$$

• This construction generalizes to groupoids.

EXAMPLES THAT AREN'T GROUPOIDS

· Consider a simplicial set

$$\cdots \{(1,1,1),(1,x,x),(x,x,1),\underbrace{(x,1,x)}_{n \text{ copies}}\} \rightleftarrows \{1,x\} \rightrightarrows \{1\}.$$

- Set $\tau: 1 \leftrightarrow x$. Satisfies the Frobenius condition with $\gamma(1) = (x, x, 1), \, \gamma(x) = (1, x, x).$
- Then

$$Z(\Sigma_g) = \begin{cases} 2^g n^{(g-1)/2} & \text{if } g \text{ odd,} \\ 0 & \text{if } g \text{ even.} \end{cases}$$

• When n = 1, this is the nerve of \mathbb{Z}_2 . When $n \neq 1$, it is not the nerve of a groupoid.

THE BICATEGORICAL VERSION OF THE STORY

It's more natural to define a bicategory of spans:

- · objects are sets
- · morphisms are spans
- · 2-morphisms are maps of spans

The coherent structure in this setting is called a (Frobenius) pseudomonoid.

(Stern) Pseudomonoids in **Span** correspond to 2-Segal sets.

Theorem

(Contreras, M., Stern) Frobenius pseudomonoids in **Span** correspond to paracyclic 2-Segal sets.

COMMUTATIVITY

In the bicategorical setting, commutativity is a structure, not a property.

- Let Φ_* be the category with objects $\langle n \rangle = \{*, 1, \dots, n\}$ and morphisms maps $f : \langle n \rangle \to \langle m \rangle$ such that f(*) = *.
- There is a functor "cut" $\Delta^{\mathrm{op}} \to \Phi_*$.

Theorem

(Contreras, M., Stern) Commutative pseudomonoids in **Span** correspond to functors $\Phi_* \to \mathbf{Set}$ such that the induced simplicial set is 2-Segal.

Work in progress with Sophia Marx: Commutative + Frobenius \leftrightarrow 2-Segal functors $\Phi \rightarrow \mathbf{Set}$.

EXAMPLE: GRAPH PARTITIONS

Let G be a graph.

- Let $X_n = \{(H; V_1, \dots, V_n)\}$, where H is a subgraph of G, and V_1, \dots, V_n partition the vertices of H.
- Given $f:\langle n\rangle \to \langle m\rangle$, define $f_*:X_n\to X_m$ by

$$f_*(H; V_1, \dots, V_n) = (H'; V'_1, \dots, V'_m),$$

where

$$V_j' = \bigcup_{i \in f^{-1}(j)} V_i$$

and $H' \subseteq H$ is the full subgraph on $\bigcup V'_i$.

• This gives a functor $\Phi_* \to \mathbf{Set}$ for which the induced simplicial set is 2-Segal (Bergner, Osorno, Ozornova, Rovelli, Scheimbauer)

¡Gracias! Thanks!

This talk is based on:

- I. Contreras, M. Keller*, R. Mehta, "Frobenius objects in the category of spans," Rev. Math. Phys. (2022), arXiv:2106.14743.
- I. Contreras, R. Mehta, W. Stern, "Frobenius and commutative pseudomonoids in the bicategory of spans," arXiv:2311.15342.
- S. Marx, R. Mehta, "Coherent 2D TFTs in the bicategory of spans," coming soon.