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MONOIDS

A monoid is a set X equipped with maps

• η : {pt} → X (unit)
• µ : X ×X → X (multiplication)

satisfying:

1. Unitality: µ ◦ (η ⊗ id) = id = µ ◦ (id⊗ η),
2. Associativity: µ ◦ (µ⊗ id) = µ ◦ (id⊗ µ).
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MONOID OBJECTS

Let (C,⊗, I) be a monoidal category. A monoid in C is an object
X equipped with morphisms

• η : I → X (unit)
• µ : X ⊗X → X (multiplication)

satisfying:

1. Unitality: µ ◦ (η ⊗ id) = id = µ ◦ (id⊗ η),
2. Associativity: µ ◦ (µ⊗ id) = µ ◦ (id⊗ µ).

• A monoid in (Set,×) is a monoid.
• A monoid in (Vect,⊗) is an algebra.
• If C is symmetric monoidal then we can define
commutativity.
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FROBENIUS ALGEBRAS

A Frobenius algebra is a finite-dimensional algebra A

equipped with a map ε : A→ k (counit) such that the bilinear
form ε ◦ µ : A⊗A→ k is nondegenerate.

Examples:

• A = {n× n matrices}, ε = tr.
• G finite group⇝ group algebra A = k[G].
• M compact oriented manifold⇝ cohomology H•(M),
ε =

∫
M .
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FROBENIUS OBJECTS

A Frobenius object in C is a monoid X in C equipped with a
morphism ε : X → I (counit) satisfying the following
nondegeneracy condition:

∃β : I → X ⊗X such that
((ε ◦ µ)⊗ id) ◦ (id⊗ β) = id = (id⊗ (ε ◦ µ)) ◦ (β ⊗ id).
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FROBENIUS OBJECTS VIA STRING DIAGRAMS

We’ll use the following string diagrams to represent the unit,
multiplication, and counit:

Then the axioms can be written as follows:

• Unit:

= =

• Associativity:

=
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FROBENIUS OBJECTS VIA STRING DIAGRAMS, CONTINUED

Represent β : I → X ⊗X by

Nondegeneracy:

= =

Can show β is unique, so can also define a comultiplication by

=

and can prove it’s counital & coassociative.
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WHY FROBENIUS OBJECTS?

• A TQFT is a symmetric monoidal functor Cob→ Vect.
• More generally, a C-valued TFT is a symmetric monoidal
functor Cob→ C.

• (Dijkgraaf, Abrams) 2D oriented TQFTs correspond to
commutative Frobenius algebras.

• 2D oriented C-valued TFTs correspond to commutative
Frobenius objects in C. (See Kock, “Frobenius algebras and
2D TQFTs”)
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SURFACE INVARIANTS

A commutative Frobenius object gives invariants of closed
surfaces:

{Closed surfaces} = EndCob(∅)→ EndC(I)

Note: EndVect(k) = k so you get numerical invariants from
Frobenius algebras.
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THE CATEGORY Span

• Objects are sets, morphisms are isomorphism classes of
spans

A

X Y

f g

• Composition of morphisms is obtained by pullback/fiber
product:

A×Y B

A B

X Y Z

f g h k

• Symmetric monoidal structure given by ×.
• HomSpan({pt}, {pt}) = {Iso classes of sets}, contains N
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WHY Span?

Ultimately would like to consider the symplectic category.

• Objects: symplectic manifolds
• Morphisms (naïve): Lagrangian relations L ⊆ M̄ ×N

• Symmetric monoidal structure given by ×.

Poisson manifolds
(Hamiltonian mechanics)

Poisson sigma model
(2D TFT)

Symplectic groupoids

Observation: A symplectic groupoid is a Frobenius object in
the symplectic category!
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WHY Span, CONTINUED

• However! Compositions of Lagrangian relations might not
be smooth (require “strong transversality”).

• (Wehrheim, Woodward) Morphisms are formal sequences
of Lagrangian relations, modulo strongly transversal
compositions.

• This works, but it’s complicated! Even
HomSymp({pt}, {pt}) is not well-understood.

• (Li-Bland, Weinstein) There is a symmetric monoidal
functor Symp→ Span, so structures in Symp induce
structures in Span.

• If finite, can obtain (Frobenius) algebras via
“decategorification”.
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MONOIDS IN Span FROM SIMPLICIAL SETS

Let X• be a simplicial set, define unit and multiplication spans
by

{pt} ←−X0
s0−→ X1 X1 ×X1

(d2,d0)←−−−− X2
d1−→ X1

Lemma: The unit axiom holds if and only if the diagrams

X1 X0

X2 X1

d0

s1 s0

d0

X1 X0

X2 X1

d1

s0 s0

d2

are pullbacks.
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ASSOCIATIVITY

Consider the “taco spaces”

T02 = X2 d1×d0 X2,

T13 = X2 d2×d1 X2.

They correspond to the two triangulations of the square:

0 1

23

0 1

23

There are four edge maps e1, e2, e3, eout : T02 → X1, and
similarly for T13.

Lemma: Associativity holds if and only if there exists an
isomorphism T02 → T13 that commutes with the edge maps.
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MONOIDS IN Span COME FROM SIMPLICIAL SETS

So: given a simplicial set satisfying the unit and associativity
conditions, we get a monoid in Span.

Theorem (Contreras, Keller, M.)
Every monoid in Span arises from a simplicial set in this way.
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FROBENIUS STRUCTURES

Let X• be a simplicial set satisfying the associativity and
unitality conditions.

Let τ be an automorphism of X1. Define a counit span by

X1
τ◦s0←−−− X0 −→ {pt}.

Lemma: This gives a Frobenius structure if and only if there
exists γ : X1 → X2 such that

1. d0 ◦ γ = τ ,
2. d1 ◦ γ = τ ◦ s0 ◦ d1,
3. d2 ◦ γ = id,

4. and the diagram
X1 X0

X2 X1

d1

γ τ◦s0
d1

is a pullback.
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FROBENIUS OBJECTS IN Span COME FROM SIMPLICIAL SETS

So: given a simplicial set X• equipped with an automorphism
of X1, satisfying the unit, associativity, and Frobenius
conditions, we get a Frobenius object in Span.

Theorem (Contreras, Keller, M.)
Every Frobenius object in Span arises from a simplicial set in
this way.
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EXAMPLE: GROUPS

• If G is a group, can take the nerve

· · ·G×G→→→ G⇒ {pt}

This satisfies the unit and associativity conditions.
• For any fixed ω ∈ G, can take τ(g) = g−1ω. This satisfies
the Frobenius condition with γ(g) = (g, g−1ω).

• If G finite, abelian, can compute surface invariants in N:

Z(Σg) =

|G|g if ωg = ω,

0 otherwise.

• This construction generalizes to groupoids.
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EXAMPLES THAT AREN’T GROUPOIDS

• Consider a simplicial set

· · · {(1, 1, 1), (1, x, x), (x, x, 1), (x, 1, x)︸ ︷︷ ︸
n copies

} →→→ {1, x}⇒ {1}.

• Set τ : 1↔ x. Satisfies the Frobenius condition with
γ(1) = (x, x, 1), γ(x) = (1, x, x).

• Then

Z(Σg) =

2gn(g−1)/2 if g odd,
0 if g even.

• When n = 1, this is the nerve of Z2. When n ̸= 1, it is not
the nerve of a groupoid.
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THE BICATEGORICAL VERSION OF THE STORY

It’s more natural to define a bicategory of spans:

• objects are sets
• morphisms are spans
• 2-morphisms are maps of spans

The coherent structure in this setting is called a (Frobenius)
pseudomonoid.

(Stern) Pseudomonoids in Span correspond to 2-Segal sets.

Theorem
(Contreras, M., Stern) Frobenius pseudomonoids in Span

correspond to paracyclic 2-Segal sets.
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COMMUTATIVITY

In the bicategorical setting, commutativity is a structure, not a
property.

• Let Φ∗ be the category with objects ⟨n⟩ = {∗, 1, . . . , n} and
morphisms maps f : ⟨n⟩ → ⟨m⟩ such that f(∗) = ∗.

• There is a functor “cut” ∆op → Φ∗.

Theorem
(Contreras, M., Stern) Commutative pseudomonoids in Span

correspond to functors Φ∗ → Set such that the induced
simplicial set is 2-Segal.

Work in progress with Sophia Marx: Commutative + Frobenius
↔ 2-Segal functors Φ→ Set.
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EXAMPLE: GRAPH PARTITIONS

Let G be a graph.

• Let Xn = {(H;V1, . . . , Vn)}, where H is a subgraph of G,
and V1, . . . , Vn partition the vertices of H .

• Given f : ⟨n⟩ → ⟨m⟩, define f∗ : Xn → Xm by

f∗(H;V1, . . . , Vn) = (H ′;V ′
1 , . . . , V

′
m),

where
V ′
j =

⋃
i∈f−1(j)

Vi

and H ′ ⊆ H is the full subgraph on
⋃
V ′
j .

• This gives a functor Φ∗ → Set for which the induced
simplicial set is 2-Segal (Bergner, Osorno, Ozornova,
Rovelli, Scheimbauer)
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¡Gracias! Thanks!
This talk is based on:

• I. Contreras, M. Keller*, R. Mehta, “Frobenius objects in the
category of spans,” Rev. Math. Phys. (2022), arXiv:2106.14743.

• I. Contreras, R. Mehta, W. Stern, “Frobenius and
commutative pseudomonoids in the bicategory of spans,”
arXiv:2311.15342.

• S. Marx, R. Mehta, “Coherent 2D TFTs in the bicategory of
spans,” coming soon.
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