
INTEGRATION OF DG SYMPLECTIC MANIFOLDS VIA

MAPPING SPACES

RAJAN MEHTA

Abstract. Severa and Roytenberg observed that Courant algebroids
are in one-to-one correspondence with differential graded (DG) sym-
plectic manifolds of degree 2. I will describe this correspondence, as
well as an integration procedure (due to Severa, following Sullivan) in-
volving mapping spaces. The result of the integration procedure is a
symplectic 2-groupoid, but it is infinite-dimensional. Nonetheless, in
the case of exact Courant algebroids, the process can be explicitly car-
ried out and described in ordinary terms. This construction gives a nice
conceptual explanation for why (twisted) Dirac structures integrate to
(twisted) presymplectic groupoids. This talk is based on joint work with
Xiang Tang (arXiv:1310.6587).

Outline:

(1) Warmup: Integration of Poisson manifolds from the DG perspective

(2) Courant algebroids

(3) Integrating exact Courant algebroids

(4) Dirac structures

1. Warmup: Poisson manifolds

1.1. Poisson structures in the DG language. Let M be a manifold. A
Poisson structure on M is a Lie bracket on C∞(M) satisfying the Leibniz
rule {f, gh} = {f, g}h+ g{f, h}. Motivation: Hamiltonian mechanics.

Let X•(M) = Γ(∧TM) denote the algebra of multivector fields. The Lie
bracket of vector fields naturally extends to a bracket (called the Schouten
bracket) on X•(M), making X•(M) into a Gerstenhaber algebra.

A Poisson structure on M can be equivalently described by a bivector field
π ∈ X2(M) satisfying the integrability condition [π, π] = 0. So a Poisson
structure on M induces a differential dπ := [π, ·] on X•(M):

C∞(M)
dπ // X(M)

dπ // X2(M) // · · ·
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Conversely, given a differential d on X•(M) (compatible with the Gersten-
haber algebra structure), we can recover a Poisson bracket as a derived
bracket:

{f, g} = [df, g].

From the perspective of graded geometry, we can view X•(M) as the “smooth
functions” on the shifted cotangent bundle T ∗[1]M , the Schouten bracket as
the (degree −1) Poisson bracket corresponding to the canonical (degree 1)
symplectic structure, π as a degree 2 function, and dπ as the Hamiltonian
vector field of π.

Conversely, it can be shown that any symplectic graded manifold with co-
ordinates in degrees 0 and 1 is canonically isomorphic to T ∗[1]M for some
manifold M , giving a correspondence between Poisson manifolds and “de-
gree 1 symplectic dg-manifolds”.

1.2. Integration via mapping spaces. Given a Poisson manifold M , one
can build an associated simplicial space as follows. The k-simplices are dg-
manifold maps T [1]∆k → T ∗[1]M (= dga maps X•(M)→ Ω(∆k)), and the
face and degeneracy maps come from the natural maps between simplices.

Let Xk denote the space of k-simplices. In low degrees:

• X0 = M .

• X1 is a certain subspace of paths in T ∗M .

• X2 consists of certain homotopies between paths in T ∗M .

Letting G = X1/ ∼, we obtain (up to smoothness issues) a Lie groupoid
G⇒M (Cattaneo-Felder, Crainic-Fernandes).

1.3. Symplectic structure of the integration. The symplectic structure
on T ∗M induces a symplectic structure on G as follows. Fix γ ∈ Xk, and
let v1, v2 be tangent vectors in TγXk. Using the symplectic form on T ∗[1]M ,

we can pair v1 and v2 to get a degree 1 function on T [1]∆k, i.e. a 1-form on
∆k.

When k = 1, we can integrate the 1-form to get a number. Thus, X1 is
equipped with a 2-form, and it is both closed and multiplicative. Further-
more, the kernel of the 2-form precisely coincides with the homotopies, so
that it descends to multiplicative symplectic form on the quotient G.

To summarize, we can say that Poisson manifolds integrate to symplectic
groupoids.
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2. Courant algebroids

2.1. Definition. A Courant algebroid is a vector bundle E →M equipped
with a nondegenerate symmetric pairing 〈·, ·〉, a bundle map ρ : E → TM ,
and a bracket J·, ·K such that

(1) JJe1, e2K, e3K = Je1, Je2, e3KK− Je2, Je1, e3KK,

(2) Je1, fe2K = ρ(e1)(f)e2 + fJe1, e2K,

(3) ρ(e1)〈e2, e3〉 = 〈Je1, e2K, e3〉+ 〈e2, Je1, e3K〉,

(4) Je1, e2K + Je2, e1K = D〈e1, e2〉,

where D : C∞(M)→ Γ(E) is given by 〈Df, e〉 = ρ(e)(f).

Examples:

(1) On E = TM ⊕ T ∗M , use the obvious symmetric pairing and the
bracket

JX + ξ, Y + ηK = [X,Y ] + LXη − ιY dξ + ιXιYH,

where H is any closed 3-form on M . “Exact Courant algebroids”

(2) E = g, any Lie algebra equipped with an invariant scalar product.

2.2. dg perspective. (Severa, Roytenberg) Let E → M be a Courant
algebroid. There is an associated dga in this setting as well:

C∞(M)
D // Γ(E)

L // o(E) // · · ·

Here,

• o(E) is the space of first-order skew-symmetric operators on Γ(E),
and

• L is given by Le1e2 = Je1, e2K.

There is also a degree −2 Poisson bracket {, }, where

• {e1, e2} coincides with the inner product for e1, e2 ∈ Γ(E),

• {φ, e} = φ(e) and {φ, f} = σ(φ)(f) for φ ∈ o(E), e ∈ Γ(E), and
f ∈ C∞(M) (here σ is the symbol map),

• {φ1, φ2} coincides with the commutator bracket,

• {f, g} = {f, e} = 0.

As in the Poisson case, the anchor and Courant bracket can be recovered
from the differential as derived brackets:

ρ(e)(f) = {Le, f} = {Df, e}
Je1, e2K = {Le1 , e2}.
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In fact, the Courant algebroid axioms are equivalent to the statement that
this is a dg Poisson algebra.

From the perspective of graded geometry, we view the dg Poisson alge-
bra as the “smooth functions” on a degree 2 symplectic dg-manifold E .
Conversely, any degree 2 symplectic dg-manifold gives a Courant algebroid
via the derived bracket construction, so there is a correspondence (Severa,
Roytenberg).

3. Integrating Courant algebroids

The integration procedure is similar to the Poisson case; the k-simplices are
dg-manifold maps T [1]∆k → E . Because the symplectic structure on E is
degree 2, the resulting symplectic manifold is a quotient of X2, so we get a
symplectic 2-groupoid.

3.1. Exact Courant algebroids. For the standard Courant algebroid E =
TM ⊕ T ∗M (set H = 0 for now), we can make the identification

Xk = Homdg(T [1]∆k, E) = Hom(T [1]∆k, T ∗[1]M),

where the last Hom is just in the category of graded manifolds. In other
words, the k-simplices are bundle maps from T∆k to T ∗M . In low degrees,
we have:

• X0 = M ,

• X1 can be identified with the space of paths in T ∗M .

• The points of the quotient G2 := X2/ ∼ can be described by a
homotopy class of maps α : ∆2 →M and maps ξ0, ξ1, ξ2 lifting each
edge of α to T ∗M . (The ξi are not required to agree at the vertices.)

Theorem 1. The quotient is smooth (Banach), so G2 V X1 ⇒M is a Lie
2-groupoid.

We call it the Liu-Weinstein-Xu 2-groupoid LWX(M), because it answers
(at least for exact Courant algebroids) a question posed in their 1995 pa-
per: “What is the global, groupoid-like object corresponding to a Courant
algebroid?”

Note that, in this case, there is a natural symplectic structure ω1 on X1 which
is not part of the general theory. The symplectic form ω2 on G2 (which is
part of the general theory) is the simplicial coboundary (alternating sum of
pullbacks by the face maps) of ω1.

If H 6= 0, then the integrating 2-groupoid is the same, but the symplectic
form is different. Specifically, ω′1 = ω1 + Ĥ, where Ĥ is the “transgression”
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of H to the path space. But now, ω′1 isn’t closed. Instead, letting δ be the
simplicial coboundary, we have

ω′2 = δω′1,

dω′1 = δH,

dH = 0.

4. Dirac structures

A Dirac structure in a Courant algebroid E is a subbundle D ⊆ E that
is maximally isotropic, and whose sections are closed under the Courant
bracket. Examples: Poisson structures, closed 2-forms, and foliations all
have corresponding Dirac structures in TM ⊕ T ∗M .

The Courant bracket restricts to a Lie bracket on Γ(D), making D into a
Lie algebroid.

Theorem 2. To every Dirac structure in TM⊕T ∗M , there is an associated
“Lagrangian” sub-2-groupoid of LWX(M).

The quotes are because the Lagrangian part is conjectural. We proved that
it’s isotropic, and that it’s Lagrangian at the units.

Corollary 2.1. The 2-form ω1 induces a multiplicative H-closed 2-form on
the Lie groupoid integrating a Dirac structure.

Here, H-closed means that dω = δH. This recovers a result due to Bursztyn-
Crainic-Weinstein-Xu, that (twisted) Dirac structures integrate to (twisted)
presymplectic groupoids.


