INTEGRATION OF DG SYMPLECTIC MANIFOLDS VIA MAPPING SPACES

RAJAN MEHTA

ABSTRACT. Severa and Roytenberg observed that Courant algebroids are in one-to-one correspondence with differential graded (DG) symplectic manifolds of degree 2. I will describe this correspondence, as well as an integration procedure (due to Severa, following Sullivan) involving mapping spaces. The result of the integration procedure is a symplectic 2-groupoid, but it is infinite-dimensional. Nonetheless, in the case of exact Courant algebroids, the process can be explicitly carried out and described in ordinary terms. This construction gives a nice conceptual explanation for why (twisted) Dirac structures integrate to (twisted) presymplectic groupoids. This talk is based on joint work with Xiang Tang (arXiv:1310.6587).

Outline:

- (1) Warmup: Integration of Poisson manifolds from the DG perspective
- (2) Courant algebroids
- (3) Integrating exact Courant algebroids
- (4) Dirac structures

1. WARMUP: POISSON MANIFOLDS

1.1. Poisson structures in the DG language. Let M be a manifold. A *Poisson structure* on M is a Lie bracket on $C^{\infty}(M)$ satisfying the Leibniz rule $\{f, gh\} = \{f, g\}h + g\{f, h\}$. Motivation: Hamiltonian mechanics.

Let $\mathfrak{X}^{\bullet}(M) = \Gamma(\wedge TM)$ denote the algebra of multivector fields. The Lie bracket of vector fields naturally extends to a bracket (called the *Schouten bracket*) on $\mathfrak{X}^{\bullet}(M)$, making $\mathfrak{X}^{\bullet}(M)$ into a Gerstenhaber algebra.

A Poisson structure on M can be equivalently described by a bivector field $\pi \in \mathfrak{X}^2(M)$ satisfying the integrability condition $[\pi, \pi] = 0$. So a Poisson structure on M induces a differential $d_{\pi} := [\pi, \cdot]$ on $\mathfrak{X}^{\bullet}(M)$:

$$C^{\infty}(M) \xrightarrow{d_{\pi}} \mathfrak{X}(M) \xrightarrow{d_{\pi}} \mathfrak{X}^{2}(M) \longrightarrow \cdots$$

RAJAN MEHTA

Conversely, given a differential d on $\mathfrak{X}^{\bullet}(M)$ (compatible with the Gerstenhaber algebra structure), we can recover a Poisson bracket as a derived bracket:

$$\{f,g\} = [df,g]$$

From the perspective of graded geometry, we can view $\mathfrak{X}^{\bullet}(M)$ as the "smooth functions" on the shifted cotangent bundle $T^*[1]M$, the Schouten bracket as the (degree -1) Poisson bracket corresponding to the canonical (degree 1) symplectic structure, π as a degree 2 function, and d_{π} as the Hamiltonian vector field of π .

Conversely, it can be shown that any symplectic graded manifold with coordinates in degrees 0 and 1 is *canonically* isomorphic to $T^*[1]M$ for some manifold M, giving a correspondence between Poisson manifolds and "degree 1 symplectic dg-manifolds".

1.2. Integration via mapping spaces. Given a Poisson manifold M, one can build an associated simplicial space as follows. The k-simplices are dgmanifold maps $T[1]\Delta^k \to T^*[1]M$ (= dga maps $\mathfrak{X}^{\bullet}(M) \to \Omega(\Delta^k)$), and the face and degeneracy maps come from the natural maps between simplices.

Let \mathcal{X}_k denote the space of k-simplices. In low degrees:

- $\mathcal{X}_0 = M$.
- \mathcal{X}_1 is a certain subspace of paths in T^*M .
- \mathcal{X}_2 consists of certain homotopies between paths in T^*M .

Letting $G = \mathcal{X}_1 / \sim$, we obtain (up to smoothness issues) a Lie groupoid $G \Rightarrow M$ (Cattaneo-Felder, Crainic-Fernandes).

1.3. Symplectic structure of the integration. The symplectic structure on T^*M induces a symplectic structure on G as follows. Fix $\gamma \in \mathcal{X}_k$, and let v_1, v_2 be tangent vectors in $T_{\gamma}\mathcal{X}_k$. Using the symplectic form on $T^*[1]M$, we can pair v_1 and v_2 to get a degree 1 function on $T[1]\Delta^k$, i.e. a 1-form on Δ^k .

When k = 1, we can integrate the 1-form to get a number. Thus, \mathcal{X}_1 is equipped with a 2-form, and it is both closed and multiplicative. Furthermore, the kernel of the 2-form precisely coincides with the homotopies, so that it descends to multiplicative symplectic form on the quotient G.

To summarize, we can say that Poisson manifolds integrate to symplectic groupoids.

 $\mathbf{2}$

2. Courant algebroids

2.1. **Definition.** A Courant algebroid is a vector bundle $E \to M$ equipped with a nondegenerate symmetric pairing $\langle \cdot, \cdot \rangle$, a bundle map $\rho : E \to TM$, and a bracket $[\![\cdot, \cdot]\!]$ such that

- (1) $\llbracket \llbracket e_1, e_2 \rrbracket, e_3 \rrbracket = \llbracket e_1, \llbracket e_2, e_3 \rrbracket \rrbracket \llbracket e_2, \llbracket e_1, e_3 \rrbracket \rrbracket$,
- (2) $\llbracket e_1, fe_2 \rrbracket = \rho(e_1)(f)e_2 + f\llbracket e_1, e_2 \rrbracket,$
- (3) $\rho(e_1)\langle e_2, e_3 \rangle = \langle [\![e_1, e_2]\!], e_3 \rangle + \langle e_2, [\![e_1, e_3]\!] \rangle,$
- (4) $[\![e_1, e_2]\!] + [\![e_2, e_1]\!] = \mathcal{D} \langle e_1, e_2 \rangle,$

where $\mathcal{D}: C^{\infty}(M) \to \Gamma(E)$ is given by $\langle \mathcal{D}f, e \rangle = \rho(e)(f)$.

Examples:

(1) On $E = TM \oplus T^*M$, use the obvious symmetric pairing and the bracket

$$\llbracket X + \xi, Y + \eta \rrbracket = [X, Y] + \mathcal{L}_X \eta - \iota_Y d\xi + \iota_X \iota_Y H,$$

where H is any closed 3-form on M. "Exact Courant algebroids"

(2) $E = \mathfrak{g}$, any Lie algebra equipped with an invariant scalar product.

2.2. dg perspective. (Severa, Roytenberg) Let $E \to M$ be a Courant algebroid. There is an associated dga in this setting as well:

$$C^{\infty}(M) \xrightarrow{\mathcal{D}} \Gamma(E) \xrightarrow{\mathcal{L}} \mathfrak{o}(E) \longrightarrow \cdots$$

Here,

- $\mathfrak{o}(E)$ is the space of first-order skew-symmetric operators on $\Gamma(E)$, and
- \mathcal{L} is given by $\mathcal{L}_{e_1}e_2 = \llbracket e_1, e_2 \rrbracket$.

There is also a degree -2 Poisson bracket $\{,\}$, where

- $\{e_1, e_2\}$ coincides with the inner product for $e_1, e_2 \in \Gamma(E)$,
- $\{\phi, e\} = \phi(e)$ and $\{\phi, f\} = \sigma(\phi)(f)$ for $\phi \in \mathfrak{o}(E)$, $e \in \Gamma(E)$, and $f \in C^{\infty}(M)$ (here σ is the symbol map),
- $\{\phi_1, \phi_2\}$ coincides with the commutator bracket,
- $\{f,g\} = \{f,e\} = 0.$

As in the Poisson case, the anchor and Courant bracket can be recovered from the differential as derived brackets:

$$\rho(e)(f) = \{\mathcal{L}_e, f\} = \{\mathcal{D}f, e\} \\ \llbracket e_1, e_2 \rrbracket = \{\mathcal{L}_{e_1}, e_2\}.$$

RAJAN MEHTA

In fact, the Courant algebroid axioms are equivalent to the statement that this is a dg Poisson algebra.

From the perspective of graded geometry, we view the dg Poisson algebra as the "smooth functions" on a degree 2 symplectic dg-manifold \mathcal{E} . Conversely, any degree 2 symplectic dg-manifold gives a Courant algebroid via the derived bracket construction, so there is a correspondence (Severa, Roytenberg).

3. Integrating Courant algebroids

The integration procedure is similar to the Poisson case; the k-simplices are dg-manifold maps $T[1]\Delta^k \to \mathcal{E}$. Because the symplectic structure on \mathcal{E} is degree 2, the resulting symplectic manifold is a quotient of \mathcal{X}_2 , so we get a symplectic 2-groupoid.

3.1. Exact Courant algebroids. For the standard Courant algebroid $E = TM \oplus T^*M$ (set H = 0 for now), we can make the identification

$$\mathcal{X}_k = \operatorname{Hom}_{dq}(T[1]\Delta^k, \mathcal{E}) = \operatorname{Hom}(T[1]\Delta^k, T^*[1]M),$$

where the last Hom is just in the category of graded manifolds. In other words, the k-simplices are bundle maps from $T\Delta^k$ to T^*M . In low degrees, we have:

- $\mathcal{X}_0 = M$,
- \mathcal{X}_1 can be identified with the space of paths in T^*M .
- The points of the quotient $G_2 := \mathcal{X}_2 / \sim$ can be described by a homotopy class of maps $\alpha : \Delta^2 \to M$ and maps ξ_0, ξ_1, ξ_2 lifting each edge of α to T^*M . (The ξ_i are not required to agree at the vertices.)

Theorem 1. The quotient is smooth (Banach), so $G_2 \Rightarrow \mathcal{X}_1 \Rightarrow M$ is a Lie 2-groupoid.

We call it the *Liu-Weinstein-Xu* 2-groupoid LWX(M), because it answers (at least for exact Courant algebroids) a question posed in their 1995 paper: "What is the global, groupoid-like object corresponding to a Courant algebroid?"

Note that, in this case, there is a natural symplectic structure ω_1 on \mathcal{X}_1 which is not part of the general theory. The symplectic form ω_2 on G_2 (which *is* part of the general theory) is the simplicial coboundary (alternating sum of pullbacks by the face maps) of ω_1 .

If $H \neq 0$, then the integrating 2-groupoid is the same, but the symplectic form is different. Specifically, $\omega'_1 = \omega_1 + \hat{H}$, where \hat{H} is the "transgression"

4

5

of H to the path space. But now, ω_1' isn't closed. Instead, letting δ be the simplicial coboundary, we have

$$\omega_2' = \delta \omega_1',$$

$$d\omega_1' = \delta H,$$

$$dH = 0.$$

4. DIRAC STRUCTURES

A Dirac structure in a Courant algebroid E is a subbundle $D \subseteq E$ that is maximally isotropic, and whose sections are closed under the Courant bracket. Examples: Poisson structures, closed 2-forms, and foliations all have corresponding Dirac structures in $TM \oplus T^*M$.

The Courant bracket restricts to a Lie bracket on $\Gamma(D)$, making D into a Lie algebroid.

Theorem 2. To every Dirac structure in $TM \oplus T^*M$, there is an associated "Lagrangian" sub-2-groupoid of LWX(M).

The quotes are because the Lagrangian part is conjectural. We proved that it's isotropic, and that it's Lagrangian at the units.

Corollary 2.1. The 2-form ω_1 induces a multiplicative H-closed 2-form on the Lie groupoid integrating a Dirac structure.

Here, *H*-closed means that $d\omega = \delta H$. This recovers a result due to Bursztyn-Crainic-Weinstein-Xu, that (twisted) Dirac structures integrate to (twisted) presymplectic groupoids.