Chemistry 222, Section 1, Spring 2013

Exam One Name: ________________________________

INSTRUCTIONS: This exam must be started in the library before 8:00 PM on Sunday, March 3. This exam is governed by the Smith College Honor Code. This is an closed-book and closed-notes exam. You may use a calculator, but NOT any other electronic device–computer, smart-phone, ipad, etc.–during this exam. You may NOT talk to other people during this exam. You should keep your exam to yourself and NOT allow others to oversee your answers, and you, obviously, should NOT look at the answers of any fellow student who happens to be taking this exam at the same time. You should finish this exam in not more than two hours. The exam should be turned back into the librarian when you are finished.

Time checked out: ______________ Time checked in: ______________

1. (16 points)
a. (2 pts) Draw the line structure (put in lone pairs) for 3-methyl-butanoic and indicate the atom on that molecule that an electrophile would attack.

b. (2 pts) What “kind” of compound could C₆H₁₂O be? HINT: There are several possible answers and I only want one, but some of those answers require more than one “kind” at the same time, for instance, “cyclic ketone”.

c. (2 pts) Draw a line structure (put in lone pairs) for cyclopentanone and indicate the atom on that molecule that a nucleophile would attack.

d. (2 pts) Fill in the blanks in this sentence: “In a Lewis structure containing nitrogen, the number of bonds to the N is ____ unless the N atom is charged positively, in which case the number of bonds is ____.”
e. (4 pts) Draw the Newman projection of the most stable form of 1-bromopropane looking down the C₁-C₂ bond.

f. (4 pts) Draw the Newman projection of gauche-1,2-dibromoethane.

2. (14 points)
a. (2 pts) A nucleophile attacks a carbonyl group in a molecule. Which atom will the nucleophile attack? __________. From a molecular orbital point of view, is the nucleophile “looking” for an empty orbital or a filled orbital on the molecule? __________

b. (4 pts) In just a few words, why is the nucleophile looking for the kind of orbital you answered in part a?

c. (4 pts) Sketch the orbital on the carbonyl containing molecule that the nucleophile will bind with. HINT: Pay attention to relative signs of the wave function and to relative sizes of the components of the molecular orbital.

d. (4 pts) Where would a nucleophile attack this molecule?

\[\triangle \]
3. (13 points) Use epwa to show the reaction of butyl lithium with propanone followed by treatment with aqueous acid.

4. (7 points) A compound with an IR showing a sharp peak at 1650 cm\(^{-1}\) and a small peak at 3090 cm\(^{-1}\) is treated with ozone, O\(_3\), followed by Zn. The product shows an IR with a slightly broad, strong peak at 1730 cm\(^{-1}\). Describe what happened; an example would generate the best answer. HINT: NO epwa is expected.

5. (30 points) How would you synthesize 3-methyl-butaneone from compounds containing three or fewer carbon atoms? HINT: If you cannot figure this out, you may obtain partial credit by suggesting a synthesis of 3-methyl-2-butanol from compounds containing three or fewer carbon atoms.
6. (30 points) A compound of formula C₄H₈Br₂ has a \(^1\)H nmr with peaks at 1.35 δ (t, 3), 2.62 δ (q, 2), and 2.40 δ (s, 3). What is the compound? HINT: For partial credit you must give reasoning. That doesn’t mean you have to write paragraphs: “A triplet, so this hydrogen has 7 neighbors” etc.
7. (40 points) A compound of has a mass spectrum with a molecular ion peak of 180 and an (M+2)$^+$ peak at 182. These are of equal intensity. It has an IR peak at 1740 cm^{-1}. The 13C nmr spectrum has peaks at 13 δ, 22 δ, 40 δ, 62 δ, and 171 δ. The 1H nmr has peaks at 1.17 δ (t, J=7.0, 10), 1.63 δ (d, J=7.2, 10), 3.91 δ (q, J=7.0, 7), and 3.79 δ (q, J=7.2, 3.5). What is the compound? HINT: For partial credit you must give reasoning; and since you have lots of data, there is a lot of reasoning to be given.