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Abstract

Suppose G is an s-choosable graph with n vertices, and every vertex of G is assigned
a list of t colors. We conjecture that at least t

s · n of the vertices of G can be
colored from these lists. We provide lower bounds and consider related questions.
For instance we show that if G is χ-colorable (rather than being s-choosable), then

more than
(

1−
(

χ−1
χ

)t
)
· n of the vertices of G can be colored from the lists and

that this is asymptotically best possible. We include a number of open questions.
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1 Introduction

Suppose G is a graph with n vertices, chromatic number χ, and independence
number α. Whenever the vertices of G are properly colored with r colors, at
least one color class must contain at least n

r
vertices. This immediately implies

that α ≥ n
χ
. This inequality shows up in the theory of perfect graphs (7) as well

as in Erdős’ groundbreaking contribution that there are graphs of arbitrarily
large girth and chromatic number (5).

A natural extension of the independence number is to define αt = αt(G) to be
the maximum number of vertices in G that can be t-colored (1). Considering
the largest t color classes in an r-coloring of G immediately implies that αt ≥
t·n
χ

.

The goal of this paper is frankly mischievous - to introduce a list coloring
analogue of the parameter αt and to incite further work.
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Let R = {1, 2, . . . , r} be a set of colors. The function � : V (G) → 2R assigns
to each vertex x a list of possible colors �(x). A proper coloring c : V (G)→ R
is a list coloring if c(x) ∈ �(x) for all x ∈ V (G). G is said to be s-choosable
if there is a list coloring for every assignment function � with |�(x)| = s for
all x ∈ V (G). Sometimes we write �s to emphasize the constant list sizes.
The list chromatic number of the graph G, denoted by χ

�
(G) is defined to

be the minimum s such that G is s-choosable. Note that χ(G) ≤ χ
�
(G). For

t ≤ χ
�
(G) let �t be an assignment of t colors to every vertex of G. We use

λt to denote the list coloring analogue of αt. Formally λt = min�t{maximum
number of vertices of G that can be colored from the lists �t}.

Conjecture 1 λt ≥ t·n
χ

�

For example the graph G shown below has 2 = χ(G) < χ
�
(G) = 3. It is

impossible to color G from the lists shown; however, five of the vertices of G
can be colored from these lists (or any others of size two). Thus λ2(G) = 5.

❢ ❢ ❢

❢ ❢ ❢

{1, 3}

{2, 3}

{1, 2}

{1, 2}

{2, 3}

{1, 3}

If t = 1 or t = χ
�

the above conjecture is satisfied. Consequently the simplest
open case is when lists of size 2 are assigned to the vertices of a 3-choosable
graph. Here it remains unknown whether in all cases λ2 ≥ 2n

3
.

2 What we do know

We have two techniques for establishing lower bounds for λt(G). The first
relies on χ(G) while the second relies on χ

�
(G).

Theorem 2 If G is a graph with n vertices and chromatic number χ, then

λt

n
> 1−

(
χ− 1

χ

)t

.
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PROOF. Suppose G is χ-colored and C1, C2, . . . , Cχ are the color classes.
Furthermore suppose each vertex x has a list �(x) of t colors with r colors
used on the union of the lists. Assume for the moment that r is an integral
multiple of χ. We imagine using r

χ
of these colors to list color some of the

vertices in each color class. We need to show that some partition of the colors
leaves only a few of the vertices uncolored.

Our accounting will be accomplished by a bipartite graph. The graph N(G)
will contain a red vertex, x, for each vertex in G. N(G) will also have a
blue vertex, y, for every partition of R, the set of colors, into χ parts, each
containing exactly r

χ
colors. Suppose the red vertex x is in color class Cj. Then

x will be joined to a blue vertex y precisely when the j-th part, of the color
partition represented by y has no color in common with �(x). Thus if the colors
available are partitioned according to y, then x will remain uncolored.

Since |�(x)| = t there are
(

r−t
r
χ

)
sets of colors available for the j-th part of the

partition associated with y. Therefore in N(G)

deg(x) =

(
r − t

r
χ

)
·
(
r − r

χ
r
χ

)
·
(
r − 2r

χ
r
χ

)
· · ·

(
r − (χ−1)r

χ
r
χ

)
.

Counting the number of edges in N(G) from the point of view of the red
vertices we have |E(N(G))| = deg(x) · n. Looking at the other side of the
bipartition we see that in N(G) some blue vertex, say y, has

deg(y) ≤ |E(N(G))|(
r
r
χ

)
·
(

r− r
χ

r
χ

)
·
(

r− 2r
χ

r
χ

)
· · ·

(
r− (χ−1)r

χ
r
χ

) .

Canceling common factors from the numerator and denominator we see that

deg(y) ≤ n ·

(
r−t

r
χ

)
(

r
r
χ

) . (1)

This simplifies to

deg(y) ≤ n ·
(r − r

χ
) · (r − r

χ
− 1) · · · (r − r

χ
− t + 1)

r · (r − 1) · · · (r − t + 1)
< n ·

(
χ− 1

χ

)t

.

Since degN(G)(y) counts the number of vertices that cannot be colored from
the lists given the partition associated with y, the theorem follows. If r is not
an integral multiple of χ the asymptotics are the same.
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Corollary 3 λχ

n
> 1− 1

e

Corollary 4 There exists a graph G with chromatic number χ such that
λt(G) is asymptotically close to n · (1− (χ−1

χ
)t).

PROOF. Let G be a complete χ-partite graph with
(

r
t

)
vertices in each part.

Each part contains exactly one vertex with each possible list of t colors.

Consider the proportion of uncolored vertices in the construction of the pre-
ceding corollary. This is the case of equality in Inequality 1. If r = p · q and

t = χ = p, then this proportion is
(p·q−p

q )
(p·q

q )
. It is straightforward to check that

this equals
(p·q−q

p )
(p·q

p )
. This is the proportion of uncolored vertices when r = p · q

and t = χ = q. The bijection between the uncolored vertices in the graphs
corresponding to these two different cases remains elusive.

Of course the list chromatic number of the graph constructed in the above
corollary would be enormous. Erdős, Rubin and Taylor showed that bipartite
graphs can have arbitrarily large list chromatic numbers (6). However, for
bipartite graphs λt

n
is close to 1.

Corollary 5 If G is bipartite, then λt > 2t−1
2t · n.

Corollary 6 If χ(G) < χ
�
(G), then λ2(G) ≥ 2n

χ
�
.

PROOF. We have that λ2(G) ≥ n · (1− (χ−1
χ

)2) = n · (2χ−1
χ2 ). Since (2χ−1

χ2 ) >
2

χ+1
≥ 2

χ
�
, the result follows.

Corollary 7 If χ
�
= 3, then λ2 > 5n

9
.

Our second proof technique will enable us to improve the lower bound in the
preceding corollary.

Theorem 8 If χ
�
(G) = 3, then λ2(G) >

√
5−1
2

n.

PROOF. We are given a graph G with lists of two colors assigned to every
vertex. We augment every list by adding a new color, say π. There is a 3-
list coloring from the augmented lists. In this list coloring some of the vertices
may be assigned the color π. These must form an independent set in the graph
which we will call Iπ. Let βn = |Iπ| and H = G− Iπ. In the 3-list coloring of
G the vertices of H have been colored with the original r colors.
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The idea of the proof is to use k of the original r colors on vertices in H and
r − k of the original colors on vertices in Iπ. By an argument similar to that
presented in the proof of Theorem 1, it can be checked for any 1 ≤ k ≤ r that
some choice of k colors from R assigned to H results in

λ2 ≥
k

r
· (n− βn) + βn ·


1−

(
k
2

)
(

r
2

)

 .

From here, we resort to some algebra and calculus to achieve our result. Note
that if β ≤ 1

3
then by setting k = r we get λ2 ≥ (1 − β)n ≥ 2n

3
. On the

other hand, if β ≥ 2
3

setting k = 0 gives λ2 ≥ βn ≥ 2n
3

. Thus we examine
only the case where 1

3
≤ β ≤ 2

3
. The calculations are straightforward and

easily obtained with the help of a symbolic computer language. Simplifying
and dividing by n the right hand side becomes

Λ(k, β, r) :=
k

r
· (1− β) + β ·

(
1− k(k − 1)

r(r − 1)

)
.

We proceed by fixing β and maximizing Λ(k, β, r) with respect to k. Recall
k is the number of colors we choose to retain to color the vertices of H. As
Λ(k, β, r) is quadratic in k the maximum occurs where the dΛ

dk
= 0. While the

exact maximum occurs at k = (r−βr+2β−1)
2β

, we will use the close, but simpler

value k̂ = (1−β)
2β
· r. Thus

Λ(k̂, β, r) =
(1− β)2

2β
+ β ·

(
1− (1− β)

4β2
·
(

r(1− β)

(r − 1)
− 2β

(r − 1)

))
.

Noting that
(

r(1−β)
(r−1)

− 2β
(r−1)

)
≤ (1− β) when β ≥ 1

3
we have

Λ(k̂, β, r) ≥ (1− β)2

2β
+ β ·

(
1− (1− β)

4β2
· (1− β)

)
=

(1− β)2

4β
+ β.

Find the minimum value of this with respect to β. This will occur at β = 1/
√

5,
and so

λ2

n
≥ Λ(k̂, β, r) ≥

√
5− 1

2
.

3 Open Questions

One might instead consider the size of the largest induced subgraph that is t-
list colorable. The cube Q3 shows that this parameter is not identical with λt.
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While Kn,n shows that this parameter does not yield an analogue to Theorem
1. It remains open whether there is an analogue to Theorem 2.

The rest of our open problems follow directly from Conjecture 1. Here we
restrict ourselves to planar graphs where the results ought to be stronger. If
G is planar we know that χ(G) ≤ 4 and χ

�
(G) ≤ 5 (9). That planar graphs

are acyclically 5-colorable (3) implies that λ2 ≥ 2n
5

. Our Theorem 1 improves
the lower bound to 7n

16
. We believe the truth to be:

Conjecture 9 If G is planar, then λ2 ≥ n
2
.

This would be implied by the induced forest conjecture (2). If G is bipartite
we believe even more.

Conjecture 10 If G is planar and bipartite, then λ2 ≥ 5n
6
.

For planar graphs perhaps λ4 is most provocative. Our Theorem 1 yields
λ4(G) ≥ 175n

256
. The techniques used in the proof of Theorem 2 might improve

this to about 7n
10

. Mirzakhani has the smallest example of a planar graph that
is not 4-choosable (8). For this graph n = 63 and λ4 = 62. This is quite a gap!

4 Postscript

Responding to an early draft of this paper, Chappell has established a Theo-
rem 2 type lower bound for λt for all t and all s-choosable graphs (4).
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