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Abstract

The aim of this paper is to give several characterizations for the
following two classes of graphs: (i) graphs for which adding any l
edges produces a graph which is decomposible into k spanning trees
and (ii) graphs for which adding some l edges produces a graph which
is decomposible into k spanning trees.

Introduction and Theorems

The concept of decomposing a graph into the minimum number of trees or
forests dates back to Nash-Williams and Tutte [6, 7, 11]. Since then, many
authors have examined various tree decompositions of classes of graphs (for
example [2, 8]). The aim of this paper is to give several characterizations for
the following two classes of graphs: (i) graphs for which adding any l edges
produces a graph which is decomposible into k spanning trees and (ii) graphs
for which adding some l edges produces a graph which is decomposible into
k spanning trees. Graphs in this paper will include those with multiple edges
but no loops. Let VG and EG be respectively, the number of vertices and
edges in the graph G.

In [1], Albertson and Haas define a graph G to be bounded by the function
f(n) if EG = f(VG) and each subgraph H ⊂ G satisfies EH ≤ f(VH). That
paper begins the study of which functions bound graphs, and which bounding
functions correspond to properties of graphs. In [3], Catlin et al. characterize
uniformly dense graphs by a bounding function. This paper characterizes
graphs bounded by functions of the form k(VG−1)− l for integers k ≥ l ≥ 0.
There are many cases in which the condition that G is bounded by a function
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of the form k(VG−1)− l is necessary, sufficient or equivalent to the statement
that G represents some sort of rigid structure (see for example [4, 10]).

In [4], Crapo gives a new condition equivalent to a graph being realizable
as a generically rigid bar and joint framework in the plane. He defines a qTk
decomposition of a graph to be the decomposition of the edges of G into q
edge-disjoint trees such that each vertex is contained in exactly k trees. He
proves that G is minimally rigid if and only if it has a 3T2 decomposition
such that for every subgraph of G the trees in the subgraph have distinct
spans, which he calls a proper 3T2. In [9], Tay uses this result to give a proof
of Laman’s theorem and mentions that similar results may be obtainable for
other types of rigidity.

In 1961 Tutte and Nash-Williams independently gave a condition for when
a graph could be decomposed into k forests. The arboricity of a graph G is
defined to be the least number of disjoint forests whose union covers the edge
set of G. Nash-Williams [7] showed this number to be

k = max

⌈
EH

(VH − 1)

⌉

where the maximum is taken over all subgraphs H on at least two vertices.
We reword this condition and give two additional equivilant conditions.

Theorem 1 The following are equivalent for a graph G, and integers k > 0
and l > 0.

1. EG = k(VG − 1)− l, and for subgraphs H ⊂ G with at least 2 vertices
EH ≤ k(VH − 1).

2. There exist some l edges which when added to G result in a graph that
can be decomposed into k spanning trees.

3. G admits a (k + l)Tk decomposition.

We next give a constructive method to build graphs of this type. The
graph consisting of 2 vertices and (k − l) parallel edges is the only graph on
2 vertices that meets conditions 1-3. Call this graph Kk−l

2 . If Ĝ satisfies 1-3
and G is created by adding a vertex to Ĝ then G must also have k additional
edges. The proper method of adding a vertex and the required edges follows.

Operation O: Remove any 0 ≤ i < k edges from Ĝ. Add a new vertex v
which will have degree k + i. Add 2i new edges, joining v to each end of each
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deleted edges. Note that if two or more removed edges are incident to vertex
u, then the previous step will create multiple copies of the edge uv. Add
edges from v to some additional k − i vertices of Ĝ such that no edge has
multiplicity greater than k. For convenience we label the following property
for a graph G.

4. G can be constructed by repeated application of the operation O, starting
with Kk−l

2 .

Theorem 2 A graph satifying 4. will satisfy properties 1-3.
Further, if G is a graph satisfying 1-3 and l ≤ 2, k > l then G also

satisfies 4.

For l > 2 there are graphs which satisfy 1-3 and cannot be constructed by
operation O. An example with k = 4 and l = 3 is the graph on 4 vertices, say
{a, b, c, d}, with 3 copies each of(a, b),(a, c) and (a, d). A graph constructed
by repeated application of O will necessarily contain a vertex of degree at
least k and not more than 2k. If G satisfies 1-3 and for all vertices v, either
deg(v) < k or deg(v) ≥ 2k then it can be shown that VG ≤ kl − 2k (see
lemma 6). Thus if l ≤ 2 there will be a vertex v with k ≤ deg(v) ≤ 2k.

The next theorems characterizes graphs for which adding any l edges
results in the decomposition into k spanning trees. These theorems are re-
stricted to the case that 0 ≤ l < k to allow the case of adding l edges by
simply increasing the multiplicity of an existing edge by l.

Given a tree τ in G and a subgraph H of G, define a subtree of τ in H to
be a connected component of τ ∩H. Thus we speak of a set of subtrees of τ
in H. Let T be a qTk decomposition consisting of trees τ1, . . . , τq. The set
of subtrees of T in subgraph H is the union over all i of the sets of subtrees
of τi in H.

Theorem 3 The following are equivalent for a graph G, and integers 0 ≤
l < k.

1′. EG = k(VG − 1)− l and for any subgraph H of G with VH ≥ 2, EH ≤
k(VH − 1)− l.

2′. Adding any l edges to G (including multiple edges) results in a graph
that can be decomposed into k spanning trees.

3′. G can be decomposed into a (k + l)Tk, T , such that for every subgraph
H the set of subtrees of T in H has cardinality at least k + l.
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A version of the construction rule of theorem 2 also applies to this case.
Again, the smallest example of a graph satisfying 1′-3′ is Kk−l

2 . However, for
k > 2l, there are no graphs satisfying 1′-3′ on 3 vertices. Thus the basis for
the construction would need to be the set of graphs which satisfy 1′-3′ on
the minimum number of vertices n > 2, for which there are members of this
class of graphs. The correct operation is very similar to the previous case.
Operation O′: Remove any 0 ≤ i < k edges from Ĝ. Add a new vertex
v which will have degree k + i. Add 2i new edges, joining v to each end of
each deleted edges. Note that if two or more removed edges are incident to
the same vertex u, then the previous step will create multiple copies of the
edge uv. Add edges from v to some additional k − i vertices of Ĝ such that
no edge has multiplicity greater than (k − l).

Theorem 4 If k ≤ 2l then the following is equivilant to statements 1′-3′.

4′. G can be constructed by repeated application of the operation O′ to
Kk−l

2 .

Proofs

To prove these theorems the following lemma will be used repeatedly.

Lemma 5 Let H be any subgraph of G. If T is a qTk decomposition of
G, then the number of subtrees in the set of subtrees of T in H is precisely
kVH − EH .

This lemma implies that the number of subtrees of any qTk in a subgraph
H will be the same. Consequently, if one qTk satisfies the subgraph condition
of 3′ then every qTk will.

Proof of Lemma 5: Let RH be the set of subtrees of T in H. Note that
some of the subtrees in RH may come from the same tree of T . We count
the vertex tree incidences in H in two ways. Let ti be the number of edges
in the ith subtree of RH . Since every vertex is in k trees of a qTk and thus
k subtrees of RH we have kVH =

∑
(ti + 1) = EH + |RH |.
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Proof of Theorem 1: That 1 and 2 are equivilant follows immediately
from the arboricity results of Nash-Williams [7].

2 ⇒ 3. Suppose after adding l edges to G we get the k spanning trees
T1, . . . Tk. Removal of the l edges will break up some of the trees into spanning
forests. Since removing i edges from a tree leaves i + 1 trees, after removing
the l edges we will have k + l trees, some of which may be single vertex trees.
Since the trees come from k spanning forests, each vertex will be incident to
exactly k of the k + l trees.

3 ⇒ 1. By lemma 5, EG = kVG − |RG| and by 3 we have |RG| = k + l.
Thus EG = k(VG − 1) − l. If H is a subgraph on at least 2 vertices, then
since every vertex is incident to exactly k trees, |RH | ≥ k. Using lemma 5
once more gives EH = kVH − |RH | ≤ k(VH − 1) as desired.

Proof of Theorem 3 We show 1′ implies 2′ implies 3′ implies 1′.
1′ ⇒ 2′. Add l edges to G to create G′. EG′ = k(VG′ − 1) and for any

subgraph H ′ of G′, EH′ ≤ EH + l ≤ k(VH − 1)− l + l = k(VH′ − 1). Thus by
[7] G′ can be decomposed into k disjoint spanning trees (see also [1]).

2′ ⇒ 3′. By theorem 1, it remains to show the proper conditions on the
subgraph hold. Consider any subgraph H. If we add all l edges within that
subgraph then the resulting (k + l)Tk will have at least (k + l) subtrees in
that subgraph. Thus by lemma 5, every (k + l)Tk for G will have at least
k + l trees in that (and in every) subgraph.

3′ ⇒ 1′. Again, by theorem 1 it remains only to show that the correct
conditions on the subgraphs hold. If H is a subgraph on at least 2 vertices,
then by 3′ |RH | ≥ k+l. Using lemma 5 gives EH = kVH−|RH | ≤ k(VH−1)−l
as desired.

Construction Theorems

4 ⇒ 1 and 4′ ⇒ 1′ . We first show by induction that a graph on n
vertices that was constructed by rule O (resp.O′) will satisfy the conditions
of 1 (resp. 1′). The graph on 2 vertices with k − l edges does trivially. Now
suppose G has n vertices and was constructed by rule O (resp.O′). Let v be
the last vertex added, and assume that Ĝ, the graph to which v is added,
satisfies 1 (1′). Clearly every subgraph of G that does not contain v still
satisfies the subgraph condition of 1 (1′).

Suppose H is a subgraph of G that contains v and at least 2 other vertices.
Define Ĥ to be the induced subgraph of Ĝ on the set of vertices of H − v.
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Let q ≤ k be the number of edges removed from Ĝ in the construction of G
with both endpoints in Ĥ, and r be the number of edges removed from Ĝ in
the construction of G with exactly one endpoint in Ĥ and s be the number
of edges removed from Ĝ in the construction of G with no endpoint in Ĥ .
Now, the number of edges EH ≤ EĤ − q + 2q + r + (k− q− r− s) ≤ EĤ + k.
Which for 1 gives EH ≤ k(VĤ − 1) + k = k(VH − 1) and for 1′ gives EH ≤
k(VĤ − 1)− l + k = k(VH − 1)− l.

Finally, if H is a subgraph of G on exactly 2 vertices, v and one other,
then by constructon O, EH ≤ k and by O′, EH ≤ k − l.

Lemma 6 If G satisfies 1-3 and all its vertices are of degree either less than
k or greater than 2k then l > 2.

Proof of Lemma 6 Suppose there are V1 vertices of degree less than
or equal k − 1 (vertices of low degree) and V2 vertices of degree at least 2k
(vertices of high degree). Let E1 denote the number of edges between vertices
of low degree E2 denote the number of edges between vertices of high degree
and E3 denote the number of edges between a vertex of high degree and a
vertex of low degree. The total number of edges is thus

E1 + E2 + E3 = k(V1 + V2 − 1)− l. (1)

That the low degree vertices all have degree ≤ k − 1 gives

2E1 + E3 ≤ (k − 1)V1. (2)

That no subgraph has more than k(VH − 1) edges gives

E2 ≤ k(V2 − 1). (3)

Writing the equations (1) and (2) in terms of E3 and then substituting in (3)
we get

−V1 − E1 ≥ k(V2 − 1)− l − E2 ≥ k(V2 − 1)− l − k(V2 − 1).

Which gives us that l ≥ V1 + E1. Similarly, that the high degree vertices all
have degree > 2k gives

2E2 + E3 ≥ (2k + 1)V2.

This can be combined in a similar manner with equations (1) and then (3)
to get

V2 ≤ kV1 − 2k − l − E1.

Thus the total number of vertices V1 + V2 ≤ kl − 2k. Hence, such a graph
exists only for l > 2.
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Proof of Theorem 2 1, 3⇒ 4. We show by induction that a graph on n
vertices with properties 1 and 3 can be constructed by rule O.

The smallest graph with a (k + l)Tk has two vertices and k − l parallel
edges. This graph can be decomposed into k − l single edge trees and 2l
single vertex trees, l of each of the two vertices. If G is a graph on n > 2
vertices with property 1, then the average degree is = 2k(n−1)−l

n
< 2k. By

lemma 6, there exists a vertex v with k ≤ deg(v) < 2k.
We first show there is a (k + l)Tk of G such that the vertex v does not

occur as a single vertex tree. We have assumed only that there is some
(k + l)Tk say T . Suppose that v occurs q times as single vertex tree T .
Since deg(v) ≥ k > k − q this forces at least one tree say Ti ∈ T to have
more than one edge incident to v. Create a new family of trees for G, say
T ′ by splitting Ti into two trees at v and deleting one occurrence of v as a
single vertex tree. T ′ has (k + l) trees and every vertex that was contained
in Ti before, will be contained in exactly one of the two trees created from
Ti. This process can be repeated to obtain a (k + l)Tk for G in which v does
not occur as a single vertex tree.

We now use this (k + l)TK to construct a graph Ĝ on n − 1 vertices
with properties 1 and 3 such that the addition of a new vertex v by the
operation O′ gives the graph G. Say deg(v) = k + i, 0 ≤ i < k and the
trees occurring at v are {T1, . . . , Tk}. We delete v and preserve the span of
the trees {T1, . . . , Tk} as follows. For each tree Tj consider the set of vertices
{vj1, . . . , vjij} adjacent to v in Tj. Add ij − 1 edges that form a spanning
tree of {vj1, . . . , vjij}. The span of each of the k + l trees is thus preserved.
I.e., each vertex remains in exactly k of the k + l trees. Note that in general
there will be many choices as to how to do this. Any choice will give an
appropriate Ĝ.

Proof that 1′ implies 4′ If G is a graph on n > 2 vertices with property
1′, then the average degree is = 2k(n−1)−l

n
< 2k. Further, if a vertex, v, of G

had degree < k then G− v, the subgraph obtained from G after deletion of
v, has n− 1 vertices and EG−v ≥ k(n− 2)− l which contradicts property 1′.
Thus there exists a vertex v such that k ≤ deg(v) < 2k.

We now show there exists a graph Ĝ on n − 1 vertices that satisfies 1′

and which becomes G when the vertex v is added by the operation. Assume
that deg(v) = k + r and that the neighbors of v are u1, . . . ur+k. We need
to show that r edges of the form uiuj can be added to G − v such that
each subgraph H still satisfies EH ≤ k(VH − 1)− l. Call the edges uiuj the

7



potential edges. The potential edge, uiuj, cannot be added if and only if
there exists a subgraph H ⊂ G − v containing the vertices ui and uj such
that EH = k(VH − 1)− l. We refer to this as the subgraph condition.

Lemma 7 Let G be a graph satisfying 1′. If H1, H2 are subgraphs of G and
EHi

= k(VHi
− 1)− l then EH1∩H2 = k(VH1∩H2 − 1)− l.

Proof of Lemma 7 Calculate the number of edges in the union:

EH1∪H2 = k(VH1∪H2 + VH1∩H2 − 2)− 2l − EH1∩H2 .

Since H1 ∪H2 is a subgraph of G,

EH1∪H2 ≤ k(VH1∪H2 − 1)− l.

Combining these gives EH1∩H2 ≥ k(VH1∩H2 − 1) − l and since H1 ∩H2 is a
subgraph of G equality must hold.

Proof that 1′ implies 4′ continued. There are c =
(

r+k
2

)
potential edges

and we must add r of these. Suppose only 0 ≤ s < r edges can be added
without violating the subgraph condition. Add these s edges to G to obtain
G′. By lemma 7 if an edge cannot be added then there is a unique smallest
subgraph which prevents it and any subgraph which prevents it will contain
that smallest subgraph. Let Hi ⊂ G′ − v be the smallest subgraph which
prevents the edge i (i = 1, . . . c) from being added, perhaps because it was
already added. Consider the union of all of these subgraphs.

E∪Hi
=

∑
EHi
−∑

(EHi
∩ EHj

) + · · ·+ (−1)c (
⋂c

i=1 EHi
)

=
∑

(k(VHi
− 1)− l)−∑ (

k(VHi∩Hj
− 1)− l

)
+ · · ·+ (−1)c

(
k

(
V∩c

i=1Hi
− 1

)
− l

)
= k

(
V∪c

i=1Hi

)
+ (k + l)

∑c
j=1(−1)j

(
c
j

)
= k

(
V∪c

i=1Hi

)
+ (k + l)(−1)

However, ∪c
i=1Hi∪{v} is a subgraph of G with s additional edges added to it.

Thus E∪Hi
− s + (k + r) ≤ k

(
V∪c

i=1Hi
+ 1− 1

)
− l. Which is a contradiction,

unless r = s. Thus r edges can be added. Call this set of edges F .
The proof is completed by observing that G−{v}∪F is a graph on n−1

vertices which satisfies 1′ and which becomes G when the vertex v is added
and edges F removed following the operation O′.
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