TWO-DAY DYADIC DATA ANALYSIS WORKSHOP

Randi L. Garcia Smith College UCSF January 9th and 10th

🔽 @RandiLGarcia 🚺 RandiLGarcia

DAY 1

- Definitions and Nonindependence
- Data Structures
- The Actor-Partner Interdependence Model (APIM)
- Generalized Mixed Modeling (i.e., for discrete outcomes)

Definitions: Distinguishability

- Can all dyad members be distinguished from one another based on a meaningful factor?
- Distinguishable dyads
 - Gender in heterosexual couples
 - Patient and caregiver
 - Race in mixed race dyads

All or Nothing

- If most dyad members can be distinguished by a variable (e.g., gender), but a few cannot, then can we say that the dyad members are distinguishable?
- No, we cannot!

Indistinguishability

• There is no systematic or meaningful way to order the two scores

- Examples of indistinguishable dyads
 - Same-sex couples
 - Twins
 - Same-gender friends
 - Mix of same-sex and heterosexual couples
 - When all dyads are hetero except for even one couple!

It can be complicated...

- Distinguishability is a mix of theoretical and empirical considerations.
- For dyads to be considered distinguishable:
 - 1. It should be theoretically important to make such a distinction between members.
 - 2. Also it should be shown that empirically there are differences.
- Sometimes there can be two variables that can be used to distinguish dyad members: Spouse vs. patient; husband vs. wife.

Types of Variables

- Between Dyads
 - Variable varies from dyad to dyad, BUT within each dyad all individuals have the same score
 - Example: Length of relationship
- Called a level 2, or macro variable in multilevel modeling

Within Dyads

- Variable varies from person to person within a dyad, BUT there is <u>no</u> variation on the dyad average from dyad to dyad.
 - Percent time talking in a dyad
 - Reward allocation if each dyad is assigned the same total amount
- X1 + X2 equals the same value for each dyad
- Note: If in the data, there is a dichotomous within-dyads variable, then dyad members *can* be distinguished on that variable. But that doesn't mean it would be theoretically meaningful to do so.

Mixed Variable

- Variable varies both between dyads and within dyads.
- In a given dyad, the two members may differ in their scores, and there is variation across dyads in the average score.
 - Age in married couples
 - Lots-o personality variables
- Most outcome variables are mixed variables.

It can be complicated...

Can you think of a variable that can be **between-dyads**, **within-dyads**, or **mixed** across different samples?

TYPES OF DYADIC DESIGNS

Standard Dyadic Design

- Each person has one and only one partner.
- About 75% of research with standard dyadic design
- Examples: Dating couples, married couples, friends

The One-with-Many Design

- All partners have the same role with the focal person
- For example, students with teachers or workers with managers

Round-Robin Design

- Social Relations Model (SRM)
- Examples: Team or family members rating one another

DATA STRUCTURES

Illustration of Data Structures: Individual

Dyad Person		Х	Y	Ζ
1	1	5	9	3
1	2	2	8	3
2	1	6	3	7
2	2	4	6	7
3	1	3	6	5
3	2	9	7	5

Illustration of Data Structures: Individual

Illustration of Data Structures: Dyad

Dyad	X_1	Y_1	Z_1	X_2	Y_2	Z_2^a
1	5	9	3	2	8	3
2	6	3	7	4	6	7
3	3	6	5	9	7	5

Illustration of Data Structures: Dyad

AAAAABBBBB AAAAABBBBB AAAAABBBBB AAAAABBBBB

Illustration of Data Structures: Pairwise

Dyad	Person	X_1	Y_1	Z_1	X_2	Y_2	Z_2^a
1	1	5	9	3	2	8	3
1	2	2	8	3	5	9	3
2	1	6	3	7	4	6	7
2	2	4	6	7	6	3	7
3	1	3	6	5	9	7	5
3	2	9	7	5	3	6	5

^aThis variable is redundant with Z_1 and need not be included.

Illustration of Data Structures: Pairwise

Then break! Then more demo...

NONINDEPENDENCE IN DYADS

Negative Nonindependence

- Nonindependence is often defined as the proportion of variance explained by the dyad (or group).
- BUT, nonindependence can be negative...variance cannot!
- This is super important
- THE MOST IMPORTANT THING ABOUT DYADS!

How Might Negative Correlations Arise?

Examples

- **Division of labor:** Dyad members assign one member to do one task and the other member to do another. For instance, the amount of housework done in the household may be negatively correlated.
- **Power:** If one member is dominant, the other member is submissive. For example, self-objectification is negatively correlated in dyadic interactions.

Effect of Nonindependence

- Consequences of ignoring clustering classic MLM
 - Effect Estimates Unbiased
- For dyads especially
 - Standard Errors Biased
 - Sometimes too large
 - Sometimes too small
 - Sometimes hardly biased

Direction of Bias Depends on

- 1. Direction of Nonindependence
 - Positive
 - Negative
- 2. Is the predictor a between or within dyads variable? (or somewhere in between: mixed)

Effect of Ignoring Nonindependence on Significance Tests

Positive Negative

Between	
Within	

What Not To Do!

- Ignore it and treat individual as unit
- Discard the data from one dyad member and analyze only one members' data
- Collect data from only one dyad member to avoid the problem
- Treat the data as if they were from two samples (e.g., doing an analysis for husbands and a separate one for wives)
 - Presumes differences between genders (or whatever the distinguishing variable is)
 - Loss of power

What To Do

- Consider both individual and dyad in one analysis!
 - 1. Multilevel Modeling
 - 2. Structural Equation Modeling

Traditional Model: Random Intercepts

Micro level $y_{ij} = b_{0j} + b_{1j}X_{1ij} + e_{ij}$ Macro level $b_{0j} = g_{00} + g_{01}Z_{1j} + u_{0j}$

$$b_{1j} = g_{10}$$

- *i* from 1 to 2, because there are only 2 people in each "group".
- X_{1ij} is a mixed or within variable, and Z_{1j} is a between variable.
- Note b_{0j} is the common intercept for dyad j which captures the nonindependence.
- Works well with positive nonindependence, but not negative.

Alternative Model: Correlated Errors

$$y_{1j} = b_0 + b_{1j}X_{11j} + e_{1j} \leftarrow \rho \text{ called "rho"}$$

$$Micro \ level \qquad \qquad y_{2j} = b_0 + b_{1j}X_{12j} + e_{2j} \leftarrow \rho \text{ called "rho"}$$

$$b_{1j} = g_{10}$$

- ρ is the correlation between e_{1j} and e_{2j} , the 2 members' residuals (errors).
- Note b_0 is now the grand intercept
- Works well with positive nonindependence <u>AND</u> negative.

R DEMO

ACTOR-PARTNER INTERDEPENDENCE MODEL (APIM)

Actor-Partner Interdependence Model (APIM)

- A model that simultaneously estimates the effect of a person's own variable (actor effect) and the effect of same variable but from the partner (partner effect) on an outcome variable
- The actor and partner variables are the same variable from different persons.
- All individuals are treated as actors and partners.

Data Requirements

- Two variables, X and Y, and X causes or predicts Y
- Both X and Y are mixed variables—both members of the dyad have scores on X and Y.

• Example

• Dyads, one a patient with a serious disease and other being the patient's spouse. We are interested in the effects of depression on relationship quality

Actor Effect

- Definition: The effect of a person's X variable on that person's Y variable
 - the effect of patients' depression on patients' quality of life
 - the effect of spouses' depression on spouses' quality of life
- Both members of the dyad have an actor effect.

Partner Effect

- Definition: The effect of a person's partner's X variable on the person's Y variable
 - the effect of patients' depression on spouses' quality of life
 - the effect of spouses' depression on patients' quality of life
- Both members of the dyad have a partner effect.

Distinguishability and the APIM

- Distinguishable dyads
 - Two actor effects
 - An actor effect for patients and an actor effect for spouses
 - Two partner effects
 - A partner effect from spouses to patients and a partner effect from patients to spouses

Distinguishable Dyads

- Errors not pictured (but important)
- The partner effect is fundamentally dyadic. A common convention is to refer to it by the outcome variable. Researcher should be clear!

Indistinguishable Dyads

• The two actor effects are set to be equal and the two partner effects are set to be equal.

Nonindependence in the APIM

- Green curved line: Nonindependence in Y
- Red curved line: X as a mixed variable (r cannot be 1 or -1)
- Note that the combination of actor and partner effects explain some of the nonindependence in the dyad.

R DEMO

TEST OF DISTINGUISHABILITY

Test of Distinguishability

- Advantages of Treating Dyad Members as Indistinguishable
 - Simpler model with fewer parameters
 - More power in tests of actor and partner effects
- Disadvantages of Treating Dyad Members as Indistinguishable
 - If distinguishability makes a difference, then the model is wrong.
 - Sometimes the focus is on distinguishing variable and it is lost.
 - Some editors or reviewer will not allow you to do it.

Test of Distinguishability

- Four ways that dyads can be distinguishable
 - 1. Intercepts (main effect of distinguishing variable)
 - 2. Actor effects
 - 3. Partner effects
 - 4. Error variances

Test of Distinguishability

- Two runs:
- Distinguishable (either interaction or two-intercept, results are the same)
 - Different Actor and Partner Effects
 - Main Effect of Distinguishing Factor
 - Heterogeneity of Variance (CSH)
- Indistinguishable (4 fewer parameters)
 - Same Actor and Partner Effects
 - No Main Effect of Distinguishing Factor
 - Homogeneity of Variance (CSR)

Test of Distinguishability

- Run using ML, not REML
- Note the number of parameters
 There should be 4 more than for the distinguishable run.
- Note the -2LogLikelihood (deviance)
- Subtract the deviances and number of parameters to get a χ^2 with 4df
- **Conclusion:** If χ^2 is not significant, then the data are consistent with the null hypothesis that the dyad members are indistinguishable. If however, χ^2 is significant, then the data are inconsistent with the null hypothesis that the dyad members are indistinguishable (i.e., dyad members are distinguishable in some way).

R DEMO

BINARY AND COUNT OUTCOME VARIABLES

Generalized Linear Mixed Models

Generalized Linear Models

- In general we wrap the response variables in a link function (log, logit, probit, identity, etc.).
- For example
 - A logistic regression is a generalized linear model making use of a logit link function.
 - A log-linear of Poisson regression is a generalized linear model making use of a log link function.
 - A regression model is a generalized linear model making use of an "identity" link function—the response is multiplied by 1.

Logistic Regression Review

- DV is dichotomous
 - probability of belonging to group 1: P_1
 - probability of belonging to group o: $P_0 = 1 P_1$.
 - There are only two choices!

Odds and Odds Ratios

			committed Committed to Hospital	
		0 No	1 Yes	Total
minority Minority Classification	0 No	138	120	258
	1 Yes	54	42	96
Total		192	162	354

- **Probability** of being committed $=\frac{162}{354} = .458$
- **Odds** of being committed = $\frac{.458}{1-.458} = .845$
 - Odds of being committed for minorities = $\frac{.438}{1-.438}$ = .778
 - Odds of being committed for non-minorities = $\frac{.465}{1-.465}$ = .870
- Odds ratio for non-minorities vs. minorities = ^{.870}/_{.778} = 1.118
 "Non-minorities are 1.118 times more likely to be committed than minorities."

Logistic Regression Equation

$$\ln\left(\frac{\widehat{P_1}}{1-\widehat{P_1}}\right) = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n$$

- Where $\widehat{P_1}$ is the predicted probability of being in group coded as 1
- $\frac{\widehat{P_1}}{1-\widehat{P_1}}$ is the odds of being in group 1
- $\ln\left(\frac{\widehat{P_1}}{1-\widehat{P_1}}\right)$ is the "logit" function

Logistic Regression Equation

$$\ln\left(\frac{\widehat{P_1}}{1-\widehat{P_1}}\right) = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n$$

- The b's are interpreted as the increase in log-odds of being in the target group for 1-unit increase in X.
- Exp(b) is the increase in odds for 1 unit increase in X—this works out to the odds ratio between X = a and X = a+1.

Log-Linear (Poisson) Regression Equation

• Used when the response variable is a count (e.g., number of cigarettes smoked per day).

$$\ln(Y) = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_n X_n$$

- Where **Y** is the response vairable
- *ln*(*Y*) is the "log" link function
- $\boldsymbol{b_1}$ is interpreted as the increase in log-Y for every increase in $\boldsymbol{X_1}$
- Exp(b₁) is interpreted in the usual way—as in the general linear model.

Generalized Mixed Linear Models

- Generalized linear models
 - In general we wrap the response in a link function (log, logit, probit, identity, etc.).
- Generalized Mixed Linear Models
 - Do the same, include a link function that is appropriate for your response, but then include random effects in the model.
 - "Mixed" refers to the mixture of fixed and random effects in the model.
- We'll fit these models with the **lme4** package in R, specifically, the **glmer()** function.

Generalized Estimating Equations (GEE)

- Nonindependence treated as a "nuisance" to be removed; no statistical tests of nonindependence
- Can be extended to:
 - Binomial outcome
 - Multinomial outcome (Categories: home/work/leisure)
 - Count data (Poisson, negative binomial)
 - Can also be used for continuous outcomes (normal distribution)
- Fit these models with the gee package in R, specifically, the gee() function.

