TWO-DAY DYADIC DATA ANALYSIS WORKSHOP

Randi L. Garcia
Smith College
UCSF January 9th and 10th

A little about me...

Smith professor of:
• Psychology
• Statistical and Data Sciences

What about you?
Workshop Materials

>Find the workshop schedule and data examples here:

https://randilgarcia.github.io/website/workshop/schedule.html

>Download ALL materials, including R-code, here:

https://github.com/RandiLGarcia/2day-dyad-workshop

DAY 1

- Definitions and Nonindependence
- Data Structures
- The Actor-Partner Interdependence Model (APIM)
- Generalized Mixed Modeling (i.e., for discrete outcomes)
Definitions: Distinguishability

- Can all dyad members be distinguished from one another based on a meaningful factor?
- Distinguishable dyads
 - Gender in heterosexual couples
 - Patient and caregiver
 - Race in mixed race dyads

All or Nothing

- If most dyad members can be distinguished by a variable (e.g., gender), but a few cannot, then can we say that the dyad members are distinguishable?
- No, we cannot!
Indistinguishability

- There is no systematic or meaningful way to order the two scores

- Examples of indistinguishable dyads
 - Same-sex couples
 - Twins
 - Same-gender friends
 - Mix of same-sex and heterosexual couples
 - When all dyads are hetero except for even one couple!

It can be complicated...

- Distinguishability is a mix of theoretical and empirical considerations.

- For dyads to be considered distinguishable:
 1. It should be theoretically important to make such a distinction between members.
 2. Also it should be shown that empirically there are differences.

- Sometimes there can be two variables that can be used to distinguish dyad members: Spouse vs. patient; husband vs. wife.
Types of Variables

- Between Dyads
 - Variable varies from dyad to dyad, BUT within each dyad all individuals have the same score
 - Example: Length of relationship

- Called a level 2, or macro variable in multilevel modeling
Within Dyads

• Variable varies from person to person within a dyad, BUT there is no variation on the dyad average from dyad to dyad.
 • Percent time talking in a dyad
 • Reward allocation if each dyad is assigned the same total amount

• $X_1 + X_2$ equals the same value for each dyad

• Note: If in the data, there is a dichotomous within-dyads variable, then dyad members can be distinguished on that variable. But that doesn’t mean it would be theoretically meaningful to do so.
Mixed Variable

• Variable varies both between dyads and within dyads.

• In a given dyad, the two members may differ in their scores, and there is variation across dyads in the average score.
 • Age in married couples
 • Lots-o personality variables

• Most outcome variables are mixed variables.

It can be complicated...

Can you think of a variable that can be between-dyads, within-dyads, or mixed across different samples?
TYPES OF DYADIC DESIGNS

Standard Dyadic Design

- Each person has one and only one partner.
- About 75% of research with standard dyadic design
- Examples: Dating couples, married couples, friends
The One-with-Many Design

- All partners have the same role with the focal person
- For example, students with teachers or workers with managers

Round-Robin Design

- Social Relations Model (SRM)
- Examples: Team or family members rating one another
Illustration of Data Structures: Individual

<table>
<thead>
<tr>
<th>Dyad Person</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>5</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>1 2</td>
<td>2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>2 1</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>2 2</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3 1</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>3 2</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>
Illustration of Data Structures: Individual

AAAAAA
AAAAAA
AAAAAA
AAAAAA
BBBBBB
BBBBBB
BBBBBB
BBBBBB

Illustration of Data Structures: Dyad

<table>
<thead>
<tr>
<th>Dyad</th>
<th>X_1</th>
<th>Y_1</th>
<th>Z_1</th>
<th>X_2</th>
<th>Y_2</th>
<th>Z_2^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>
Illustration of Data Structures: Dyad

AAAAABBBBBB
AAAAABBBBBB
AAAAABBBBBB
AAAAABBBBBB

Illustration of Data Structures: Pairwise

<table>
<thead>
<tr>
<th>Dyad</th>
<th>Person</th>
<th>X_1</th>
<th>Y_1</th>
<th>Z_1</th>
<th>X_2</th>
<th>Y_2</th>
<th>Z_2^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

^aThis variable is redundant with Z_1 and need not be included.
Illustration of Data Structures: Pairwise

AAAAABBBBB
AAAAABBBBB
AAAAABBBBB
AAAAABBBBB
BBBBBBBBAAA
BBBBBBBBAAA
BBBBBBBBAAA
BBBBBBBBAAA

R DEMO

Then break! Then more demo...
NONINDEPENDENCE IN DYADS

Negative Nonindependence

• Nonindependence is often defined as the proportion of variance explained by the dyad (or group).
• BUT, nonindependence can be negative...variance cannot!

• This is super important
• THE MOST IMPORTANT THING ABOUT DYADS!
How Might Negative Correlations Arise?

Examples

- **Division of labor:** Dyad members assign one member to do one task and the other member to do another. For instance, the amount of housework done in the household may be negatively correlated.

- **Power:** If one member is dominant, the other member is submissive. For example, self-objectification is negatively correlated in dyadic interactions.

Effect of Nonindependence

- Consequences of ignoring clustering classic MLM
 - Effect Estimates Unbiased

- For dyads especially
 - Standard Errors Biased
 - Sometimes too large
 - Sometimes too small
 - Sometimes hardly biased
Direction of Bias Depends on

1. Direction of Nonindependence
 • Positive
 • Negative

2. Is the predictor a between or within dyads variable? (or somewhere in between: mixed)

Effect of Ignoring Nonindependence on Significance Tests

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What Not To Do!

- Ignore it and treat individual as unit
- Discard the data from one dyad member and analyze only one members’ data
- Collect data from only one dyad member to avoid the problem
- Treat the data as if they were from two samples (e.g., doing an analysis for husbands and a separate one for wives)
 - Presumes differences between genders (or whatever the distinguishing variable is)
 - Loss of power

What To Do

- Consider both individual and dyad in one analysis!
 1. Multilevel Modeling
 2. Structural Equation Modeling
Traditional Model: Random Intercepts

\[y_{ij} = b_{0j} + b_{1j}X_{1ij} + e_{ij} \]

\[b_{0j} = g_{00} + g_{01}Z_{1j} + u_{0j} \]

\[b_{1j} = g_{10} \]

- \(i \) from 1 to 2, because there are only 2 people in each “group”.
- \(X_{1ij} \) is a mixed or within variable, and \(Z_{1j} \) is a between variable.
- Note \(b_{0j} \) is the common intercept for dyad \(j \) which captures the nonindependence.
- Works well with positive nonindependence, but not negative.

Alternative Model: Correlated Errors

\[y_{1j} = b_{0} + b_{1j}X_{11j} + e_{1j} \]

\[y_{2j} = b_{0} + b_{1j}X_{12j} + e_{2j} \]

\[b_{1j} = g_{10} \]

- \(\rho \) is the correlation between \(e_{1j} \) and \(e_{2j} \), the 2 members’ residuals (errors).
- Note \(b_{0} \) is now the grand intercept
- Works well with positive nonindependence AND negative.
R DEMO

ACTOR-PARTNER INTERDEPENDENCE MODEL (APIM)
Actor-Partner Interdependence Model (APIM)

- A model that simultaneously estimates the effect of a person’s own variable (actor effect) and the effect of same variable but from the partner (partner effect) on an outcome variable.
- The actor and partner variables are the same variable from different persons.
- All individuals are treated as actors and partners.

Data Requirements

- Two variables, X and Y, and X causes or predicts Y.
- Both X and Y are mixed variables—both members of the dyad have scores on X and Y.

Example
- Dyads, one a patient with a serious disease and other being the patient’s spouse. We are interested in the effects of depression on relationship quality.
Actor Effect

• Definition: The effect of a person’s X variable on that person’s Y variable
 • the effect of patients’ depression on patients’ quality of life
 • the effect of spouses’ depression on spouses’ quality of life

• Both members of the dyad have an actor effect.

Partner Effect

• Definition: The effect of a person’s partner’s X variable on the person’s Y variable
 • the effect of patients’ depression on spouses’ quality of life
 • the effect of spouses’ depression on patients’ quality of life

• Both members of the dyad have a partner effect.
Distinguishability and the APIM

• Distinguishable dyads
 • Two actor effects
 • An actor effect for patients and an actor effect for spouses
 • Two partner effects
 • A partner effect from spouses to patients and a partner effect from patients to spouses

Distinguishable Dyads

• Errors not pictured (but important)

The partner effect is fundamentally dyadic. A common convention is to refer to it by the outcome variable. Researcher should be clear!
Indistinguishable Dyads

- The two actor effects are set to be equal and the two partner effects are set to be equal.

Nonindependence in the APIM

- Green curved line: Nonindependence in Y
- Red curved line: X as a mixed variable (r cannot be 1 or -1)
- Note that the combination of actor and partner effects explain some of the nonindependence in the dyad.
R DEMO

TEST OF DISTINGUISHABILITY
Test of Distinguishability

- Advantages of Treating Dyad Members as Indistinguishable
 - Simpler model with fewer parameters
 - More power in tests of actor and partner effects

- Disadvantages of Treating Dyad Members as Indistinguishable
 - If distinguishability makes a difference, then the model is wrong.
 - Sometimes the focus is on distinguishing variable and it is lost.
 - Some editors or reviewer will not allow you to do it.

Test of Distinguishability

- Four ways that dyads can be distinguishable
 1. Intercepts (main effect of distinguishing variable)
 2. Actor effects
 3. Partner effects
 4. Error variances
Test of Distinguishability

- Two runs:
 - Distinguishable (either interaction or two-intercept, results are the same)
 - Different Actor and Partner Effects
 - Main Effect of Distinguishing Factor
 - Heterogeneity of Variance (CSH)
 - Indistinguishable (4 fewer parameters)
 - Same Actor and Partner Effects
 - No Main Effect of Distinguishing Factor
 - Homogeneity of Variance (CSR)

Test of Distinguishability

- Run using ML, not REML
- Note the number of parameters
 - There should be 4 more than for the distinguishable run.
- Note the -2LogLikelihood (deviance)
- Subtract the deviances and number of parameters to get a χ^2 with 4df

Conclusion: If χ^2 is not significant, then the data are consistent with the null hypothesis that the dyad members are indistinguishable. If however, χ^2 is significant, then the data are inconsistent with the null hypothesis that the dyad members are indistinguishable (i.e., dyad members are distinguishable in some way).
R DEMO

BINARY AND COUNT OUTCOME VARIABLES

Generalized Linear Mixed Models
Generalized Linear Models

- In general we wrap the response variables in a link function (log, logit, probit, identity, etc.).
- For example
 - A logistic regression is a generalized linear model making use of a logit link function.
 - A log-linear of Poisson regression is a generalized linear model making use of a log link function.
 - A regression model is a generalized linear model making use of an “identity” link function—the response is multiplied by 1.

Logistic Regression Review

- DV is dichotomous
 - probability of belonging to group 1: \(P_1 \)
 - probability of belonging to group 0: \(P_0 = 1 - P_1 \).
 - There are only two choices!
Odds and Odds Ratios

- **Probability** of being committed = \(\frac{162}{354} = .458 \)

- **Odds** of being committed = \(\frac{.458}{1-.458} = .845 \)

- Odds of being committed for minorities = \(\frac{.438}{1-.438} = .778 \)
- Odds of being committed for non-minorities = \(\frac{.465}{1-.465} = .870 \)

- Odds ratio for non-minorities vs. minorities = \(\frac{.870}{.778} = 1.118 \)

 “Non-minorities are **1.118** times more likely to be committed than minorities.”

<table>
<thead>
<tr>
<th>Minority</th>
<th>0 No</th>
<th>1 Yes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>138</td>
<td>120</td>
<td>258</td>
</tr>
<tr>
<td>1 Yes</td>
<td>54</td>
<td>42</td>
<td>96</td>
</tr>
<tr>
<td>Total</td>
<td>192</td>
<td>162</td>
<td>354</td>
</tr>
</tbody>
</table>

Logistic Regression Equation

\[
\ln \left(\frac{\hat{P}_1}{1-\hat{P}_1} \right) = b_0 + b_1X_1 + b_2X_2 + \cdots + b_nX_n
\]

- Where \(\hat{P}_1 \) is the predicted probability of being in group coded as 1
- \(\frac{\hat{P}_1}{1-\hat{P}_1} \) is the odds of being in group 1
- \(\ln \left(\frac{\hat{P}_1}{1-\hat{P}_1} \right) \) is the “logit” function
Logistic Regression Equation

\[
\ln \left(\frac{\hat{P}}{1 - \hat{P}} \right) = b_0 + b_1 X_1 + b_2 X_2 + \cdots + b_n X_n
\]

- The b's are interpreted as the increase in log-odds of being in the target group for 1-unit increase in X.
- Exp(b) is the increase in odds for 1 unit increase in X—this works out to the odds ratio between X = a and X = a+1.

Log-Linear (Poisson) Regression Equation

- Used when the response variable is a count (e.g., number of cigarettes smoked per day).

\[
\ln(Y) = b_0 + b_1 X_1 + b_2 X_2 + \cdots + b_n X_n
\]

- Where \(Y \) is the response variable
- \(\ln(Y) \) is the “log” link function
- \(b_1 \) is interpreted as the increase in log-\(Y \) for every increase in \(X_1 \)
- \(\text{Exp}(b_1) \) is interpreted in the usual way—as in the general linear model.
Generalized Mixed Linear Models

- Generalized linear models
 - In general we wrap the response in a link function (log, logit, probit, identity, etc.).

- Generalized Mixed Linear Models
 - Do the same, include a link function that is appropriate for your response, but then include random effects in the model.
 - “Mixed” refers to the mixture of fixed and random effects in the model.

- We’ll fit these models with the `lme4` package in R, specifically, the `glmer()` function.

Generalized Estimating Equations (GEE)

- Nonindependence treated as a “nuisance” to be removed; no statistical tests of nonindependence
- Can be extended to:
 - Binomial outcome
 - Multinomial outcome (Categories: home/work/leisure)
 - Count data (Poisson, negative binomial)
 - Can also be used for continuous outcomes (normal distribution)

- Fit these models with the `gee` package in R, specifically, the `gee()` function.
R DEMO