Intro to Causal Inference

SDS 390 Structural Equation Modeling Monday Feb 25, 2019

Emma K. T. Benn

Increasing Inclusion, Promotion and Evidence:

Uniquely Merging my Intersectionality With My Profession as a Biostatistician

Tuesday, March 5 • 5 p.m. Seelye Hall, Room 106

Sponsored by the Statistical and Data Sciences Program and The Smith College Lect

Agenda for today

- MORE Path analysis
 - O Mediation versus moderation in SEM
- O Intro to Causal Inference
- Project brainstorming time
 - O Data search

Moderation and Mediation

Where do interactions live in SEM?

Moderation (interactions)

- In SEM moderation effects can be represented in
 - 1. Having different paths (not including equality constraints)
 - Or by adding product terms to the model (Note: you would need to first create the product in your dataset)

Recall Lab 3 Example

```{r}

reg_mod <- lm(satisfaction ~ tension + other_pos + gender, data = acitelli)</pre>

```
summary(reg_mod)
```

```
Call:
lm(formula = satisfaction ~ tension + other_pos + gender, data = acitelli)
```

Residuals:

Min 1Q Median 3Q Max -1.72552 -0.19603 0.02919 0.26636 0.88862

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.25764 0.24629 13.227 < 2e-16 ***
tension -0.35943 0.03458 -10.394 < 2e-16 ***
other_pos 0.28633 0.04730 6.053 4.36e-09 ***
gender -0.02370 0.02207 -1.073 0.284
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3765 on 292 degrees of freedom
Multiple R-squared: 0.4307, Adjusted R-squared: 0.4248
```

F-statistic: 73.63 on 3 and 292 DF, p-value: < 2.2e-16

head(acitelli_dyad)

cuplid <dbl></dbl>	Yearsmar <dbl></dbl>	other_pos_man <dbl></dbl>	other_pos_woman <dbl></dbl>
3	8.202667	4.0	4.6
10	10.452667	4.0	3.8
11	-8.297333	4.8	4.4
17	-6.380667	4.4	3.6
21	10.202667	4.8	3.8
22	15.036000	4.6	5.0

Recall Lab 3 Example

```{r}
<pre>model_ex10 &lt;- 'satisfaction_woman ~ 1 + b1*other_pos_woman + b2*tension_woman</pre>
satisfaction_man ~ 1 + b1*other_pos_man + b2*tension_man
satisfaction_woman ~~ v*satisfaction_woman
satisfaction_man ~~ v*satisfaction_man'

```
fit_ex10 <- sem(model_ex10, data = acitelli_dyad)</pre>
```

summary(fit_ex10)

* * *

Regressions:						
	Estim	ate St	td.Err	z-val	ue	P(> z )
satisfaction_womar	า ~					
othr_ps_w (b1)	0.	232	0.045	5.1	L <b>5</b> 8	0.000
tensn_wmn (b2)	-0.	321	0.034	-9.5	565	0.000
satisfaction_man ~						
othr ps m (b1)	0.	232	0.045	5.1	58	0.000
tensin mn (b2)	-0.	321	0.034	_9.5	565	0.000
	0.	021	0.001	5.0		0.000
Covariances:						
	Esti	mate S	Std.Err	z-vo	lue	P(> z )
.satisfaction_womar	ו ~~					
.satisfactin_mn	0	.051	0.012	4.	098	0.000
Intercepts:						
Ē	Estimate	Std.E	rr z-v	alue	P(>	lzl)
.satisfactn_wmn	3.416	0.23	33 14	.674	0	.000
.satisfactin_mn	3.377	0.23	31 14	.642	0	.000
_						
Variances:						
E	Estimate	Std.E	rr z-v	alue	P(>	lzl)
.stsfctn_wm (v)	0.142	0.0	12 11	.454	0	.000
.stsfctn_mn (v)	0.142	0.0	12 11	.454	0	.000



2. Partner-Partner



3. Actor-Partner



4. Partner-Actor



## **Causal Inference**

#### **Causal Models**

- O Causal Modeling aka Structural Causal Models aka Causal inference
  - A way of depicting the causal relations among variables such that you can see which variables are implied to be conditionally independent, and thus, testable.
- O Directed Acyclic Graphs (DAG)
  - O No causal loops
- O Directed Cyclic Graphs (DCG)
  - O Causal loops

## Casual Models (DAGs and DCGs)

Just as in Structural Equation Models, Causal Models have their own names for things in the visualization.

- O Nodes the variables
- Edge link between nodes
- O Path a sequence of adjacent edges
- O Parents the direct causes of a variable
  - Ancestors the direct and indirect causes of a variable
- Children the variables directly caused by a variable
  - O Descendants all variables directly and indirectly caused by the variable

#### **Causal Models**



#### **Casual Models**

O Indirect effects



- O Common cause
  - Your garden variety confounder
  - Example: Ice cream sales and murder
- O Collider

O Blog post on dangers of conditioning on a collider





#### d-Separation

- Finding all the pairs of variables that can be d-separated (conditional independence) in the model points to testable hypotheses.
- A pair of variables in a DAG is d-separated by a set of covariates, Z, if either
- 1. One of the noncolliders on the path is in Z; or
- 2. There is a collider on the path, but neither the collider nor neither the collider nor any of its descendants is in Z

$$X \longrightarrow A \longrightarrow B \longrightarrow Y$$

$$X \perp Y \mid A \quad X \perp Y \mid B \quad \text{and} \quad X \perp Y \mid (A, B)$$
$$X \perp B \mid A \quad \text{and} \quad X \perp B \mid (A, Y)$$
$$A \perp Y \mid B \quad \text{and} \quad A \perp Y \mid (B, X)$$

### d-Separation



#### TABLE 8.1. Conditional Independences Located by the d-Separation Criterion in Figure 8.2(b)

Nonadjacent pair	Conditional independences			
Х, Ү	$X \perp Y$ $X \perp Y \mid (A, B)$ $X \perp Y \mid (A, B, C)$	$X \perp Y \mid A$ $X \perp Y \mid (B, C)$ $X \perp Y \mid (A, C)$		
Х, В	$X \perp B \mid A$ $X \perp B \mid (A, Y)$	$X \perp B \mid (A, C)$ $X \perp B \mid (A, C, Y)$		
Х, С	$X \perp C \mid A$ $X \perp C \mid (A, Y)$	$X \perp C \mid (A, B)$ $X \perp C \mid (A, B, Y)$		
В, С	$B \perp C \mid (A, Y)$	$B \perp C \mid (A, X, Y)$		
A, Y	$A \perp Y$	$A \perp Y \mid X$		

### d-Separation

#### O Basis set

- Smallest number of conditional independencies (d-separations) that imply all others.
- All other conditional independences are implied by the basis set, and thus are redundant and do not need to be tested.



#### TABLE 8.1. Conditional Independences Located by the d-Separation Criterion in Figure 8.2(b)

Nonadjacent pair	Conditional independences			
Х, Ү	$X \perp Y$	$X \perp Y \mid A$		
	$X \perp Y \mid (A, B)$	$X \perp Y \mid (B, C)$		
	$X \perp Y \mid (A, B, C)$	$X \perp Y \mid (A, C)$		
Х, В	$X \perp B \mid A$	$X \perp B \mid (A, C)$		
	$(X \perp B \mid (A, Y))$	$X \perp B \mid (A, C, Y)$		
Х, С	$X \perp C \mid A$	$X \perp C \mid (A, B)$		
	$(X \perp C \mid (A, Y))$	$X \perp C \mid (A, B, Y)$		
В, С	$B \perp C \mid (A, Y)$	$B \perp C \mid (A, X, Y)$		
A, Y	$A \perp Y$	$A \perp Y \mid X$		

## **Project time**