
Prof. Garcia SDS 201: Lecture notes March 21st, 2018

Agenda

1. HW#6 Due today

2. Inference for a single proportion (cont.)

3. Inference for a difference of two proportions

Inference for a Single Proportion Consider the following problem: In a survey of a simple
random sample of 123 people 77 say they prefer Coke over Pepsi. Then a point estimate for the
proportion of people who prefer Coke over Pepsi is p̂ = 77/123 = 0.624.

In order to make inferences about the unknown value of p, the true proportion of those in
population who prefer Coke, we have to construct the sampling distribution of p̂. The center, shape,
and spread of the sampling distribution of the proportion will enable us to put the observed p̂ in
context, build confidence intervals, and conduct hypothesis tests.

n <- 123

p_0 <- 1/2

p_hat <- 77/123

library(mosaic)

1. Simulation: Use the computer to simulate the null distribution.

(a) Assumptions: independence

(b) Pros: few assumptions, no math, can simulate very complex situations with a little pro-
gramming skill

(c) Cons: requires computer (impossible before 1970), does not always return the same answer

2. Probability Theory: Use mathematics to compute the null distribution.

(a) Assumptions: independence, probability model

(b) Pros: gives exact sampling distribution

(c) Cons: only the simplest situations can be solved in closed form, may be hard to detect
mistakes

Last time we talked about how if X is a random variable giving the preference of any given
person, and Y = X1 + X2 + · · · + Xn ∼ Binomial(n, p) is a random variable giving the
number of people among n who prefer Coke. Further, p̂ = Y/n is a random variable giving
the proportion of people among n who prefer Coke, then:

E[X] = p V ar[X] = p(1 − p)

E[Y ] = np V ar[Y ] = np(1 − p)

E[p̂] = p V ar[p̂] =
p(1 − p)

n

The binomial distribution is a well-known discrete probability distribution, but its density
function is cumbersome to work with, and so it is hard to compute binomial probabilities by
hand. It is, of course, easy to do with R. The binomial distribution depends on two parameters:
the sample size n and the proportion p.

3. Normal Approximation: Use statistical theory to approximate the null distribution.

(a) Assumptions: independence, normality, np > 10 and n(1 − p) > 10

(b) Pros: uses familiar normal distribution, approximation is usually pretty good, possible to
compute without computers (kind of)



Prof. Garcia SDS 201: Lecture notes March 21st, 2018

(c) Cons: requires more assumptions, not exact

Since the binomial distribution can be cumbersome to work with, and because under very mild
conditions it is approximately normal, scientists often use a normal distribution to approximate
the null distribution for a single proportion. Consider the random variable X defined above,
and note that the sample proportion p̂ can be thought of as the mean of a random sample of
n observations of X. The Central Limit Theorem implies that:

E[X̄] = µX = p , V ar[X̄] =
σ2
X

n
=
p(1 − p)

n
.

In particular, this implies that SEp̂ =
√
V ar[X̄] =

√
p(1−p)

n . Thus, we can use this formula

for the standard error to approximate the null distribution.

se_p0 <- sqrt(p_0 * (1-p_0) / n)

For a variety of reasons both historical and practical, the normal approximation is the method
you are mostly likely to see in your future work, and thus it will be the focus of our attention
here.

Note that the p-value is slightly different in each case (since our approximation of the null
distribution is different in each case), but it is very close, and in each case we will easily reject the
null hypothesis that p = 0.5 at the 5% level.

1. Simulation: The p-value can be obtained using the pdata function, since the null distribution
comes from simulated data in our workspace.

2 * pdata(~coke_pct, q = p_hat, data = sim, lower.tail = FALSE)

## [1] 0.0024

2. Probability Theory: The p-value can be obtained using the pbinom function, since the null
distribution follows a binomial distribution.

2 * pbinom(p_hat * n, size = n, prob = p_0, lower.tail = FALSE)

## [1] 0.003731446

3. Normal Approximation: The p-value can be obtained using the pnorm function, since the null
distribution follows a normal distribution.

2 * pnorm(p_hat, mean = p_0, sd = se_p0, lower.tail = FALSE)

## [1] 0.005187149

What Can Go Wrong? Most of the time, the null distribution for a proportion will be quite
normal. In the previous example, the fit was excellent.

However, if np < 10 or n(1 − p) < 10, then the normal approximation is likely not sufficiently
good.

1. Suppose that our null hypothesis was H0 : p = .05 or H0 : p = .95

2. Suppose that our sample size was only 25.
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Exercise: Batting Averages, redux Previously, we considered Ted Williams’ batting average
of .406 in 1941, which is unmatched in 75 years and counting. In 1994, Tony Gwynn of the San
Diego Padres hit .394, but a strike by the player’s union shortened the season after only 116 games.
Thus, Gwynn accumulated 165 hits in 419 at-bats, whereas Williams had 185 hits in 456 at-bats.
Let’s assume that Gwynn had an unknown, fixed true batting average of p in 1994.

1. The league average batting average in 1994 was .277. Use the normal approximation to test—
at the 5% level—the hypothesis that Gwynn was a league-average hitter. Do you reject or fail
to reject? (Hint: If you don’t have a computer to compute the p-value, find the z-score and
approximate using the Empirical Rule)

2. Use the normal approximation to find a 95% confidence interval for Gwynn’s true batting
average p. (Hint: Be sure to use p̂ when computing the standard error! (see page 125))

3. Does the confidence interval that you found contain the hypothesized proportion of .277? Does
it contain .400?

4. A sportswriter claims that Gwynn does not deserve to be mentioned in the same breath as
Williams, because Williams hit .400, but Gwynn did not. Does your analysis refute or support
this claim?

http://en.wikipedia.org/wiki/Ted_Williams
http://en.wikipedia.org/wiki/Tony_Gwynn
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Difference of two proportions In many cases we will also want to make inferences about the
difference between two proportions. Continuing the line of reasoning from above, let X be a binomial
random variable that gives the number of hits that Williams will accrue in n1 at-bats if his true
batting average is p1, and let Y be another binomial random variable that gives the number of hits
that Gwynn will accrue in n2 at-bats if his true batting average is p2. Then we can define a new
random variable

Z =
X

n1
− Y

n2

that gives the difference in their respective batting averages. Using linearity of expectation, we can
compute the expected value of the difference:

E[Z] = E

[
X

n1
− Y

n2

]
=

1

n1
· E[X] − 1

n2
· E[Y ] =

1

n1
· n1p1 −

1

n2
· n2p2 = p1 − p2

and the variance:

V ar[Z] = V ar

[
X

n1
− Y

n2

]
=

1

n21
· V ar[X] +

1

n22
· V ar[Y ]

=
1

n21
· n1 · p1(1 − p1) +

1

n22
· n2 · p2(1 − p2)

=
p1(1 − p1)

n1
+
p2(1 − p2)

n2

Just as before, this proves that the standard error is SEZ = SEp̂1−p2
=
√
SE2

p̂1
+ SE2

p̂2
. Once

again, we’ll typically use the normal approximation to the null distribution.

1. Using the normal approximation again, test the hypothesis that Williams and Gwynn had the
same true batting averages in 1941 and 1994, respectively.

2. Since we are testing the hyopthesis that p1 = p2, it is more appropriate to use the pooled
estimate of the standard error (see page 133). Perform this test.

3. Discuss the extent to which you think the performances of Williams and Gwynn were impor-
tantly different.


