
Role of social interactions in dynamic patterns of
resource patches and forager aggregation
Nessy Taniaa, Ben Vanderleib, Joel P. Heathc, and Leah Edelstein-Keshetc,1

aDepartment of Mathematics and Statistics, Smith College, Northampton, MA 01063; bDepartment of Mathematics and Statistics, University of the Fraser
Valley, Abbotsford, BC, Canada V2S 7M8; and cDepartment of Mathematics, University of British Columbia, Vancouver, BC, Canada V6T 1Z2

Edited by Mark A. Lewis, University of Alberta, Edmonton, Canada, and accepted by the Editorial Board June 4, 2012 (received for review January 31, 2012)

The dynamics of resource patches and species that exploit such
patches are of interest to ecologists, conservation biologists, mode-
lers, andmathematicians. Here we consider how social interactions
can create unique, evolving patterns in space and time. Whereas
simple prey taxis (with consumable prey) promotes spatial uniform
distributions, here we show that taxis in producer–scrounger
groups can lead to pattern formation. We consider two types of
foragers: those that search directly (“producers”) and those that
exploit other foragers to find food (“scroungers” or exploiters).
We show that such groups can sustain fluctuating spatiotemporal
patterns, akin to “waves of pursuit.” Investigating the relative
benefits to the individuals, we observed conditions under which
either strategy leads to enhanced success, defined as net food
consumption. Foragers that search for food directly have an advan-
tage when food patches are localized. Those that seek aggrega-
tions of group mates do better when their ability to track group
mates exceeds the foragers’ food-sensing acuity. When behavioral
switching or reproductive success of the strategies is included, the
relative abundance of foragers and exploiters is dynamic over time,
in contrast with classic models that predict stable frequencies. Our
work shows the importance of considering two-way interaction—
i.e., how food distribution both influences and is influenced by
social foraging and aggregation of predators.

pattern formation ∣ foraging strategies ∣ ecological patchiness ∣
chemotaxis ∣ spatial ecology

In this paper, we study the dynamics of social interactions to
explore the consequences for spatiotemporal population struc-

ture and dynamics. We show that interactions among individuals
are key for pattern formation and self-organization when foragers
either follow gradients of food or socialize with those that do. Our
aim is to demonstrate that social interactions among foragers
could have particularly important implications for spatial models
of forager-resource dynamics. A comprehensive understanding
of the spatial dynamics of social foraging needs to consider the
two-way dynamic interaction between forager aggregation and
resource patchiness, a problem that remains poorly understood
(1, 2).

A secondary theme is the discovery of another pattern-forming
mechanism. Nature abounds with patterns that the human eye is
adept at picking out. Patterns occur in chemical, physical, and
biological systems on many scales, from distribution of proteins
in a cell, and tissue morphogenesis, to patchy distribution of spe-
cies in ecology (3–5, 6). There is great interest in finding both
universal mechanisms for such patterns (e.g., the balance of re-
pulsion–attraction forces, local activation and long-range inhibi-
tion, or motion in an external field; ref. 7), as well as specific
examples that have rich pattern-forming features (8).

Patterns formed by organisms, and the way they shape their
environment, is a rich area with physical (phase transitions), en-
gineering (robotics), sociological (e.g., human traffic patterns),
and ecological implications (5, 9–11). Social foraging in mixed-
species groups and the emergent patterns of distributions have
been studied in ecology (e.g., ref. 12). Rules of individual beha-
vior in socially cohesive foraging and/or migrating groups have

been explored recently in empirical and theoretical studies
(13, 14).

In studying social foraging, our goal was to use a spatially
explicit analytical framework. There is great interest in extending
analytical and empirical studies to understanding the spatiotem-
poral dynamics of social aggregation, although tools for doing
so are as yet emerging. Both individual-based models tracking
single organisms (14) and density-based theories using partial dif-
ferential equations (PDEs) (8, 17) contribute to such technology.
The Keller–Segel (KS) model (18) provides a great avenue for
exploration that already has a history to build on. This model is
classical, based on a continuum approximation, and depicts a
mechanism for spatial aggregation. Although explored in vast
literature, KS has yet to be applied to the situation of dual social
behavior here described, but see the individual-based model for
gradient climbers and their highly social followers (14). Further,
how organisms shape and are in turn affected by the spatial dis-
tribution of their resources is still an emerging area of research,
addressed in this paper.

In group foraging studies, resource distribution, patch size and
structure, and distance between foragers were shown to influence
the “finders’ share” (food obtained by producers vs. scroungers)
(1, 15, 16), which motivated us to ask which strategy confers
an advantage under various conditions. To do so, we ask how lim-
ited resource distribution, patch size, and movement/search para-
meters contribute to relative success, quantified by a ratio of net
food consumed by foragers vs. exploiters. Recent spatially explicit
simulations to explore this question were based on simulations of
agent-based producer–scrounger models (1). Such studies suggest
that social interactions should increase with decreasing patch
encounter rate. These recent findings emphasize the need for
spatially explicit approaches in social foraging theory.

We conclude by investigating how switching between strategies
(within a generation) affects the relative abundance of each
behavioral type. We also consider a similar question on the time-
scale of many generations, when success of each strategy deter-
mines reproductive fitness.

Taxis Models
To understand spatial aggregation patterns, modelers often for-
mulate simple models that can be investigated analytically or
computationally. Some models track single individuals, positing
rules of interaction (1, 9) and others formulate equations to
describe densities of populations. Most such models are PDEs
(17) or (if nonlocal) integro-PDEs (20).
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Typical taxis equations for the motion of a population pðx; tÞ
toward a concentration of chemical or food cðx; tÞ have the form

∂p
∂t

¼ Dp∇2p − ∇ · ½χpp∇c�; [1a]

∂c
∂t

¼ Dc∇2cþ hðc; pÞ: [1b]

The first (Laplacian) terms describe random motion and/or che-
mical diffusion. Individuals also move by taxis up gradients of
c with characteristic taxis parameter χp. In the KS model (18),
individuals are amoeba and the chemical is cAMP, secreted by
the cells and degraded at rate k. Hence the kinetic term is
hðc; pÞ ¼ hKSðc; pÞ ¼ μp − kc. The KS model [1] and its variants
have been thoroughly investigated in the mathematical and mod-
eling literature. It is well known that the uniform steady state
of such equations can be destabilized by small amplitude noise,
giving rise to patterns of aggregation (18). A recent generaliza-
tion to multiple species includes ref. 19.

Simple Foragers
Eq. 1 can be reinterpreted as prey taxis (PT) where foragers p
move following the food concentrations c. Both foragers and
their food prey also move randomly, with motility coefficients
Dp and Dc, respectively. To represent a renewable resource that
is consumed at rate λ̂ per capita, decays at rate m̂, and is replen-
ished at rate r̂, we typically chose the term hðc; pÞ ¼ hPTðc; pÞ ¼
−λ̂pc − m̂cþ r̂.

In 1D, with no immigration or emigration (no-flux boundary
conditions on a domain of lengthL), the total forager population,
(∫ L

0 pðx; tÞdx) is constant. The model then has a spatially uniform
steady state with a constant level of foragers and food every-
where.

In view of the rich mathematical theory for KS aggregation, it
might be tempting to conclude that such prey–taxis systems can
also aggregate, leading spontaneously to a patchy distribution of
resources. This simple expectation is actually false, as argued in a
comprehensive work in ref. 17. Intuitively, there is an important
difference in the sign patterns of hKS and hPT: In KS, the indivi-
duals reinforce the chemical by secreting it (positive feedback),
whereas in the prey–taxis, the consumption of prey depletes local
patches (negative feedback).

In the SI Appendix, we show that the uniform steady state of [1]
with h ¼ hPT is stable, so that any perturbation in the distribution
of food and foragers decays with time. Deviations from unifor-
mity get damped with time, and no instability (and hence no
pattern formation) can arise. In the words of Lee et al. (17),
“prey–taxis tends to transform heterogeneous environments into
homogeneous environments, which gives an opposite result to the
chemotaxis case,” implying that simple prey–taxis does not lead to
complex patch dynamics.

Foragers and Exploiters
We asked whether the presence of distinct species or behavioral
types would alter the absence of spatiotemporal dynamics in the
simple prey–taxis model. Consequently, we consider a mixed-
species group with foragers that search for food directly, and others
attracted to forager aggregations. Social foraging has been
observed in a wide variety of taxa (2). It can include interactions
among individuals of the same species, or information provided by
exploiting discoveries of other species, such as in mixed-species
foraging flocks (e.g., shearwater flocks that are attracted to kitti-
wake foragers in aquatic “catalyst-kleptoparasite” foraging flocks;
ref. 12). Here, for simplicity, we focus on two types, termed simply
“forager” and “exploiter,” and consider both the static case and the
case when individuals can switch between these strategies.

To model such a system, we extended and scaled the taxis
model to track the fractional densities of foragers pðx; tÞ and ex-

ploiters sðx; tÞ (equivalently, producers and scroungers). The full
(unscaled) equations are given in the SI Appendix. In their dimen-
sionless form, these are

∂p
∂t

¼ ∇2p − vp∇ · ½p∇c� þ hpðp; sÞ; [2a]

∂s
∂t

¼ ∇2s − vs∇ · ½s∇p� þ hsðp; sÞ; [2b]

∂c
∂t

¼ d∇2c − λðpþ sÞc − μcþ r: [2c]

Space has been scaled by the size of the domain (typical length,
L) over which interactions occur and time by the timescale of
random search over distance L. Dimensionless parameters vs, vp
are relative taxis parameters of foragers and exploiters,
d ¼ Dc∕Dp is relative mobility of the prey, λ its per-capita con-
sumption rate, and μ its decay rate. Food is replenished at rate r.
The terms hp and hs, initially set to zero, allow us to consider
switching between the two types. Details of the dimensionless
parameters are given in the SI Appendix.

Interactions in a Fixed Patch with Distinct Species
We first study, the case of two distinct types that cannot switch
behaviors so that hp ¼ hs ¼ 0 in Eq. 2. For simplicity, we deal
here with a 1D domain (scaled to unit length as above) with
sealed ends, depicted by no-flux boundary conditions. Then
the total population, ∫ 1

0pðx; tÞ þ sðx; tÞdx ¼ 1 is conserved, and
we can explore dynamics for various choices of the fraction of
foragers ϕp and exploiters ϕs ¼ 1 − ϕp. From the structure of
the model, it is clear that a spatially homogeneous steady state
can exist, with populations uniformly distributed, pðxÞ ¼ ϕp
and sðxÞ ¼ 1 − ϕp, and the resource at level cðxÞ ¼ r∕ðλþ μÞ.
However, as argued below, this is not the only solution, and
interesting dynamics can occur.

Forager-Exploiter Interactions Lead to Spatiotemporal
Patterns and Patchy Resource Distribution
Standard linear stability analysis (LSA) of Eq. 2 reveals that the
uniform steady state can be destabilized provided that

1

ð1 − ϕpÞ
�
8ðλþ μÞ2ðdþ 1Þ

vpϕpλr
þ 2ðdþ 1Þ

�
≲ vs: [3]

This condition can be interpreted as a threshold for the exploiter
taxis parameter vs. When exploiters are weakly attracted to for-
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Fig. 1. Given the exploiter and forager taxis values vs, vp, only some
intermediate fraction of foragers ϕ1 < ϕp < ϕ2 can accommodate spatial in-
stability [3]. Otherwise, ϕp < ϕ1 provides insufficient cues for exploiter aggre-
gation, and ϕp > ϕ2, is like prey–taxis and supports no instability.
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ager groups (low vs), instability is less likely, all else being equal. If
vs is large enough, inequality [3] implies that (i) increasing the
mobility (through d) or decay rate of prey (through μ or the pre-
dation rate λ) is stabilizing, whereas (ii) increasing the prey–taxis
coefficient (vp) is destabilizing. Finally, (iii) the fraction of fora-
gers (ϕp) also plays a role. We plot the left-hand side of [3] vs. ϕp
in Fig. 1. Satisfying the inequality restricts ϕs to an intermediate
range. For example, for vs ¼ 10 and vp ¼ 10, instability occurs
for 0.14 ≤ ϕp ≤ 0.64.

We find that instability and spatial patterning is accompanied
by temporal oscillations. (In the SI Appendix, we show that this
instability stems from a Hopf bifurcation.) Linear stability analy-
sis also predicts that, at some lower value of vs, a single mode
becomes unstable, whereas higher vs allows for a range of un-
stable modes.

To visualize the resulting spatiotemporal dynamics, we carried
out simulations of the system [2]. Fig. 2 shows the results for two
values of vs (Movies S1–S2). Starting from a nearly uniform
distribution of foragers, exploiters, and resource, we observed
growth of periodic waves. By t ¼ 9, these fluctuations settle into
regular cycles. For a smaller value of vs (Fig. 2, Upper), a single
“hot spot” (red) alternates between one and the other end of the
domain. We can understand this behavior by noting that local
aggregations of animals deplete the food, which takes time to
renew. Meanwhile, movement toward undepleted food resources
sets up growing fluctuations. It is these waves of pursuit that lead
to the observed periodic fluctuation in the densities of the
variables.

If the parameter vs is increased (Fig. 2, Lower), the frequency
of oscillation increases and a larger numbers of hot spots occur
(resulting from instability of higher modes) with concurrent de-
crease in amplitudes of p and c. In the limit of high vs, the system
reduces back to the simple forager-resource system that has no
spatial instability: This is the case in which the exploiters track
foragers so efficiently that the motion of the two groups is prac-
tically indistinguishable. In this limit, the pattern can no longer be
sustained, and only the spatially uniform state is stable.

So far, analysis and simulations were confined to 1D.We asked
what the model predicts in higher dimension. This question is of
interest because it is well-known that KS chemotactic equations

can develop singularities and “blowup” solutions in finite time in
2D and 3D (21). We repeated this computation in 2D. As shown
in the SI Appendix and Movies S3–S8, the oscillatory patterns of
aggregation are also evident in the 2D setting. In contrast to the
positive feedback in the KS model, here prey depletion serves as
a negative feedback, preventing sharp peaks/singularities (due to
aggregation) from occurring.

Advantages of the Strategies: Foraging Versus Exploiting
To compare the two strategies, we reasoned that at any
given time, an individual of a given type has an opportunity to
feed proportional to its per-capita contact with food—i.e.,
cðx; tÞpðx; tÞ∕ϕp or cðx; tÞsðx; tÞ∕ϕs. We defined FpðtÞ, FsðtÞ as
the cumulative per-capita food intake for foragers and exploiters,
respectively (obtained by integrating the contact rates over the
domain, up to time t; see SI Appendix for details). Then the ratio
BðtÞ ¼ Fs∕Fp can be used to compare the relative advantage of
the strategies. We also denote bðtÞ as the ratio of instantaneous
per-capita food intake—i.e., without integration over time. B ¼ 1
implies both strategies are equally successful, whereas B > 1 cor-
responds to an advantage for exploiters. We consider both static
and dynamic versions of this measure.

Relative Advantages for a Static Food Patch
We first considered a static spatially nonuniform food distribution
cðxÞ with analytically solvable steady-state forager/exploiter pro-
files pðxÞ, sðxÞ and time-independent relative-advantage B. We
chose a unimodal food distribution cðxÞ ¼ cosðπxÞ þ 1 to satisfy
no-flux boundary conditions for p and s. In Fig. 3, we numerically
generated the curve of neutral advantage B ¼ 1 in the vp-vs plane
for various values of the forager fraction ϕp (see SI Appendix).
Exploiters do best when (vp; vs) is above the curve vs. foragers
below the curve. At a fixed forager acuity vp, exploiters with vs
above some threshold have greater advantage. Foragers with
low vp are weakly attracted to food, so their density forms shallow
gradients; then only exploiters with high acuity would detect such
slight forager density gradients. For larger vp, the foragers
concentrate at food sources, forming sharper density gradients,
so the threshold vs value is lower. Larger ϕp shifts theB ¼ 1 curve
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lower, so exploiters have the advantage (B > 1) for a wider range
of vs.

Relative Advantage for a Nonrenewable Resource
Next, we investigated relative advantage when food is depleted
by consumption. Setting r ¼ 0, μ ¼ 0 in [2c], we used Gaussian
initial food profiles centered at x ¼ 0.5, all with the same area
(∫ cðx; 0Þdx), but varying standard deviation, σ. The “width” σ re-
presents a typical food patch “size.” About the populations, we
assumed an initial uniform density of each type, with proportions
ϕp; ϕs ¼ 1 − ϕp. We then asked how the relative success of the
strategies varies with respect to key model parameters such as
taxis rates vs; vp, relative prevalence of the two types, and patch
size.

All else being equal, exploiters do better per capita when for-
agers are abundant, as in the static case. Hence B is an increasing
function of ϕp (Fig. 4). Patch width affects the relative success.
For wide food patches with shallow gradients (e.g., when
σ ¼ 0.4), both strategies are roughly the same (B ≈ 1), regardless
of the relative abundance of exploiters and foragers. For nar-
rower patches with sharper gradients (σ ¼ 0.1; 0.05), we find that
B < 1, and foragers have a greater advantage over the whole
range 0 ≤ ϕp ≤ 1.

We also explored how the foragers’ ability to detect resource
gradients affects the relative success of the strategies. Exploiters
do poorly when their taxis parameter vs is low relative to foragers’
taxis parameter, vp, because foragers can utilize and deplete the
food before the arrival of exploiters (see SI Appendix, Fig. S1).

In comparison to the static case, we found that, when resources
are nonrenewable, foragers have the advantage for a wide range
of parameter values (B ≤ 1 in Fig. 4 and SI Appendix, Fig. S1).
This advantage stems from the fact that foragers are able to
locate, consume, and deplete resources rapidly, before exploiters
arrive. We then asked how two simple variations of the model
might affect our conclusions.

1. We considered an energetic cost to primary foraging (e.g.,
finding or subduing prey) that exploiters avoid paying. Then
the relative advantage becomes B ¼ Fs∕ðFp − costÞ. For suf-
ficiently high cost, exploiters gain the advantage, B > 1, as
expected (see SI Appendix, Fig. S2).

2. We also considered a mixed strategy, when exploiters also
search for resources on their own (but with some reduced
attention). To do so, we included a prey–taxis term in Eq. 2b
of the form −ðαvpÞ∇ · ½s∇c�, where α < 1. In the SI Appendix,
Fig. S3, we show that this variation allows for cases where
B > 1 as well. Other variants (not here considered) that affect
relative advantages could include more aggressive exploiters
or differences in food consumption rates.

Finally, we asked whether and how the relative advantage var-
ies over time for the full system as in Fig. 2. Results shown in
Fig. 5 indicate that relative advantage fluctuates over the cyclic
waves of pursuit. If exploiters taxis exceeds foragers’ taxis ability,
we find phases with b > 1, signifying times where exploiters tem-
porarily do better than foragers.

Switching Between the Strategies
Thus far, populations of types p and s were fixed (hp ¼ hs ¼ 0 in
Eq. 2). However, both short-term plasticity (learning to switch
strategy) and long-term dynamics (reproductive fitness) could
lead to population changes. Understanding the implications of
switching has been a key object of study in the social foraging
literature (1, 22). Here we investigate both switching and adapta-
tion in a spatial context, an important aspect, given that dynamic
resource distributions might affect the relative benefits to exploi-
ters and foragers dynamically (and distinctly) over time.

To consider dynamic behavioral switching, we assumed that
hp ¼ −hs ¼ αðbÞs − βðbÞp with switching rates

s → p : αðbÞ ¼ k∕ð1þ bÞ; p → s : βðbÞ ¼ kb∕ð1þ bÞ;
[4]

with k a maximal switching rate. Here the relative advantage b
can be measured in terms of local, global, and finite sensing
ranges, as detailed in the SI Appendix. Larger b favors p → s
switching. For b ¼ 1 (strategies equally successful), α ¼ β ¼ k∕2,
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Fig. 3. Neutral curve (B ¼ 1) for three values of ϕp. Above (below) the curve
exploiters (foragers) have the advantage. [Figure credit, Marysa Lague.]
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the uniform steady state is ϕs ¼ ϕp. Simulation results are shown
in Fig. 6. For parameter values in Fig. 2, switching leads to hardly
perceptible oscillations of strategies close to p ≈ s ≈ 0.5 (Fig. 6,
Upper). Other parameter values, however, accentuate the cycles
(Fig. 6, Lower; spatial patterns shown in SI Appendix, Fig. S7, and
Movie S9). Such results reinforce the idea that spatial interac-
tions can lead to behavioral transitions as well as dynamic fora-
ger-exploiter distributions. In contrast to a classic result where
social interactions led to a fixed frequency of forager and exploi-
ter (22), we observed temporal variations in the frequencies.

Further exploring the full spatiotemporal model, we found that
switching can both promote or suppress instability, by shifting the
critical vs value at which oscillatory pattern emerges. Switching at
constant rates, for example, yields new spatiotemporal patterns,
not seen otherwise, including standing wave patterns (see SI
Appendix, Fig. S6).

Next, we considered how reproductive fitness could affect the
population structure over several generations. To do so, we
omitted the short-term behavioral switching (hs ¼ hp ¼ 0), and
assumed, instead, the semelparous reproduction rule

sðT þ 1Þ ¼ FsðTÞ∕FðTÞ; pðT þ 1Þ ¼ FpðTÞ∕FðTÞ; [5]

for T the generation number, and F ¼ Fs þ Fp. Now [2] captures
within-generation dynamics, whereas [5] relates reproductive fit-
ness between generations to the relative success within a genera-

tion (while keeping population size fixed). Other cases with net
population growth can be simulated by alternating the model of
[2] (within a generation) with arbitrary fitness-based reproduc-
tion rule (see SI Appendix).

Rewritten, [5] yields ϕpðT þ 1Þ ¼ 1∕½1þ BðTÞ� (dotted curve
in Fig. 7). At each generation T, given ϕpðTÞ, we can compute
BðTÞ by integrating food consumed by each strategy over the for-
ager’s lifespan. One such curve, BðTÞ ¼ Fs∕Fp ¼ f ðϕpðTÞ; σÞ for
σ-sized food patch shown in Fig. 4 is copied on Fig. 7 (σ ¼ 0.05).
Together, such two rules link intergenerational values of ϕp and
B. A cobweb diagram based on this proof of principle illustrates
convergence of ϕp to a unique stable equilibrium over several
generations. Stable cycles are also possible, as discussed in the
SI Appendix, Fig. S10, provided the function f ðϕpðTÞ; σÞ is steep
enough. Thus, a variety of long-term dynamics are possible, and
provide future directions to explore, based on various assump-
tions about the food, the fitness measure, and dynamics between
and within generations.

Discussion
Social foraging models (2, 23) have addressed interactions in the
context of information sharing (24) and frequency dependent
dynamics (22, 25). One subset of such models examines so-called
producer–scrounger systems wherein one species (the scrounger)
exploits another (the producer). Most such investigations fail to
account for spatially explicit interactions (16, 22, 25), which have
been the focus of our paper.

Our results have two major thrusts. First, in a context of pat-
tern formation, we revisited the classic prey–taxis model and
showed that inclusion of exploiters leads to spontaneously emer-
gent patterns (absent in the original model). Such results apply to
a class of ecological models that fall under the rubric of produ-
cer–scrounger systems, although these have not been extensively
studied in the literature. (One notable exception is Beauchamp,
ref. 1, who indicated that spatial producer–scrounger systems
could be self-organizing.) Using analytic techniques such as LSA,
we found conditions on the parameters [3] for such patterns to
occur, finding persistent spatiotemporal oscillations stemming
from a Hopf bifurcation. These patterns form a stable attractor
of the dynamics in both 1D (Fig. 2, Movies S1–S2) and 2D
(Movies S3–S8). Heuristically, the primary foragers detect weak
resource gradients, congregate, and form detectable “crowd gra-
dients” to which exploiters respond. These interactions result in
an inherent delay: It takes time for forager gradients to form in
response to the prey distribution, and the exploiters can react
only once such gradients are noticeable. This lag leads to waves
of pursuit that arise spontaneously, with concomitant patchiness
in the resource distribution.

In ecology, a common basic assumption is that resources are
patchily distributed (26, 27) and that this influences competitive
advantage of various strategies (28). Recent studies suggest that
the amount of food obtained by producers vs. scroungers (the fin-
ders’ share), can depend strongly on patch structure and distances
between individuals (1, 15, 16). This idea motivated our second
major thrust, to explore the relative benefits of the two social
foraging strategies in the model. We quantified benefit in terms
of resources available to each strategy. In the case of fixed stra-
tegies and static resource distribution, we found (using conveni-
ent closed-form solutions of the system) how relative success
depends on the relative acuity and abundance of each species
(taxis parameters vs; vp and forager fraction ϕp). For a fixed for-
ager taxis parameter vp, exploiters do better as vs increases, or as
the fraction of foragers ϕp (and hence the steepness of their gra-
dient) increases. Exploiters also “win” at fixed intermediate
values of vs and small ϕp for large vp, again due to sharp gradients
of foragers they can detect. Both ideas relate to ways of crossing
the neutral curveB ¼ 1 shown in Fig. 3. In the case of exhaustible
food patches, the strategies are equal only when resources are
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Fig. 6. The fractions of foragers and exploiters over time in the case of strat-
egy switching. Parameter values as in Fig. 2, but with vp ¼ 10, vs ¼ 10, k ¼ 4

(Upper), and vp ¼ 1, vs ¼ 20, k ¼ 19 (Lower). Black curves indicate the frac-
tions of foragers and gray curves for the fractions of exploiters.

Fig. 7. When relative advantage of strategies affects the proportions of
foragers and exploiters in the next generation (dotted curve), the fraction
ϕp changes, here approaching a steady state. Solid curve: fðϕp; σÞ, σ ¼ 0.05
from Fig. 4.
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widely dispersed (large σ in a normally distributed resource
patch). Otherwise, foragers arrive first, get a larger share, and
have the advantage over exploiters.

We examined strategy switching based on the changing benefit
to forager vs. exploiter, which was in turn related to the dynamics
of prey patchiness. Both long- or short-ranged sensing of re-
sources was considered. Overall, we found that switching created
cycles of relative forager/exploiter abundance, whose frequency
and amplitude depends on sensing ranges in a nontrivial manner.
Whereas most classic approaches lead to a fixed frequency of pro-
ducers and scroungers (22), here we have shown it to be dynamic,
an important result. The interesting dynamics suggest avenues of
future mathematical exploration.

Our study has features in common with Guttal and Couzin
(14). They discuss a dichotomy of gradient-climbing “leaders”
and social individuals (“followers”) in an individual-based model
of migration. Here we were not concerned with long-range migra-
tion and only hinted at possible evolutionary implications. Our
use of PDEs led to analytic results. We also note the distinction
of our patterns and the patchiness arising from diffusive (Turing
based) instabilities in plankton, for example, ref. 4. The latter
depends on simple dispersion, coupled with specific kinds of
local predator–prey interactions.

We also tested extensions and variants of the basic model to
check robustness of conclusions to the assumptions. The variants
studied included (i) some weak additional attraction of exploiters
to food, and (ii) attraction of exploiters to both forager and
exploiter aggregates—i.e., taxis of the form −vs∇s · ∇ðsþ pÞ.
Overall, results are similar, and are omitted for brevity (but see
SI Appendix for additional detail).

Results of this model can be applied to many systems that have
inspired social foraging theory to date (23) as well as to systems

where predators can shape the patchiness of their prey, e.g.,
shorebirds (29), plankton (4), or arctic eider ducks diving under
sea ice for slow-moving benthic invertebrates (30). First, estima-
tion of the taxis parameter vp can be made using short-term
movement measurements of foragers toward artificially created
(known) resource gradients. Similar estimation of vs for the
exploiting species could be extracted under the same conditions.
Fig. 1 then suggests experiments to manipulate relative abun-
dance of the two species (from all foragers to all exploiters).
Our results predict that, if spatiotemporal patterns occur, they
should appear at some intermediate ratio of the two types, and
not at the two extremes. The condition for pattern [3] also sug-
gests that rapidly dispersing prey or highly mobile prey (large d)
are inconsistent with spatial patterns.

The limitations of continuum taxis models are that structure
and dynamics of food resources are restricted to smooth func-
tions. The model predicts dynamics of large groups for whom
densities are an adequate representation. At the same time, the
strength of the approach is that it provides an analytical baseline
for a spatial theory of frequency dependant foraging and aggre-
gation. Further, building on established chemotaxis aggregation
models, it adds a frequency-dependent dynamics that could pro-
vide general insights into pattern formation and self-organizing
systems.

ACKNOWLEDGMENTS. N.T. and B.V. were supported by a Natural Sciences and
Engineering Research Council (NSERC) discovery, and an accelerator grant
(to L.E.-K.). J.P.H. has been supported by an NSERC Postdoctoral Fellowship.
While conducting part of this research, L.E.-K. was a Distinguished Scholar in
Residence of The Peter Wall Institute for Advanced Studies and supported by
National Institutes of Health (R01 GM086882 to Anders Carlsson).

1. Beauchamp G (2008) A spatial model of producing and scrounging. Anim Behav
76:1935–1942.

2. Giraldeau LA, Caraco T (1999) Social Foraging Theory (Princeton Univ Press, Princeton).
3. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond

237:37–72.
4. Levin SA, Segel LA (1976) Hypothesis for origin of planktonic patchiness. Nature

259:659.
5. Levin S (1992) The problem of pattern and scale in ecology: The Robert H. MacArthur

award lecture. Ecology 73:1943–1967.
6. Maini PK, Painter KJ, Chau HNP (1997) Spatial pattern formation in chemical and

biological systems. J Chem Soc Faraday Trans 93:3601–3610.
7. Cross MC, Hohenberg PC (1993) Pattern formation outside of equilibrium. Rev Mod

Phys 65:851–1112.
8. Eftimie R, De Vries G, Lewis MA (2007) Complex spatial group patterns result from

different animal communication mechanisms. Proc Natl Acad Sci USA 104:6974–6980.
9. Vicsek T, Czirók A, Ben-Jacob A, Cohen I, Shochet O (1995) Novel type of phase transi-

tion in a system of self-driven particles. Phys Rev Lett 75:1226–1229.
10. Payton D, Daily M, Estowski R, Howard M, Lee C (2001) Pheromone robotics. Auton

Robots 11:319–324.
11. Helbing D, Schweitzer F, Keltsch J, Molnar P (1997) Active walker model for the

formation of human and animal trail systems. Phys Rev E Stat Nonlin Soft Matter Phys
56:2527–2539.

12. Hoffman W, Heinemann D, Wiens JA (1981) The ecology of seabird feeding flocks in
Alaska. Auk 98:437–456.

13. Lukeman R, Li YX, Edelstein-Keshet L (2010) Inferring individual rules from collective
behavior. Proc Natl Acad Sci USA 107:12576–12580.

14. Guttal V, Couzin ID (2010) Social interactions, information use, and the evolution of
collective migration. Proc Natl Acad Sci USA 107:16172–16177.

15. Barta Z, Flynn R, Giraldeau L (1997) Geometry for a selfish foraging group: A genetic
algoritm approach. Proc R Soc London Ser B 264:1233–1238.

16. Ohtsuka Y, Toquenaga Y (2009) The patch distributed producer-scrounger game.
J Theor Biol 260:261–266.

17. Lee JM, Hillen T, Lewis MA (2009) Pattern formation in prey-taxis systems. J Biol Dyn
3:551–573.

18. Keller EF, Segel LA (1970) The initiation of slime model aggregation viewed as an
instability. J Theor Biol 26:399–415.

19. Horstmann D (2011) Generalizing the Keller-Segel model: Lyapunov functionals,
steady state analysis, and blow-up results for multi-species chemotaxis models in
the presence of attraction and repulsion between competitive interacting species.
J Nonlinear Sci 21:231–270.

20. Green JEF, et al. (2010) Non-local models for the formation of hepatocyte-stellate cell
aggregates. J Theor Biol 267:106–120.

21. Hillen T, Painter K (2001) Global existence for a parabolic chemotaxis model with
prevention of overcrowding. Adv Appl Math 26:280–301.

22. Vickery WL, Giraldeau L, Templeton J, Kramer D, Chapman C (1991) Producers,
scroungers and group foraging. Am Nat 137:847–863.

23. Giraldeau LA, Beauchamp G (1999) Food exploitation: Searching for the optimal join-
ing policy. Trends Ecol Evol 14:102–106.

24. Clark CW, Mangel M (1984) Foraging and flocking strategies: Information in an
uncertain environment. Am Nat 123:626–641.

25. Barnard CJ, Sibly RM (1981) Producers and scroungers: A general model and its
application to captive flocks of house sparrows. Anim Behav 29:543–550.

26. Wiens JA (1976) Population responses to patchy environments. Annu Rev Ecol Syst
7:81–120.

27. Kareiva P, Mullen A, Southwood R (1990) Population dynamics in spatially complex
environments: Theory and data [and discussion]. Philos Trans R Soc 330:175–190.

28. Hanski I (1983) Coexistence of competitors in patchy environment. Ecology
64:493–500.

29. Schneider DC (1992) Thinning and clearing of prey by predators. Am Nat 139:148–160.
30. Heath JP, Gilchrist HG, Ydenberg R (2010) Interactions between rate processes with

different timescales explain counterintuitive foraging patterns of arctic wintering
eiders. Proc R Soc London Ser B 277:3179–3186.

Tania et al. PNAS ∣ July 10, 2012 ∣ vol. 109 ∣ no. 28 ∣ 11233

EC
O
LO

G
Y

A
PP

LI
ED

M
AT

H
EM

AT
IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1201739109/-/DCSupplemental/Appendix.pdf


The role of social interactions in dynamic patterns of

resource patches and forager aggregations

Supplementary Information Appendix

Nessy Tania 1, Ben Vanderlei 2, Joel Heath 3, and

Leah Edelstein-Keshet 3

1 Department of Mathematics and Statistics, Smith College,

Northampton, MA 01063
2 Department of Mathematics and Statistics, University of the Fraser Valley,

Abbotsford, BC V2S 7M8, Canada
3 Department of Mathematics, University of British Columbia,

Vancouver, BC V6T 1Z2, Canada

10.1073/pnas.1201739109



Contents

1 Simple Forager Model 2
1.1 Nondimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Linear Stability Analysis of the Uniform Steady State . . . . . . . . . . . . . 3

2 Foragers and Exploiters Model 5
2.1 Nondimensionalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Advantage of Strategies for Exploiters vs Foragers 6
3.1 Relative advantages with a static food patch . . . . . . . . . . . . . . . . . . 6
3.2 Relative advantage with a nonrenewable resource. . . . . . . . . . . . . . . . 7
3.3 Model variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Linear Stability Analysis for Foragers-Exploiters Model 10

5 Switching between the strategies 14
5.1 Random switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Switching based on perceived relative advantage . . . . . . . . . . . . . . . . 14

5.2.1 Purely local sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.2 Long range (global) sensing . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.3 Finite sensing range . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Reproductive fitness depends on relative advantage of strategies 17

7 Numerical Methods 20

1



1 Simple Forager Model

We start by considering a simplified model in which only the interactions between foragers
and food are tracked. Let P (x, t) be the density of the predator/forager, and C(x, t) density
of prey/food. We assume that foragers and prey items have some random motion (motility
coefficients Dp and Dc respectively), and that foragers are attracted by the gradient of prey
with taxis coefficient χp. Upon encounter by foragers, prey is consumed at a rate Λ. Finally,
prey accumulates (by migration or reproduction at rate R) and decays (rate M). We consider
motion within a one-dimensional domain of length L. The equations are

∂P

∂t
= Dp

∂2P

∂x2
− χp

∂

∂x

(

P
∂C

∂x

)

, (S1a)

∂C

∂t
= Dc

∂2C

∂x2
− ΛPC − M C + R . (S1b)

We assume that movements of forager and prey are constrained to be within the domain by
imposing no-flux boundary conditions,

∂P

∂x

∣
∣
∣
∣
x=0,L

= 0 and
∂C

∂x

∣
∣
∣
∣
x=0,L

= 0 . (S2)

This guarantees that the total forager population remains constant,

∫ L

0

P (x, t)dx = Φp . (S3)

The system above has a spatially-uniform steady state solution,

P (x, t) =
Φp

L
and C(x, t) =

R

Λ(Φp/L) + M
. (S4)

1.1 Nondimensionalization

To minimize the number of parameters in the following analysis, we first nondimensionalize
the model as follows:

x = X̂x̄ , t = T̂ t̄ , P = P̂ p̄ , C = Ĉc̄ , (S5)

where X̂ , T̂ , P̂ , Ĉ are the scaling constants, and x̄ , t̄ , p̄ , c̄ are the non-dimensional variables.
We then choose the following nondimensionalization/scaling constants:

• The space variable x is scaled by the length of the domain, X̂ = L. Note that, x̄ then
ranges from 0 to 1.

• Time t is scaled by the timescale of a random search by foragers over distance L,
T̂ = L2/Dp.

• The forager density P is scaled by the average density over the domain, P̂ = Φp/L.

2



• The food density C is scaled by the maximum level of the initial food density, Ĉ =
Cmax = max

0≤x≤L
C(x, 0).

This results in the following set of non-dimensionalized equations:

∂p̄

∂t̄
=

∂2p̄

∂x̄2
− vp

∂

∂x̄

(

p̄
∂c̄

∂x̄

)

, (S6)

∂c̄

∂t̄
= d

∂2c̄

∂x̄2
− λp̄c̄ − µ c̄ + r . (S7)

The new dimensionless parameters are:

• vp =
χpĈT̂

L2
=

χpCmax

Dp

. Thus, if there is an increase by one Ĉ unit of food density

over distance L, the forager will move with speed vpDp/L. Additionally, we can also
interpret vp as the ratio of the timescale for random walk to that for taxis (over one
unit of food gradient):

vp =
random walk timescale

taxis timescale
=

L2/Dp

L/(χpĈ/L)
(S8)

• d = Dc/Dp defines the ratio of mobility of prey compared to predators.

• λ = ΛT̂ P̂ =
ΛLΦp

Dp

i.e. λ/T̂ is the typical rate of prey consumption by a typical

predator population size ΦP .

• µ = MT̂ =
ML2

Dp

and r = RT̂/Ĉ =
RL2

DpCmax

, similarly, are the non-dimensional rates

of prey death/emigration and birth/immigration respectively.

The conservation of predators (S3) becomes

∫ 1

0

p̄(x̄, t̄)dx̄ = 1. For the remainder of this

section, we drop the bar superscript from all the non-dimensionalized variables.

1.2 Linear Stability Analysis of the Uniform Steady State

We consider

∂p

∂t
=

∂2p

∂x2
− vp

∂

∂x

(

p
∂c

∂x

)

, (S9a)

∂c

∂t
= d

∂2c

∂x2
+ h(c, p), (S9b)

For generality, we leave h(c, p), as an unspecified function with only the following restrictions:

• hp =
∂h

∂p
< 0 reflecting prey consumptions by foragers.
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• hc =
∂h

∂c

∣
∣
∣
∣
(c=co,p=p0)

< 0, where h(c0, p0) = 0.

The second condition guarantees that the corresponding spatially uniform (ODE) system has
a stable steady state solution. As p is conserved, in the spatially uniform case, it remains as
a constant parameter, specifically, p = p0 = 1 as determined by the conservation equation.

The corresponding ODE consists of a single equation
dc

dt
= h(c, p0), and (c0, p0) is a stable

equilibrium of that ODE.
Note that the result to be presented below is independent of the functional form of h(c, p)

as long as this stability condition is satisfied. For example, we can assume a linear prey death
and constant renewal rate, h(c, p) = −λpc− µc + r, or incorporate a logistic growth of prey,
h(c, p) = −λpc + rp

(
1 − p

K

)
.

The spatially uniform steady state solution, of the PDEs corresponds to p(x, t) = p0 = 1
and c(x, t) = c0 (obtained by setting h(c0, p0) = 0). To analyze the stability of the uniform
steady-state solution, we introduce small perturbation p̃(x, t) and c̃(x, t) about the uniform
solution, i.e. consider

p(x, t) = p0 + p̃(x, t) and c(x, t) = c0 + c̃(x, t). (S10)

Substituting these back into (S9) and linearizing about (p0, c0), we obtain

∂p̃

∂t
=

∂2p̃

∂x2
− vp p0

∂2c̃

∂x2
, (S11a)

∂c̃

∂t
= d

∂2c̃

∂x2
+ hpp̃ + hcc̃, (S11b)

where hp, hc are partial derivatives of h(c, p) evaluated at (c0, p0). With the no-flux boundary
conditions, the linearized system can be solved by looking for solution of the form,

p̃(x, t) = p1 cos(qx)eωt and c̃(x, t) = c1 cos(qx)eωt. (S12)

with q = ±π,±2π, .... Substituting back into (S11), we obtain the following algebraic system,
[

ω + q2 −vp p0 q2

−hp ω + d q2 − hc

](
p1

c1

)

=

(
0
0

)

. (S13)

To get a nontrivial/nonzero perturbation, the determinant of the matrix must be zero. Then,

(ω + q2)(ω + dq2 − hc) − vp p0 q2 hp = 0. (S14)

Expanding,
ω2 + (q2 + dq2 − hc)

︸ ︷︷ ︸

B

ω + q2(q2d − hc − vp p0 hp)
︸ ︷︷ ︸

C

= 0. (S15)

Solving for ω, we get ω = (−B ±
√

B2 − 4C)/2. Note that B > 0 since hc < 0. Thus, to
get instability with ω > 0, we must have C < 0. This is not possible since both hc, hp < 0.
Therefore, it is not possible to get spatial instability in this system regardless of the form
h(c, p).
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2 Foragers and Exploiters Model

We now consider the model for foragers (with density P (x, t)), which move up food gradients.
The second group consists of exploiters, with density S(x, t), which move up gradients of
forager density. The full unscaled system consists of

∂P

∂t
= Dp

∂2P

∂x2
− χp

∂

∂x

(

P
∂C

∂x

)

, (S16a)

∂S

∂t
= Dp

∂2S

∂x2
− χs

∂

∂x

(

S
∂P

∂x

)

, (S16b)

∂C

∂t
= Dc

∂2C

∂x2
− Λ(P + S)C − M C + R . (S16c)

Here, we assume that both types have the same random mobility coefficient Dp. The foragers
are attracted by the gradient of food with the prey-taxis coefficient χp. Meanwhile the
exploiters move up the gradient of foragers with a taxis coefficient χs. Preys are consumed
at a rate Λ by both forager and exploiters. As before, we assume that the prey accumulates
by migration or reproduction at rate R and decays at rate M . We impose no-flux boundary
conditions at x = 0 and L, and obtain the following conservation equations for foragers and
exploiters,

∫ L

0

P (x, t)dx = Φp and

∫ L

0

S(x, t)dx = Φs (S17)

We denote the total population of foragers as Φtot = Φp + Φs.

2.1 Nondimensionalization

As before, we performed non-dimensionalization using a similar scaling,

x = X̂x̄ = Lx̄ , t = T̂ t̄ =
L2

Dp

t̄

P = P̂ p̄ =
Φtot

L
p̄ , S = Ŝs̄ =

Φtot

L
s̄ , C = Ĉc̄ = Cmax c̄ = max

0≤x≤L
C(x, 0)c̄ . (S18)

This results in the following system of non-dimensionalized equations,

∂p̄

∂t̄
=

∂2p̄

∂x̄2
− vp

∂

∂x̄

(

p̄
∂c̄

∂x̄

)

, (S19a)

∂s̄

∂t̄
=

∂2s̄

∂x̄2
− vs

∂

∂x̄

(

s̄
∂p̄

∂x̄

)

, (S19b)

∂c̄

∂t̄
= d

∂2c̄

∂x̄2
− λ(p̄ + s̄)c̄ − µ c̄ + r . (S19c)

Henceforth, we drop the bar superscript from all the non-dimensionalized variables. The
nondimensional parameters are defined as follows:

vp =
χpĈT̂

L2
=

χpCmax

Dp

, vs =
χsP̂ T̂

L2
=

χs

Dp

Φtot

L
, d =

Dc

Dp

,
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λ = ΛT̂ P̂ =
ΛLΦtot

Dp

, µ = MT̂ =
ML2

Dp

, and r = R
T̂

Ĉ
=

RL2

Dp

. (S20)

The parameters have meanings analogous to those in the simpler model. Finally, following
the above scaling, the conservation conditions (S17) become

∫ 1

0

(p(x, t) + s(x, t))dx = 1 , (S21a)

∫ 1

0

p(x, t)dx = φp ,

∫ 1

0

s(x, t)dx = 1 − φp . (S21b)

Now, φp represents the fraction of foragers in the population while 1 − φp gives the fraction
of exploiters.

3 Advantage of Strategies for Exploiters vs Foragers

To compare the benefit of being a forager vs. an exploiter, we define the average instan-

taneous per-capita rate of food consumption fs, fp by a typical individual in each group:

fp(t) =

∫ 1

0
λp(x, t)c(x, t)dx
∫ 1

0
p(x, t)dx

=

∫ 1

0
λp(x, t)c(x, t)dx

φp

, (S22a)

fs(t) =

∫ 1

0
λs(x, t)c(x, t)dx
∫ 1

0
s(x, t)dx

=

∫ 1

0
λp(x, t)c(x, t)dx

1 − φp

. (S22b)

The cumulative per capita food intake for each type, Fp and Fs, is obtained by integrating
over time,

Fp(t) =

∫ t

0

fp(s)ds and Fs(t) =

∫ t

0

fs(s)dt . (S23)

We use the ratio of these two values as an indicator of the relative success of the two strategies.
We define

b(t) =
fs(t)

fp(t)
, B(t) =

Fs(t)

Fp(t)
, (S24)

so that b(t) measures the instantaneous relative advantage over time while B measures the
cumulative relative advantage (“benefit”) over time. Equally advantagious strategies imply
b = 1 or B = 1. If exploiters are overall more successful in obtaining food then b > 1, B > 1.

3.1 Relative advantages with a static food patch

We start first by considering a static spatially nonuniform food patch c(x) that does not
get depleted and steady state forager/exploiter profiles p(x), s(x). Having a static food
distribution allows us to analytically obtain the steady state distributions of the foragers
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and exploiters and calculate the benefit ratio (S24). We consider a patch of food with a
single peak over the domain, of the form

c(x) = cos(πx) + 1 . (S25)

This trigonometric form allows us to analytically calculate the steady state distributions of
foragers and exploiter with ease. Solving for the steady state solutions of (S19a)-(S19b) with
the no flux boundary conditions, we obtain:

p(x) = p0 exp(vpc(x)) and s(x) = s0 exp(vsp(x)) , (S26)

where the constant p0 and s0 are to be computed to obtain the corresponding fraction of
foragers and exploiters, i.e.

∫ 1

0

p(x) = φp ⇒ p0 =
φp

∫ 1

0
exp(vpc(x))dx

, (S27)

∫ 1

0

s(x) = 1 − φp ⇒ s0 =
1 − φp

∫ 1

0
exp(vsp(x))dx

. (S28)

Thus, the steady state solutions have explicit dependence on φp, vp and vs. From (S24), we
can also have

Fp =
1

φp

∫ 1

0

c(x)p(x)dx , Fs =
1

1 − φp

∫ 1

0

c(x)s(x)dx , B =
Fs

Fp

. (S29)

The integrals can be computed numerically, leading to B which depends on three parameters
φp, vp and vs. In Figure 3 of the main paper, we show the neutral boundary curve for which
B = 1 for three different values of the fraction of foragers, φp. Exploiters have the advantage
above the curve, and foragers below the curve. For small vp, the value of vs for B = 1 is
initially relatively constant (plateau). Here, the distribution of foragers is approximately
uniform in space with p(x) ∼ φp with very small gradient. In the limiting case of vp = 0, we
can compute the corresponding value of vs for which B = 1 to be

vs =
ln(1 − φp)

φp

. (S30)

Hence, we see that for small vp values, the corresponding value of vs is relatively constant
and is simply determined by the value of φp. This explains the plateau at small vp. As vp

is increased, the equal benefit vs value begins to drop. With increasing vp value, foragers
have greater prey taxis value, so the forager distribution becomes more peaked towards the
maximum prey location and it has larger gradient. In this case, the value of the exploiter
taxis parameter vs need not be as large in order to still achieve B = 1.

3.2 Relative advantage with a nonrenewable resource.

Here we discuss relative advantages of the strategies when food is depleted by consumption.
The full model is given in Eqs. (S19) but to model food being depleted, we assume its
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production rate and its basal decay rate are zero, so r = 0 and µ = 0 in (S19c), so that only
consumption by foragers and exploiters is considered. We start with a normalized Gaussian
(bell-shaped) initial resource distribution to model a fresh food patch, centered at x = 0,
with characteristic “width” σ:

c(0, x) =
1√
2πσ

exp

(

− x2

2σ2

)

, (S31)

The normalization constant assures that each test simulation uses the same total amount
of food, which is simply distributed more widely (large σ) or clumped (small σ). For the
populations, we assumed an initial uniform density of each type, with proportions p(0, x) =
φp and s(0, x) = φs = 1 − φp.

In Fig. S1, we considered the effect of varying the forager taxis parameter vp for three
values of vs. As vp is increased, the relative success of the exploiters decreases. On the other
hand, when vs >> vp the exploiters effectively match the location of the foragers and the
food exposure is the same for the two groups giving B = 1. For vp >> vs the ratio B reaches
another limiting value below 1. In this limit, the exploiters find a little food simply due to
their initial uniform distribution.
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Figure S1: A plot that shows the effect of varying vp for fixed values of vs.

3.3 Model variants

The results described in the paper were based on a specific model. However, to check the
robustness of our conclusions we carried out tests to see how slightly changing the model
affects those conclusions. We looked at a number of variants, but here we present only two
biologically relevant scenarios.

• Effect of cost associated with primary foraging

We modified the model by incorporating a cost to the primary foragers. (This could
stem from energy expenditure for exposing or chasing prey.) In Figure S2, we redefine
the relative success of exploiters to be B = Fs/(Fp−Cp) where Cp depicts the constant
cost to the foragers. In comparison to Fig. 4 in the main manuscript (where Cp = 0),
here we see a wider parameter regime where B > 1, as expected.
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• Effects of exploiter sensing food directly

Suppose that exploiters also search for resources on their own (though with lower
sensing acuity than foragers). Then, the modified equation for S is

∂s

∂t
= ∇2s − vs∇ · [s∇p] − αvp∇ · [s∇c] , (S32)

The plot of relative success as the parameter α is varied is shown in Figure S3. In this
case, we see an increase in the relative success of the exploiters. The success increases
when α increases, and eventually, exploiters have a greater advantage than foragers.

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

1.2

φp

B
=

F
s
/
F

p

 

 

C
p
=0.05

C
p
=0.15

C
p
=0.25

Figure S2: As in Fig. 4 with patch width σ = 0.1 but with foraging cost Cp so that the
relative success is Fs/(Fp − Cp).
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Figure S3: As in Fig. 4 but with the exploiters also detecting the prey directly with taxis
parameter α vp (where α ≤ 1).
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4 Linear Stability Analysis for Foragers-Exploiters Model

Here we perform the linear stability analysis of the full forager-exploiter-prey (PSC) system
as given in Eqn. (S19). The reader may wish to consult [1] for analysis of a related (but
more general) case of two interacting populations with one common attractor.

The homogenous steady state solution (HSS) for this system is

p(x, t) = φp , s(x, t) = 1 − φp , c(x, t) = co =
r

µ + λ
. (S33)

To study the stability of this uniform steady state, we determine whether small perturbations
will grow in time. Let

p(x, t) = φp + p̃(x, t), s(x, t) = (1 − φp) + s̃(x, t), and c(x, t) = co + c̃(x, t) (S34)

where quantities with tildes are small. For this to be a solution, p̃, s̃, c̃ need to satisfy the
no flux boundary condition. Further, these must satisfy the conservation condition (S21),
we assume ∫ 1

0

p̃(x, t)dx = 0 and

∫ 1

0

s̃(x, t)dx = 0 . (S35)

Substituting (S34) into the PDEs (S19) and keeping only terms up to first order, we get

p̃t = p̃xx − vp φp c̃xx, (S36)

s̃t = s̃xx − vs (1 − φp) p̃xx, (S37)

c̃t = dc̃xx − λ co(s̃ + p̃) − (λ + µ)c̃. (S38)

For ease of notation, from now on we denote Vp = vp φp, and Vs = vs (1 − φp). We seek
solutions for p̃, s̃, c̃ of the form:

p̃ = p1 cos(qx) exp(wt), s̃ = s1 cos(qx) exp(wt), c̃ = c1 cos(qx) exp(wt). (S39)

To satisfy the no-flux and zero integral conditions, we need q = nπ where n is a non-zero
integer. Substituting, we obtain the following algebraic equations:

p1w = q2(−p1 + Vpc1) , (S40)

s1w = q2(−s1 + Vsp1) , (S41)

c1w = −dc1q
2 − λco(p1 + s1) − (λ + µ)c1 , (S42)

or in the matrix-vector form,




w + q2 0 −Vpq
2

−Vsq
2 w + q2 0

λco λco w + dq2 + (λ + µ)









p1

s1

c1



 =





0
0
0



 . (S43)

To obtain p1, s1, and c1 not all zero, the determinant of the matrix must be zero. This
results in the following cubic equation for the eigenvalue w,

w3 + Aw2 + Bw + C = 0 , (S44)
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where

A = (2 + d)q2 + (µ + λ) , (S45)

B = (1 + 2d)q4 + (λcoVp + 2(µ + λ))q2 , (S46)

C = dq6 + (λcoVp(1 + Vs) + (µ + λ))q4 . (S47)

Using Descartes’ rule of sign for polynomials, we first note that the number of positive real
roots is always zero since A, B, C > 0 given any set of non-trivial parameter values. In
fact, there are only two possibilities: (i) (S44) has three negative real roots, or (ii) it has
one negative real root and a pair of complex-conjugate roots. Thus, we can conclude that
any instabilities to the stationary solution must arise from the second case, namely when
the complex-conjugate root transition from having a negative to a positive real part (Hopf
bifurcation). Thus, no static standing pattern can arise in this system and only oscillatory
patterns can be found.

We continue the analysis by using the Routh-Hurwitz condition to determine when the
complex root pair has positive real part. It can be shown that this occurs when AB−C < 0.
We write this condition as a function of the wave number q. For instability, we need

F (q2) = AB − C = q2(αq4 + βq2 + η) < 0, (S48)

where the coefficients are

α = 2(d + 1)2, (S49)

β = 4(λ + µ)(d + 1) + Vpλco(1 + d − Vs), (S50)

η = (λ + µ)[Vpλco + 2(λ + µ)]. (S51)

Note that α, η > 0 while β could have either sign depending on Vs. To find instability, we
now seek modes F (q2) < 0. As illustrated in Figure S4, there are three distinct possibilities,
classified by the number of real positive roots of F :

(A) No positive root: If β ≥ 0 then the roots of the quadratic equation αx2 +βx+η = 0 are
either real with negative signs, or complex. Similarly, if β < 0 but β2 − 4αη < 0, then
the roots of αx2 + βx + η = 0 are complex, so F (q2) ≥ 0 for all q. Thus, no instability
will arise in this case.

(B) One positive roots: If β < 0 and β2 − 4αη = 0, then q2 = 0 and q2 = −β/2α are both
roots but F (q2) ≥ 0 still. This case will also not yield any unstable solution.

(C) Two positive roots: If β < 0 and β2 − 4αη > 0, then there are two positive roots to
αx2 + βx + η = 0 and there is a range of q where F (q2) < 0, consistent with instability.
We examine this case further.

For the instability case (C), the relationship between the root condition above and the
parameter values used in the model (see definitions of α, β, and η in (S49)-(S51)) can be
analyzed further:
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Figure S4: Sketch of different possible behavior for F (q2), from left to right, case (A), (B),
and (C), where F (q2) has one, two, or three positive roots respectively.

(I) First, to have β < 0, we need

(1 + d)

(

4
λ + µ

Vp λ co

+ 1

)

< Vs. (S52)

(II) Next, by manipulating the algebraic expressions for β2 − 4αη > 0, we obtain the
inequality,

8(d + 1)
λ + µ

Vp λ co

<
(Vs − (d + 1))2

Vs

. (S53)

In essence, both conditions can be interpreted in terms of a threshold value for Vs for the
existence of a range of wave numbers q that produce instability (F (q2) < 0. (See Fig. S4,
right panel.) The two inequalities (S52)-(S53) can be simplified further into one (equation
S58). Readers can skip the next paragraph if they are not interested in the details of the
algebraic manipulations.

Let ξ =
Vp λ co

µ + λ
. Then the two inequality can be rearranged as follows:

(I) Inequality (S52) becomes
(4 + ξ)(d + 1)

ξ
< Vs. (S54)

(II) Inequality (S53) can be rearranged to

8

ξ
<

(Vs − (d + 1))2

Vs(d + 1)
≡ H(Vs). (S55)

In Figure S5, a plot of the function H(Vs) is seen to cross the line y = 8/ξ at two
places, namely

V +
s =

(ξ + 4)(d + 1) + 2(d + 1)
√

2(ξ + 2)

ξ
, V −

s =
(ξ + 4)(d + 1) − 2(d + 1)

√

2(ξ + 2)

ξ
(S56)

To satisfy the inequality (S53), we need Vs < V −
s or Vs > V +

s .
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However, we see that if Vs < V −
s , then the first inequality will not be satisfied. However,

if Vs > V +
s , the first inequality is immediately satisfied. Thus it is only possible to obtain

instability if
(ξ + 4)(d + 1) + 2(d + 1)

√

2(ξ + 2)

ξ
< Vs, (S57)

or substituting, ξ =
Vp λ co

µ + λ
back,

(d + 1)

(

1 +
4(µ + λ)

Vp λ co

+
2
√

µ + λ

Vp λ co

√

2(Vp λ co + 2(µ + λ))

)

< Vs. (S58)

The inequality (S58) is shown graphically in Figure S5 as Vs > V +
s .

0 (d+1) Vs

y

y =
(Vs−(d+1))2

Vs

y = Vs

V −

s

V +
s

V 1
s

Figure S5: Threshold condition for Vs: the critical value, V ∗
s , is given by the maximum

of V 1
s (due to (S52)) and V +

s (from (S53)). When Vs > V ∗
s , the linear stability analysis

predicts that there is a certain range of q such that F (q2) < 0, giving rise to instability of
the homogenous steady state and formation of the dynamic pattern.

A simplified inequality can be found by observing that when Vs is large enough, the curve

y =
(Vs − (d + 1))2

Vs

can be approximated by the line y = Vs − 2(d + 1). Thus, applying

inequality (S53), we have

8(λ + µ)(d + 1)

Vp λ co

+ 2(d + 1) . Vs. (S59)

Recalling that Vp = vpφp and Vs = vs(1 − φp), and since co = r/(λ + µ),

8(λ + µ)2(d + 1)

vp φp λ r
+ 2(d + 1) . vs (1 − φp). (S60)

This leads to Eqn. [3] in the main article, arriving at the condition for instability.
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5 Switching between the strategies

Here we investigate how switching between strategies affects the dynamics and population
structure. In this section we describe only behavioural switching that occurs on a short
timescale relative to the life span of individuals, e.g. by learning or copying behaviour of
group-mates. To model behavioural switching, we set hp(p, s) 6= 0, hs(p, s) 6= 0 in Eqs. [2]
and simulating the full model as described previously.

We considered a number of simple rules for switching

5.1 Random switching

The simplest mathematical case, random switching at some constant rate is included here.
This case already reveals spatiotemporal dynamics that are seen in more realistic model
variants shown later. Here, we set hp(p, s) = as − bp = −hs(p, s) in Eqs. [2]. For low values
of the switching parameters a, b, results are very similar to those previously discussed. In
Fig. S6, we set a = b = k (equal switching from each strategy) and varied the switching rate
k (as well as vs and vp). Our numerical exploration suggests that the switching terms have a
destabilizing effect. For the basic case shown in Fig. 2 (vs = vp = 10), we see that increasing
the switching rate leads to dominance of a higher mode of oscillation. Starting with a case
where no pattern forms and there is no switching (k = 0), we find that increasing k leads
to the emergence of an oscillatory pattern and in a high switching rate regime, we find a
previously absent standing wave pattern. This pattern arises from damped cycles which
stall with p and s high at one end of the domain, and resource peaks high at the opposite
end. This counterintuitive segregation stems from the fact that extremely rapid switching
between strategies results in conflicting cues for the preferred direction of motion (towards
food vs towards other foragers). This can lead to a self-reinforced peak of foragers in the
“wrong place”, that overexploit local resources even though better patches are available.
This type of stagnation is seen only in a range of parameters that are at the limit of rapid
switching. This case, though mathematically interesting is less relevant biologically.

We also looked at the fraction of foragers and exploiters over time (as in Fig. 6). For
the constant switching case, the long term fraction of each type is constant over time. This
stems from the fact that the switching is spatially independent and there is a tendency to
equilibrate at the ratio s/p = b/a locally, as well as globally (integrated over the domain).

5.2 Switching based on perceived relative advantage

We next considered the biologically motivated case where switching stems from the perceived
relative advantages of the strategies. We adopted the switching rates

s → p : α(bi) =
k

(1 + bi)
, p → s : β(bi) =

kbi

(1 + bi)
, (S61)

with k a maximal switching rate and bi a measure of the perceived benefit to scrounging.
We considered three possible measures for the perceived scrounging benefit bi. Note in this
scheme, when bi > 1, then β > α. Thus as the benefit to exploiters increases, the switching
rate to adopt this strategy also increases. The reverse is true when bi < 1. When bi = 1,
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Figure S6: Spatiotemporal profile for exploiter density s(x, t) with constant switching term
hp(p, s) = −hs(p, s) = as − bp. Here we set switching rates equal a = b = k. Top panels:

vs = vp = 10, and switching rate increasing from left to right, i.e. k = 0, 5, 10 (no switching,
intermediate, and rapid switching) Bottom panels: as above, but with vs = 20 and vp = 1:
The uniform steady state solution is stable with no switching (k = 0), and standing wave
pattern is observed for high switching rate (k = 10). All other parameter values as in Fig. 2.

both strategies yield the same advantage and β = α = k/2, so there is an equal likelihood
to switch from one strategy to another.

5.2.1 Purely local sensing

We first considered purely local sensing of information, where an individual at position x
and time t decides to switch based only on food and densities of foragers and exploiters at
(x, t). This is a limiting case of short-range sensing when the sensing range is very small
relative to patch and domain sizes. For this case, we used

fp,loc(x, t) =
λp(x, t)c(x, t)
∫ 1

0
p(y, t)dy

=
λp(x, t)c(x, t)

φp(t)
, (S62)

fs,loc(x, t) =
λs(x, t)c(x, t)
∫ 1

0
s(y, t)dy

=
λs(x, t)c(x, t)

φs(t)
, (S63)
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for which

blocal(x, t) =
fs,loc(x, t)

fp,loc(x, t)
=

s(x, t)

p(x, t)

φp(t)

φs(t)

Then, it is evident that the switching at different locations in the domain, blocal(x, t) depends
only on the ratios of scroungers to producers locally (at x) and globally (averaged over the
domain), but not at all on the local food density (so long as c(x, t) > 0)

In this extreme local limit, the switching behavior yields no new spatiotemporal dynamics.
In simulations over a wide range of parameter values (same values as we used in Fig. S6),
we saw only behavior that was already captured by the simplest model without switching.
This is not too surprizing, in view of the fact that purely localized switching does not bias
decisions based on food availability, as shown in the expression for blocal(x, t). The same
conclusion can be drawn for switching with a very small (but not purely local) sensing range
rsense, where an integral of the form

∫
p(x, t)c(x, t)dx is well approximated by the expression

p(x, t)c(x, t)rsense.

5.2.2 Long range (global) sensing

This is a second limiting case, when the sensing range is very large relative to typical domain
size. Here switching is assumed to depend on per capita food consumption average over
distances comparable to the entire domain. Hence, we defined

bglobal(t) =
fs(t)

fp(t)
,

where fs, fp are given by Eqs. S22, i.e., each is a per-capita food consumption averaged over
the entire domain 0 ≤ x ≤ 1.

Results are similar to those shown of Fig. S6. However, the fractions of foragers and
exploiters can vary in time as shown in Fig. 6 of the main paper. Here, the switching rate is
found to vary in space and time, depending on the relative advantage for exploiters.

For completeness, in Fig. S7, we show spatiotemporal dynamics of all three variables
when vs = 20 and vp = 1 (i.e. when the uniform steady-state is stable without switching).

5.2.3 Finite sensing range

Here we considered the case that individuals have some finite sensing range of radius R and
that they base switching decisions on perceived relative per-capita food consumption of the
strategies within this finite sensing range. Then

fp,R(x, t) =

∫ x+R

x−R
λp(y, t)c(y, t)dy
∫ 1

0
p(y, t)dy

=

∫ x+R

x−R
λp(y, t)c(y, t)dy

φp(t)
, (S64)

fs,R(x, t) =

∫ x+R

x−R
λs(y, t)c(y, t)dy
∫ 1

0
s(y, t)dy

=

∫ x+R

x−R
λp(y, t)c(y, t)dy

φs(t)
, (S65)

and we take

bR(t) =
fs,R(t)

fp,R(t)
,
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Figure S7: Oscillatory spatial patterns in forager, exploiter, and resource densities obtained
when switching is based on relative per capita food consumption averaged over the entire
domain, bglobal. Solution corresponds to the bottom panel of Figure 6 of the main manuscript
and uses the same parameter values (vs = 20, vp = 1, and k = 19; note that k = 20 yields a
standing pattern).

to determine the switching rate.
As we increase the sensing range, R, we observe a transition between the two previously

described limiting cases. Using vs = 20 and vp = 1, we found that the uniform steady-
state solution is stable until R ≈ 0.4. In Fig. S8, we showed two spatiotemporal oscillatory
patterns obtained as R is increased. The fraction of foragers and exploiters also oscillates in
time as shown in Fig. S9 with increasing amplitude as the sensing range, R, is increased.

6 Reproductive fitness depends on relative advantage

of strategies

Reproduction usually takes place on a slower time scale than movement and food consump-
tion. Hence, we avoid simply adding growth rates to the taxis PDEs. Instead, we subdivided
the problem into dynamics within and between (non-overlapping) generations.

Briefly, we assumed that the model (S19) describes the short-term interactions and re-
source consumption of the population during a single generation, for time t0 ≤ t ≤ tgen,
where tgen is the length of a generation. At t = tgen, we assumed that all individuals produce
progeny, based on the per capita share of the resource that they consumed (averaged over
the entire time t0 ≤ t ≤ tgen). Parents die, and are replaced by the next generation (semel-
parous reproduction). We then assumed that the ratio of the two types of progeny reflects
the relative advantage of the two strategies.

This basic idea can be implemented in many ways, taking a variety of reproductive
rules (Malthusian, logistic, competitive, etc.). Most such assumptions lead to net growth
in the total size of the population, and (since growth described by exponentials or other
nonlinear functions) the ratio of foragers to exploiters is not easily expressed in closed form.
Consequently, the system has to be explored numerically, leading to combinatorial explosion
in the number of possible assumptions, parameter values, and conditions to test.

Such studies form interesting future directions, but here we chose an alternative that
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Figure S8: Oscillatory spatial patterns in forager, exploiter, and resource densities obtained
when switching is based on perceived relative advantage bR(t) over some finite sensing range
R (vs = 20, vp = 1, k = 20, top: R = 0.4 and bottom: R = 0.8).

leads to a simple, yet elegant way of linking one generation to the next. We used the rule

s(T + 1) = α
Fs(T )

F (T )
, p(T + 1) = α

Fp(T )

F (T )
, (S66)

for T the generation number, and F = Fs + Fp. This rule could describe a competition
for some fixed number of “nesting sites”, with relative success determined by the energy
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Figure S9: Dynamics of the fraction of foragers and exploiters. Parameter values as in Fig. S8
(vs = 20, vp = 1, k = 20, top: R = 0.4 and bottom: R = 0.8).
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acquired during the timespan 0 < t < tgen. Then (S66) implies that

s(T + 1) + p(T + 1) = α = constant,

so the total population is constant, and we can divide each of (S66) by α and rearrange
terms to obtain

φp(T + 1) =
Fp(T )

F (T )
=

Fp(T )

Fp(T ) + Fs(T )
=

1

1 + Fs(T )
=

1

1 + B(T )
, (S67)

The simplicity of this rule allows us to use results at hand to understand long-term dynamics
as a proof of principle.

As discussed in the main paper, B(T ) can be expressed as some relationship between the
(fixed) proportion φp(T ) of foragers within the given generation, and other parameters that
characterize the foragers and food distribution. The latter gives rise to some relationship, of
the form

B(T ) =
Fs(T )

Fp(T )
= f(φp(T ), σ), (S68)

where σ is a vector of parameters. As an example, we have curves in Fig. 4 of the main
paper with σ representing characteristic food patch width. (This is a specific example,
but other assumptions about the food and other parameter values for the strategies would
produce particular curves of related shape.) As a general rule, we expect f(φp(T ), σ) to be
an increasing function of φp, since, as argued in the paper, an exploiter does better (resulting
in larger value of B) when the population has more foragers to follow. Thus the derivative
df/dφp is positive.

We can use both Eqs. (S67) and (S68) to write the following discrete difference equation
linking successive generations:

φp(T + 1) = g(φp, σ) =
1

(1 + f(φp(T ), σ))
. (S69)

Analysis of such equations is easily accomplished. First note that steady states satisfy

φp,SS =
1

(1 + f(φp,SS, σ))
. (S70)

These are located at the intersection of the two curves represented by equations Eqs. (S67)
and (S68). Moreover the stability of the steady state is conditional on |dg/dφp| < 1 (with
the derivative evaluated at the steady state). But

dg

dφp

∣
∣
∣
∣
SS

= − 1

(1 + f(φp,SS, σ))2

df

dφp

.

By previous remarks, this expression is always negative, signifying that decay to steady state
(if stable) is always accompanied by damped oscillations, as shown in Fig. 7 of the main
paper. The first term is always smaller than 1 in magnitude. Thus stability hinges on the
magnitude of df/dφp at the steady state. In Fig. 7 of the main paper, |df/dφp| < 1 (the
curve was sufficiently shallow at the crossover point) so that the steady state is stable. Here
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we consider the possibility that other instances (values of parameters, food distributions,
or interactions) could, in principle, lead to a steeper curve. This can lead to instability
of the steady state so that the population structure would fluctuate between low and high
proportions of foragers in successive generations.

We can capture the inter-generational dynamics either by iterating the map in (S69),
or, as shown in the paper, by bouncing between the curves φp(T ), B(T ), φ(T + 1), B(T +
1) . . . . While it is not our purpose here to systematically explore all possible shapes of
the relationship f(φp, σ), we show in Fig S10 an illustrative schematic example where f is
sufficiently steep that stable cycles are produced.
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Figure S10: When the relationship between the fraction of foragers and the advantage to
exploiters, B(T ) = f(φp, σ), is sufficiently steep (which depends on a combination of pa-
rameters for interactions, domain, and food distribution), then it is possible in principle to
obtain sustained fluctuations in the population structure over many generations. Low and
high fractions of foragers will be seen in alternating generations in such cases.

7 Numerical Methods

Our numerical methods included a standard finite difference scheme for the diffusion terms,
and a centered difference scheme for the nonlinear advection terms, resulting in a conservative
scheme. Typical grid spacing for simulations were of size 0.005 (200 grid points), although
finer grid solutions were computed in order to check for convergence. Time integration was
handled explicitly, with the size of the time step being dictated by the size of the spatial
discretization as well as model parameters such as vs and vp. Typical values were of size
10−5. The zero-flux boundary condition was enforced by including ghost points outside
the domain and relating the value of the solution at these points to values of the solution
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at grid points inside the computational domain. All integrals of the solution (such as the
computation of food contact) were computed using a midpoint approximation centered on
the finite difference grid.
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