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Calsequestrin mediates changes in spontaneous calcium release profiles
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a b s t r a c t

Calsequestrin (CSQ) is the primary calcium buffer within the sarcoplasmic reticulum (SR) of cardiac
cells. It has also been identified as a regulator of Ryanodine receptor (RyR) calcium release channels by
serving as a SR luminal sensor. When calsequestrin is free and unbound to calcium, it can bind to RyR
and desensitize the channel from cytoplasmic calcium activation. In this paper, we study the role of CSQ
as a buffer and RyR luminal sensor using a mechanistic model of RyR–CSQ interaction. By using various
asymptotic approximations and mean first exit time calculation, we derive a minimal model of a
calcium release unit which includes CSQ dependence. Using this model, we then analyze the effect of
changing CSQ expression on the calcium release profile and the rate of spontaneous calcium release. We
show that because of its buffering capability, increasing CSQ increases the spark duration and size.
However, because of luminal sensing effects, increasing CSQ depresses the basal spark rate and
increases the critical SR level for calcium release termination. Finally, we show that with increased bulk
cytoplasmic calcium concentration, the CRU model exhibits deterministic oscillations.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Under normal circumstances, the contractile activity of a
cardiac myocyte is completely controlled by a propagating
electrical signal known as an action potential. Calcium mediates
this excitation–contraction coupling process and release occurs
through a mechanism known as calcium-induced calcium release
(CICR). The level of myoplasmic calcium concentration must be
tightly regulated as disturbances in its regulation may decrease
the cardiac pumping efficiency. Moreover, a spontaneous calcium
release can trigger an action potential.

Mathematical models have been widely used to study calcium
regulation in various cell types. However, the multiscale nature of
the system presents a significant challenge in building tractable
and useful models of calcium regulation at the whole-cell or
tissue level. In the presence of positive feedback and high gain,
local control is the sole mechanism in keeping the calcium-
induced calcium release process in check. Thus, whole-cell
calcium release is inherently spatially localized and stochastic in
nature. Recent modeling efforts have focused on calcium regula-
tion at a small patch-size or a release unit level (Greenstein et al.,
2006; Hinch, 2004; Hinch et al., 2004; Tanskannen et al., 2007;
Thul and Falcke, 2006). In this paper, we build upon these
previous efforts and derive a minimal model for a calcium release

unit (CRU). This reduced description is then used to study the
rates and properties of spontaneous calcium releases (Ca2 + spark).
Specifically, we investigate how the level of expressions of
calsequestrin, a buffer and a regulator of the calcium releases
channels, changes nature of calcium release.

1.1. Calcium release in cardiac cells

During an action potential, voltage-gated L-type calcium
channels (LCC) are activated as the cell membrane becomes
depolarized. The resulting influx of calcium then serves as a
trigger for more calcium to be released through ryanodine
receptors (RyR) which are found on the surface of the sarcoplas-
mic reticulum (SR), an organelle that serves as a large calcium
pool. The calcium-induced calcium release (CICR) mechanism
exhibits a high degree of positive feedback and high gain in that
the amount of calcium released from the SR is much larger than
the input influx through the LCC. Because of positive feedback
and high gain, the control of the CICR process appears to be
impossible. However, in a normal cell, the process is clearly
regulated as calcium release is graded in that the amount of
calcium released is proportional to the influx amount. An impor-
tant regulatory mechanism that allows for graded response is
known as local control where calcium release occurs as a spatially
localized event that does not spread to neighboring sites under
normal physiological conditions (Stern, 1992).

A cell contains a large number of calcium release units (CRU),
each of which consists of a separate diadic space and a junctional
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SR (JSR) compartment. Within a diadic space, an individual LCCs
can interact with apposing RyRs. Because of positive feedback, an
individual CRU responds in an all-or-none manner. The units can
also possibly affect one another through calcium diffusion within
the common bulk myoplasmic space and network SR (NSR).
Recently, computational models that include these features of
calcium handling have been used to simulate graded response
under high gain in a mechanistic manner (Greenstein and
Winslow, 2002; Rice et al., 2002; Sobie et al., 2002; Stern,
1992). To do so, large-scale Monte Carlo simulations of single
channel dynamics within each CRU are performed with the result
that these studies are computationally demanding. To keep
computational run-times reasonable, the number of CRUs simu-
lated is usually much smaller than the actual number found
within a cell. Additionally, the large computational cost makes
extensive studies of a variety of physiological conditions un-
feasible. In particular, it is difficult to asses the occurrence of rare
events from these stochastic simulations.

Hinch and others have presented a framework for building
intracellular Ca2 + models that are computationally minimal but
still capture the underlying local control nature of the process
(Greenstein et al., 2006; Hinch, 2004; Hinch and Chapman, 2005;
Hinch et al., 2004; Williams et al., 2007). Hinch showed that the
calcium release in a CRU constitutes an excitable system (Hinch,
2004; Hinch and Chapman, 2005). Then, using various asymptotic
timescale reductions and utilizing the law of large numbers, a
deterministic model of Ca2 + release which consists of ordinary
differential equations is built. The authors show that their
mechanistic model exhibits graded response with high gain
(Greenstein et al., 2006; Hinch et al., 2004). In these models,
however, the diadic Ca2 + concentration is assumed to be
dependent on the bulk NSR Ca2 + rather than the local JSR level.
A generalization by Williams et al. (2007) allows for the previous
assumption to be removed. The resulting model is composed of a
system of Fokker–Planck equations describing the probability
density function for the JSR Ca2 + concentration in the CRU. All of
these models are useful in that they are computationally cheaper
to simulate than large-scale Monte Carlo simulations and most
importantly, they can be used to study the probability of rare
spontaneous calcium release events.

1.2. The role of calsequestrin in regulating Ca2 + release

Recent experimental studies have shown that calsequestrin
(CSQ), a native SR protein plays a significant role in regulating the
CICR process (Beard et al., 2005; Gyorke et al., 2004; Kubalova
et al., 2004; Terentyev et al., 2003). CSQ primarily serves as the
main Ca2 + buffer in the SR. It allows for a large amount of Ca2 +

which is required for contraction to be stored inside the cell while
maintaining a low level of free Ca2 + during rest. In addition, CSQ
has also been shown to serve as a luminal SR Ca2 + sensor for RyRs
by interacting with other intrinsic SR membrane proteins,
Triadin-1 and Junctin. When the SR content is low, CSQ inhibits
the RyR channels by strong interaction with Triadin-1 and Junctin.
Upon elevation of the SR Ca2 +, this inhibition is relieved as Ca2 +

binding sites on CSQ become increasingly occupied thus mini-
mizing the interaction with the Triadin-1/Junctin complex
(Gyorke et al., 2004).

Mutations of the cardiac CSQ gene, CASQ2, have been reported to
lead to a variant of catecholaminergic polymorphic ventricular
tachycardia (CPVT), a class of hereditary ventricular arrhythmias
which may lead to sudden death under b- adrenergic stimulation
during stress or exercise (Lahat et al., 2001; Terentyev et al., 2006;
Viatchenko-Karpinski et al., 2004). A missense mutation has been
suggested to affect CSQ buffering capacity through disruptions in

Ca2+ binding (Lahat et al., 2001; Viatchenko-Karpinski et al., 2004)
and another mutation is thought to cause an impairment in the
RyR–CSQ interaction (Terentyev et al., 2006). These mutations are
thought to promote a calcium overload situation which can induce
spontaneous calcium releases and oscillations. However, the precise
mechanisms for how these mutations lead to whole-heart events,
namely catecholamine-induced arrhythmias, remain unclear.

Experimental studies at the single cell level have further
elucidated how CSQ modulates the CICR process through its
buffering capacity and its role as the luminal sensor for the RyR
channel (Kubalova et al., 2004; Terentyev et al., 2003). Using
adenovirus mediated gene transfection, the authors were able to
change the level of CSQ expressed inside isolated rat myocytes
and show how these changes affect the basic properties of the
Ca2 + release process. A two to three fold increase in CSQ
expression causes an increase in the magnitude and duration of
calcium release from a CRU (calcium spark) and a reduction in the
spontaneous spark frequency. Meanwhile, reducing the CSQ
expression to 30–70% of the normal level has the opposite effect:
calcium spark magnitude and duration are depressed while the
occurrence of spontaneous sparks increases (Terentyev et al.,
2003). Generation of spontaneous calcium waves has been
studied using permeabilized myocytes where the cytosolic Ca2 +

concentration can be controlled and increased (Kubalova et al.,
2004). Similar to the observation for Ca2 + sparks, higher CSQ
expression increases both the wave period and amplitude
(obtained by averaging the total Ca2 + dye fluorescence signal
from the entire cell). In contrast, lower CSQ expression decreases
the period and amplitude of calcium waves. However, CSQ
expression does not appear to change the propagation velocity
of calcium waves (Kubalova et al., 2004).

In this paper, we adapt the methodology proposed by Hinch to
derive a two-state stochastic process description of a CRU that
includes the effects of RyR–CSQ interactions. We then use this
model to study the effect of calsequestrin (CSQ) in regulating the
local control process. We separately consider the effect of CSQ as a
buffer alone, and as a luminal sensor to RyR. We look more closely
at how luminal sensing changes the calcium release process by
comparing the profiles of calcium release and spark generation
obtained from a model that takes into account luminal sensing to
those from a model that only includes the buffering effect. From
our comparison, we show that different results from an existing
experimental study (Kubalova et al., 2004) can only be explained
by luminal sensing effects.

Recent studies by Stevens et al. (2009) showed that whole-cell
oscillation is observed under high cytoplasmic calcium concen-
tration. By tracking the level of calcium inside the SR, the authors
found that increasing cytoplasmic calcium in permeabilized
myocytes resulted in spontaneous calcium oscillations due to
periodic closing and opening of the RyR channels. Motivated by
their finding, we study the effect of increasing the cytoplasmic
calcium level in our CRU model. By analyzing the model, we show
how the onset of oscillation is modulated by the CSQ level.

The outline of this paper is as follows. First, we derive a
simplified stochastic Ca2 + model. We begin by giving the mathe-
matical description of a CRU, similar to the one given by Hinch
(2004), Hinch and Chapman (2005). By making use of mean first
exit time calculations from the master equations, we are able to
approximate the behavior of the RyR cluster within a CRU as a
two-state process without making the assumption that the
channel cluster acts as one mega-channel, a common assumption
in the existing literature (Hinch et al., 2004; Williams et al., 2007).
We then use the reduced model to study changes in calcium
release and oscillation under modulation of CSQ expression levels.
Finally, we end the paper by summarizing our findings and
addressing the limitations of our models.
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2. Mathematical model of a calcium release unit

2.1. Calcium concentrations

Consider a CRU as illustrated in Fig. 1. Suppose that there are N
RyRs within the unit. The rate of change of the amount of calcium
within a diadic space of volume v ds is given by the equation,

vds
dcds

dt
¼
XN

i ¼ 1

Xigrðcjsr#cdsÞ#gdðcds#cmyoÞ, ð1Þ

where cds is the calcium concentration in the diadic space. The
first term on the right-hand side corresponds to Ca2 + flux through
RyRs, where Xi is a random variable taking on the value of 0 or 1
depending on whether the i-th RyR receptor is closed or open,
respectively. The junctional SR concentration is denoted by cjsr,
and gr is the single channel RyR permeability. The second term
describes the diffusive flux between the diadic space and the bulk
myoplasmic space with calcium concentration, cmyo, and flux rate
gd. A term corresponding to the LCC influx can also be added into
the equation but we omit this term here, as we wish to consider
only the process of spontaneous calcium release.

Similarly, a differential equation describing the calcium
concentration in the JSR, cjsr, can be written as

vjsr
dcjsr

dt
¼ bjsr #

XN

i ¼ 1

Xigrðcjsr#cdsÞþgtrðcnsr#cjsrÞ

 !

, ð2Þ

where gtr is the diffusion rate between the NSR compartment,
with concentration cnsr, to the JSR. Buffering in the JSR occurs due
to the presence of calsequestrin with fast calcium binding kinetics
(Beltran et al., 2006; Swietach et al., 2008; Shannon et al., 2004).
It is thus accounted for in this model using a rapid buffering
approximation (Keener and Sneyd, 1998),

bjsr ¼ 1þ
BqKq

ðKqþcjsrÞ2

 !#1

: ð3Þ

Bq is the total CSQ buffer concentration and Kq is the
CSQ-Ca2 +disassociation constant. The level of free CSQ buffer, q,
can also be written as an instantaneous function of the free JSR
calcium, cjsr,

qðcjsrÞ ¼
BqKq

Kqþcjsr
: ð4Þ

In the equations for cds above, there is no buffering term. This is a
simplifying assumption which can be modified as needed. It
should be noted that the significance of calcium buffering in the
diadic space is unclear. The volume of the diadic space is so small
that the rate at which Ca2 + binds to a cytosolic buffer is much
slower than the rate at which cds equilibrates to cmyo. Moreover,
since the CRU only represents a small portion of the cell with a
relatively small volume, we assume that calcium concentrations

in the JSR and the diadic space are spatially homogeneous. The
parameter values used for the model can be found in Table 1.

The timescale over which calcium concentration in the diadic
space equilibrates with the concentration in the bulk myoplasm is
tds ¼ vds=gd. This has been estimated to be on the order of a few ms
which is much quicker than the timescale of other processes, such
as JSR refilling and channel gating, which occur on the order of ms
(Bers, 1991; Hinch, 2004; Hinch et al., 2004; Sobie et al., 2002).
Thus, using a quasi-equilibrium approximation, the diadic space
concentration, cds, can be written as a function of the number of
open RyRs, n,

cdsðnÞ ¼ cmyoþn
gr

gd
cjsr: ð5Þ

In deriving this relationship, we also take gr=gd51 as the single
channel permeability of RyR is much smaller than the rate of
diffusion between the diadic space and the bulk myoplasm. The
derivation of these approximations which includes non-dimen-
sionalization steps in order to find small parameters, can be found
in Hinch (2004).

2.2. Ryanodine receptor and calsequestrin interaction

To study how CSQ modulates the calcium release process in
the CRU, we build a Markov model for RyR activity that accounts
for the channel interaction with CSQ. The full model is given in
Fig. 2. RyR activity is assumed to be modulated by cytosolic Ca2 +

concentration. When calcium is low, the channel is in the closed
state C1. As the calcium concentration increases, four Ca2 + ions
can bind to the channel bringing it to the C2 state and a transition
to the conducting state O can then be made. To account for CSQ
interaction, we assume that free CSQ with concentration q, can
bind and unbind to the RyR channel causing it to be in the B and U
states, respectively. It is found that increasing luminal Ca2 +

increases channel activity by increasing the number of openings
rather than prolonging the open time duration (Gyorke and
Gyorke, 1998). Based on this, we assume that CSQ affects the RyR
activity by changing its open rate. When a CSQ molecule is bound,
the channel is inhibited so the open rate k2 is multiplied by a
constant a which is less than one. To preserve detailed-balance,
we multiply the transition from OU to OB by a as well.

This six-state model can be reduced to a two-state model by
assuming that calcium and CSQ binding and unbinding are fast so
that these transitions can be assumed to be in quasi-equilibrium.
The resulting reduction gives

C "
Aðc,qÞ

B
O, ð6Þ

where

Aðc,qÞ ¼ k2
c4

K4
r þc4

K3þaq
K3þq

! "
, ð7Þ
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Fig. 1. Diagram of calcium release units. (A) Illustration of a cell composed of a number of CRUs. (B) Each unit has a separate diadic space and a junctional SR compartment
and is coupled to its neighbors through the bulk myoplasmic space and the network SR.
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with K4
r ¼ k#1=k1, K3 ¼ k#3=k3, and B¼k#2. Note that when the

luminal sensing parameter a is set to one or without any free CSQ,
q¼0, the open rate reduces to the standard calcium-dependent
activation form. Parameter values for this RyR model are given in
Table 1.

Note that a refractory or inactivated state is not included in
this RyR model. Results from past studies suggest that inactiva-
tion by cytosolic calcium does not play a significant role in
controlling calcium release in cardiac cells (Terentyev et al.,
2003). Instead, when CSQ is bound to RyRs, the channel becomes
less active but it can reopen if the diadic space calcium
concentration increases. Fig. 3A shows the dependence of free
CSQ on cjsr as given in Eq. (4). As cjsr decreases, the level of free
CSQ that can bind to the RyR channel increases. CSQ binding
impedes the activity of RyRs by decreasing the open rate and
increasing the threshold for activation. This is shown in the Fig. 3B
where aðcdsÞ is plotted for varying cjsr values.

3. Ca2 + release unit as a two-state stochastic process

3.1. Deterministic limit

Before analyzing the stochastic behavior of the model, we first
study it in its deterministic limit. In the limit that the total
number of RyRs, N, goes to infinity, we can use the law of large
numbers to replace the random variable for the number of open
channels, n, at any given time, by its expected value. Switching
from a discrete integer-valued n to the continuous fraction x¼n/N
of the number of open channels, the ordinary differential equation

for the mean can be written by applying mass action principle
on (6),

dx
dt
¼ AðcdsðxÞ,qðcjsrÞÞð1#xÞ#Bx: ð8Þ

The function cds(x) is similar to (5),

cds ¼ cmyoþ
Ngr

gd
xcjsr: ð9Þ

Note that in Table 1, the maximum release rate Ngr is a fixed
quantity even though the deterministic N-1 limit is taken.

Following the quasi-equilibrium approximations steps used to
obtain (5), the dynamics of cjsr are given by

vjsr
dcjsr

dt
¼ bjsrð#Ngrxcjsrþgtrðcnsr#cjsrÞÞ: ð10Þ

The two coupled ordinary differential equations (8) and (10)
form a fast–slow excitable system. Compared to x(t), cjsrðtÞ
changes on a slower timescale. Fig. 4 illustrates how the two
variables change over time once a spark is initiated. On Fig. 4A,
the time course for x(t) and cjsrðtÞ during the spark are plotted.
Fig. 4B shows the phase plane of the system with the sample
trajectory plotted. We note the similarity of this excitable CRU
system with cubic-like nullcline, to the Fitzhugh Nagumo model
for action potentials (Keener and Sneyd, 1998).

In this deterministic limit, spontaneous spark generation is not
possible as the equilibrium solution corresponding to the rest
state is stable. Deterministic sparks can be generated only by
perturbing sufficiently away from the stable rest state such as by
starting from a non-equilibrium initial condition, as done for this
particular trajectory, or by adding an input term to cdsðxÞ. Once a
spark is generated, the trajectory quickly moves to the right
branch of the x-nullcline and moves down the nullcline until it
falls off. Calcium release terminates at this point. Following that,
the trajectory quickly switches to the left branch of the nullcline
and moves up towards the equilibrium point as cjsr recovers
through refilling by the NSR. It is important to note that in the
deterministic system, termination occurs at one particular cjsr

value near the location of the minimum of the x-nullcline. Only
after cjsr drops to this critical value does calcium release
terminate.

Table 1
List of parameters values for the CRU model.

Parameter Definition Value Source

v ds Diadic space volume 10#4 mm3 [1,2]

v jsr JSR volume 0:01mm3 [1,2]

cmyo Bulk myoplasmic [Ca2 +] 0:1mM [1,2]
cnsr Network SR [Ca2 +] 1000mM [1,2]
gd Flux rate between the myoplasm and the diadic space 0:286mm3 ms#1 [1,2]

gtr Flux rate between the JSR and the NSR 0:001mm3 ms#1 [1,2]

N Number of RyRs 40 [1]
gr Permeability of a single RyR 0:01=Nmm3 ms#1 [1]

B RyR closing rate 2 ms#1 Simplified [1]
k2 Maximum RyR open rate 12 ms#1 Simplified [1]
KR RyR-Ca2+ dissociation constant 6mM Simplified [1]
m Number of Ca2+ binding sites on RyR 4 [1]
a Scaling for RyR open rate when CSQ is bound 0. 25 Chosen less than 1
K3 RyR–CSQ dissociation constant 2.0 mM [3]a

Bq Total [CSQ] in the JSR 2.7 mM [4]
Kq CSQ-Ca2 + dissociation constant 0.65 mM [5]

[1]: Hinch (2004), [2]: Sobie et al. (2002), [3]: Beard et al. (2005), [4]: Shannon et al. (2000), [5]: Terentyev et al. (2002).

a The value of K3 is estimated such that when cjsr is above 4 mM, the fraction of CSQ-bound RyR is less than 10%, reflecting the observation that luminal [Ca2 +] Z4 mM
dissociates CSQ from the junctional face membrane (Beard et al., 2005).
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Fig. 2. Markov model for RyR–CSQ interaction.
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3.2. Stochastic CRU

To consider spontaneous spark generation and the possibility
of spark termination before the critical cjsr is reached, single
channel activities must be tracked. The behavior of a cluster of N
RyRs in the CRU can be described by the birth–death process,

S0 "
a0

b1

S1 "
a1

b2

S2" & & &"
bn

Sn"
an

& & &"
aN#1

bN

SN , ð11Þ

where Sn is the state with n RyR channels open. The rates are

an ¼ ðN#nÞAðcdsðnÞ,qðcjsrÞÞ and bn ¼ nB: ð12Þ

The forward rate an indicates that there are N#n channels
available to open where each can open at a rate AðcdsðnÞ,qðcjsrÞÞ as

given by (7). Similarly, bn accounts for the fact that there are n
open channels that can each close at the rate B. The corresponding
master equation for this process is listed in Appendix A.

In Fig. 5, we show a realization obtained by simulating the full
stochastic system consisting of the birth death process (11) above
and Eq. (2) for cjsr dynamics. Starting from the deterministic
equilibrium point, a spontaneous spark is generated after a long
wait time. During this time, small fluctuations in the number of
open channels can occur. However, a full CRU release is not
generated until a threshold is reached. This threshold lies close to
the middle branch of the x-nullcline of the deterministic system
or the local minimum between the two maxima of the stationary
distribution of the birth–death process (see Appendix A). Once the
threshold is reached, the number of open channels increases
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quickly and the stochastic trajectory fluctuates about the right
branch of the deterministic x-nullcline as shown in Fig. 5. As the
cjsr value drops, the likelihood of release to terminate increases.
For this particular realization, calcium release terminates before
the deterministic critical JSR level is reached.

Having shown the result obtained from simulating the full
stochastic CRU description, we outline below the derivation of a
reduced stochastic description. This reduction is essential in
particular as a spontaneous CRU release is rare with a long
waiting time for occurrence. Thus, relying on full simulation to
obtain an accurate statistics of CRU release is not practical, if not
unfeasible.

1. In the deterministic limit discussed above, a CRU behaves as a
fast-slow excitable system. The fraction of open channels x(t)
acts as a fast variable while the JSR calcium cjsr has much
slower dynamics. This timescale separation is illustrated
clearly in Fig. 4A. More specifically, the timescale for cjsr to
equilibrate with the bulk network SR cnsr is given by
vjsr=bjsr & gtr ¼ 15230 ms, while the timescale for x to decay
back to the zero release state is 1/B ¼ 2 ms. Based on this, we
can make another quasi-equilibrium approximation, namely
that x changes instantaneously given a cjsr value. In essence,
we restrict x to the left and right branches of the nullcline
given in Fig. 4B. We denote the left branch, representing the
low conductance state of the CRU, as x0ðcjsrÞ and the right
branch, corresponding to a high conductance state, as x1ðcjsrÞ.
The JSR calcium, cjsr, is now the only dynamic variable tracked
and is given by the equation

vjsr
dcjsr

dt
¼ bjsrð#NgrxiðcjsrÞcjsrþgtrðcnsr#cjsrÞÞ, ð13Þ

with i¼0 or 1.
2. Unlike in the deterministic case, we allow x to switch between

the two branches stochastically. Thus, spontaneous spark
generation and early spark termination are possible. The
switching rates can be obtained by considering a birth–death
process for channel openings and solving the corresponding
mean first passage time problems (see Appendix B for details
of the derivation). Then, the fraction of open channels, x, can be

written as the following two-state stochastic process:

x0ðcjsrÞ "
konðcjsrÞ

koff ðcjsrÞ
x1ðcjsrÞ, ð14Þ

where the rates are the inverse of the mean first passage times
whose analytic formulas are given in Eqs. (B.6) and (B.8) in
Appendix B,

konðcjsrÞ ¼
1

T 01ðcjsrÞ
and koff ðcjsrÞ ¼

1
T 10ðcjsrÞ

: ð15Þ

The transition between x0 and x1 can occur at any cjsr value,
albeit at highly variable rates, and is not restricted to any
critical points on the deterministic nullcline. The dependence
of the transition rates on JSR level are shown in Fig. 6 where
T 01 and T 10 are plotted as functions of cjsr. Both mean
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transition times are modulated by cjsr and can change by
orders of magnitude as the JSR concentration varies within a
physiological range.

To summarize, we have thus far reduced the CRU model to a
two-state stochastic process described by Eqs. (13) and (14). The
transition rates between the two states can be computed
analytically and are dependent on the JSR Ca2 + concentration as
shown in Fig. 6. Unlike the full model which consists of N random
variables describing each individual RyR, a simulation of our
model only requires a single random variable to be tracked. This
reduction still accounts for multiple channel activity and we do
not treat all RyRs in the CRU as a single mega-channel as in
Williams et al. (2007), where the number of open channels in a
CRU is strictly either zero or a fixed positive value. In our model,
x0 and x1 are not of constant value but rather are dependent on
cjsr. Although for a wide range of cjsr value, x0 and x1 appears
relatively constant, their value can change significantly in some
critical range of JSR concentration. For example near the
deterministic termination point, the x-nullcline changes sharply
as cjsr varies.

3.3. Spark profiles of the two-state CRU model

Spontaneous sparks are rarely observed in healthy cardiac cell,
but under a calcium overload condition, the frequency of Ca2 +

sparks increases. This can be seen in the plot for T 01 in Fig. 6. As
cjsr increases, the expected time for a spontaneous spark
generation decreases. When cjsr is 1000mM, T 01 is 970 s. This
result can be translated to the whole-cell level which is more
experimentally relevant. Conversion to a whole-cell spark rate is
obtained by taking the inverse, 1=T 01, and multiplying it by the
number of CRUs within a cell which we assume to be 10,000.
Then, when the JSR Ca2 + is at 1000mM, the average whole-cell
spark rate is 10 sparks per second. Increasing cjsr to 1200mM
approximately triples the spark rate to 30 sparks per second.
T 10 is the expected spark termination time if cjsr value were

held fixed throughout release. As can be seen in Fig. 6, T 10 is large
and does not decrease to a level that is physiologically relevant
until cjsr is very low. Thus, to study the actual spark termination
process, the dynamics of cjsr needs to be taken into account. We
define the spark termination time as the time at which switching
from x1 to x0 occurs. Suppose the CRU is in a releasing state x1. Let
tterm be the random variable describing the time at which
termination of release occurs. The probability of termination per
unit time is 1=T 10ðcjsrðtÞÞ. Defining P(t) as the cumulative

distribution function for the termination time tterm, i.e.,
PðtÞ ¼ Prfttermrtg, we can then write,

dP
dt
¼

1
T 10ðcjsrðtÞÞ

ð1#PðtÞÞ: ð16Þ

Solving this equation, we get

PðtÞ ¼ 1#exp #
Z t

0

1
T 10ðcjsrðsÞÞ

ds

! "
: ð17Þ

The probability density function can be obtained by differentiat-
ing P(t),

pðtÞ ¼
1

T 10ðcjsrðtÞÞ
exp #

Z t

0

1
T 10ðcjsrðsÞÞ

ds

! "
: ð18Þ

Spark termination results predicted from the deterministic and
stochastic CRU models are shown in Fig. 7. The probability density
function and the cumulative distribution function are plotted in
Fig. 7A and B, respectively, while the result obtained from
simulating the deterministic system (8) and (10) is shown in
Fig. 7C. We define the deterministic termination time as the time
at which cjsr reaches its minimum, i.e. the time before the refilling
process begins. From the mean and variance calculated using the
probability distribution function, the spark duration predicted
from the stochastic reduction is 7.3 72.4 s. This average value is
slightly higher than 6.6 s, the value obtained from the deter-
ministic model. However, the peak of the probability distribution
function lies below the time deterministic spark termination time.
Moreover, the cumulative distribution function shows that the
probability that a spark is terminated before the critical cjsr value
is approximately 50%. Note that in obtaining the distribution and
density functions, we use the cjsr value obtained from Eq. (13),
however, once the critical cjsr value is reached, we no longer allow
cjsr to change. The profile for the JSR Ca2 + used is shown in dashed
line in Fig. 7C. With this assumption, once the critical value is
reached, the spark termination time simply follows an expo-
nential distribution with a constant rate. As time progresses, the
cumulative distribution function tends to one.

4. Results

4.1. Fundamental effects of luminal sensing

We first study the intrinsic effects of luminal sensing by
comparing results obtained from our RyR model with a¼1 and
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0.25. When a¼1, the dependence of the RyR open rate A(c, q) on
the calsequestrin level (hence JSR concentration) drops out as
shown in Eq. (7). Thus, in this case, calsequestrin simply serves as
a buffer in the SR. As the value of a decreases below one, the
luminal sensing effect becomes more important. Basic results
obtained from these two cases are shown in Fig. 8. In Fig. 8A, the
mean exit time for spark generation, T 01, and termination, T 10,
are first computed under varying JSR Ca2 + load. When cjsr is high,
the mean spontaneous spark time generation, T 01, for the two
models are of the same order. However, as cjsr starts to drop, the
T 01 value obtained from the RyR–CSQ model is higher reflecting
RyR luminal sensing. When the JSR load is low, the interaction
between RyRs and CSQ is strong, so the channel becomes
desensitized and spontaneous spark generation becomes less

likely. The expected time for spark termination, T 10, obtained
when luminal sensing is included, is lower compared to the one
obtained when a¼1. As a result, the average spark duration is
shorter when ao1. This is also confirmed by the deterministic
CRU simulation of a spark given in Fig. 8B. Thus, termination of
release occurs earlier and at a slightly higher JSR load when ao1.

4.2. Effects of calsequestrin amount on calcium release profiles

We now study how calsequestrin modulates calcium release
by changing the total amount of calsequestrin in the system, Bq.
Throughout our analysis, we specifically consider three different
levels of CSQ expression: a normal level, a 30% decrease, and a
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350% increase. These values are specifically chosen so that we can
compare our theoretical results to the experimental study by
Kubalova et al. (2004). We also assume that changing CSQ
expression does not affect the free NSR calcium concentration.
As a result, the steady-state value of free JSR calcium concentra-
tion remains relatively fixed regardless of the value of Bq. This
assumption is consistent with experimental observations
(Kubalova et al., 2004) where CSQ level does not change the free
SR calcium level.

We first look at the results obtained using the full model with
a¼0.25, when both CSQ buffering and luminal sensing are taken
into consideration. The steady-state results from the determinis-
tic system are given in Fig. 9. For the three different values of Bq

considered, the bifurcation diagrams which show the dependence
of the nullcline dx/dt¼0 (see Eq. (8)) on cjsr, are shown in Fig. 9A.
The limit-point bifurcation where the stable upper branch
solution is lost predicts the critical cjsr value at which calcium
release terminates deterministically. When Bq is decreased, the
critical cjsr value also decreases thus termination of release occurs
at a lower cjsr. This is shown further in Fig. 9B where we plot the
critical cjsr value itself (limit point bifurcation) as a function of Bq.
As the JSR content becomes depleted, the concentration of free
CSQ increases thus allowing it to interact with RyR and causing it
to become desensitized so that the open rate, aðcds,qÞ, is lowered.
Hence, when the total concentration of CSQ, Bq, is higher, this
luminal sensing effect is stronger, causing termination of release
to occur at a higher JSR Ca2 +. This occurs despite the fact that the
total amount of JSR calcium is higher when Bq is larger. In contrast,
experimental measurements by Kubalova et al. (shown in Figs. 3B
and 4B of Kubalova et al., 2004) showed no detectable changes in
the amplitude of SR Ca2 + release as CSQ expression levels were
varied. It is likely that the changes of JSR level are not detectable
since the critical value only varies within 100mM as Bq is varied by
three orders of magnitudes.

To determine spark duration, it is not sufficient to compute the
switching time T 10 as the dynamics of cjsr need to be taken into
account. How long a spark lasts is strongly dependent on how fast
cjsr changes with time and the CSQ buffering effect must be taken
into account. We use results obtained from solving the determi-
nistic two-variable system to determine how different Bq values
affect the calcium release process. The time courses of various
variables during a simulated calcium spark are shown in Fig. 10.
From the steady-state analysis, a higher Bq value causes the
release to terminate at a higher cjsr value. This is observed in
Fig. 10A and B. A smaller amount of the CSQ level leads to a higher
maximum value for the fraction of open channels, x(t), and a
lower value for the minimum of cjsrðtÞ. The dynamics of cjsr are
also influenced by the scaling factor bjsr given in Eq. (3). As Bq

grows, the value of bjsr decreases so that cjsrðtÞ changes more
slowly with time. This reflects the fact that when the CSQ level is
higher, more Ca2 + can bind to it although the rest level of free
Ca2 + inside the SR is not changed. Thus with a higher Bq value,
even though release terminates at a slightly higher free cjsr value,
the time taken to reach this critical value is longer and the
amount of Ca2 + released is larger. The calcium transient in the
diadic space, can be computed using the quasi-steady-state
approximation (9) and is plotted as a function of time in
Fig. 10C. The maximum values of the diadic calcium concen-
tration are fairly similar among the three cases though the
amplitude is still largest for the lowest Bq case. However, note that
durations of calcium release are more variable. For the highest
CSQ expression case, the period of Ca2 + release is longest; thus
the total amount of calcium released is larger leading to a larger
spark.

To isolate the CSQ buffering effect, we now perform the same
computations as above but omitting luminal sensing by setting
a¼1. Since the channel open rate A(c,q) given in Eq. (7) no longer
has dependence on the CSQ level, there is no change in the
bifurcation diagram (Fig. 9A). The critical cjsr value at which
release terminates is fixed regardless of Bq value. However,
varying the amount of buffer will still change the Ca2 + release
duration as well as the length of the refilling period. The amount
of CSQ expression alters the Ca2 + spark properties similar to that
shown previously in Fig. 10, namely that increasing Bq lengthens
the spark duration. Specific results for the case of a¼1 are shown
in Fig. 11. The value of Bq simply determines how fast cjsrðtÞ
changes with time. Termination of release occurs at the same
critical cjsr value for all three cases. Without any luminal sensing,
the buffering effect becomes very prominent. When Bq is largest,
calcium release lasts for a long period of time and is very
extended compared to that obtained from the previous ao1 case.
Thus, the release amount is also much larger when Bq is higher.

Finally, the comparison of release duration as a function of CSQ
amount for two different values of a is shown in Fig. 12A. When
a¼1, changing Bq only affects the buffering factor bjsr. As a result,
the release duration is simply a linear function of Bq since the
time-constant 1=bjsr for the dcjsr=dt equation, depends linearly on
Bq (see Eq. (3)). This is no longer the case when ao1. For small Bq

values, the release durations for the two cases are similar. In this
case, most of the calsequestrin population is calcium bound and
does not interact with RyR. However, as Bq is increased, the effect
of luminal sensing becomes more prominent as release duration is
much shorter when ao1. Although the time-scale over which cjsr

drops still grows longer as Bq is increased, this effect is also
counteracted by luminal sensing. First, calcium release terminates
at a higher cjsr as shown previously in Fig. 9B. In addition, as
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shown in Fig. 12B, the mean waiting time for termination T 10 at
each cjsr value is shorter when Bq is higher.

4.3. Effects of calsequestrin amount on spontaneous release

The effect of changing Bq on spontaneous spark generation can
be studied by computing T 01. When luminal sensing is not taken
into consideration (a¼1), the spark switching time T 01 remains
constant as plotted in Fig. 8 for any value of Bq. The results when
ao1 are shown in Fig. 13. As the RyR open rate A(c, q) decreases
when free CSQ level is increased, the occurrence of spontaneous
sparks becomes less likely when the total CSQ amount is higher.
This is specifically shown in Fig. 13A where the expected time to a
spontaneous spark generation, T 01, is plotted as a function of cjsr.
At high JSR calcium concentration, the changes in T 01 values for
different Bq levels are not as prominent as for lower cjsr. When JSR
calcium is high, most of the CSQ molecules are bound to Ca2 + and
do not interact with the RyR channels.

Our analysis thus indicates that increasing Bq has two effects.
First, increasing the amount of luminal buffer prolongs the spark

duration, thus increasing the total amount of calcium released.
The second effect is due to luminal sensing: with a higher amount
of Bq, the level of free CSQ that interacts with RyR also increases,
hence the spontaneous spark rate decreases (longer waiting time
T 01). These results can be used to explain an experimental
observation from Kubalova et al. (2004) which indicates that
calcium wave velocity is constant regardless of the level of CSQ
expression. When only the buffering effect is taken into
consideration, the calcium wave velocity should grow as CSQ
level is increased. When CSQ is higher, more Ca2 + is stored inside
the JSR thus the amplitude of calcium spark increases hence
calcium wave should propagate faster. However, when luminal
sensing is taken into account, it is possible for the wave velocity to
remain relatively constant regardless of the total CSQ amount.
Once a release site has fired, the problem of finding the time of
firing for the neighboring release site can be reduced to finding
the spontaneous release time T 01 depending on the level of cjsr at
that particular release site. In Fig. 13B, we plot T 01 as a function of
Bq for different cjsr levels. When Bq is increased, the waiting time
is also increased. This effect becomes more prominent when cjsr is
lowered, e.g. due to partial depletion of the NSR as the wave

0 10 20 30
0

0.2

0.4

0.6

0.8

1

t (ms) t (ms) t (ms)

x Bq = 9.45 mM
Bq = 2.70 mM
Bq = 0.81 mM

0 50 100 150

200

400

600

800

1000

c js
r (

!M
)

0 10 20 30
0

5

10

15

20

25

30

c d
s 

(!
M

)

Bq = 9.45 mM
Bq = 2.70 mM
Bq = 0.81 mM

Bq = 9.45 mM
Bq = 2.70 mM
Bq = 0.81 mM

Fig. 11. Deterministic calcium spark profiles with no luminal sensing (a¼1) where CSQ simply acts as a buffer alone. Time course of different variables during a simulated
deterministic calcium spark for three values of Bq are shown: (A) fraction of open channels, (B) JSR calcium concentration, and (C) diadic calcium concentration.

0 2000 4000 6000 8000 10000
2

4

6

8

10

12

14

16

18

R
el

ea
se

 D
ur

at
io

n 
(m

s)

Bq (M)

a = 1

a = 0.25

400 600 800 1000 1200 1400

100

105

1010

1015

1020

cjsr (!M)

10
 (s

)

Bq = 9.45 mM

Bq = 2.70 mM

Bq = 0.81 mM

Fig. 12. Dependence of spark termination on Bq: (A) release duration as a function of Bq for two different values of a. The release duration is computed by simulating the
ODE system and finding the time when cjsr reaches its minimum value and (B) the mean transition time T 10 as a function of cjsr for three different Bq values.

N. Tania , J.P. Keener / Journal of Theoretical Biology 265 (2010) 359–376368



Author's personal copy
ARTICLE IN PRESS

propagates. Thus, as the basal spark rate is lower for large Bq, it is
still possible for calcium wave to propagate more slowly even
though each site releases a larger bolus of calcium.

4.4. Effects of calsequestrin amount on spark regeneration

We now consider the effect of CSQ expression on the inter-
spark interval. As before, our goal is to distinguish between the
two effects of increasing Bq. First, when CSQ is higher, we find that
the basal spark rate decreases thus the interspark interval is
higher. Secondly, with increasing Bq value, more buffer is present
thus a longer refilling period is needed to reach the same level of
free JSR calcium. To study the contributions from each of these
factors, we consider two different values of the bulk myoplasmic
concentration, cmyo. We show that in low cmyo regime, the
interspark interval is primarily determined by the basal spark
rate at rest. Meanwhile, in the high cmyo regime, JSR refilling
dynamics plays a more important role in determining the next
spark time.

To determine the interspark interval at a particular CRU, we
use a similar approach as the one used to find the stochastic spark
duration in the previous section. Let trel be a random variable
describing the time at which another spark is generated.
The cumulative distribution function, P(t), for trel follows the
equation:

dP
dt
¼

1
T 01ðcjsrðtÞÞ

ð1#PðtÞÞ: ð19Þ

The spark rate 1=T 01ðcjsrðtÞÞ evolves with time following the
recovery dynamics of cjsr. Solving this equation,

PðtÞ ¼ 1#exp #
Z t

0

1
T 01ðcjsrðsÞÞ

ds

! "
, ð20Þ

and the probability density function is obtained by differentiating
P(t) with respect to t,

pðtÞ ¼
1

t0ðcjsrðtÞÞ
exp #

Z t

0

1
T 01ðcjsrðtÞÞ

ds

! "
: ð21Þ

The time course for cjsr is then found by solving Eq. (13) using the
quasi-equilibrium value of x0ðcjsrÞ. We wait for the next spark to

occur immediately after the first release event terminates. That is,
we assume that initially JSR Ca2 + is at the critical termination cjsr

value from which it increases as refilling occurs. As the JSR load
increases, the likelihood for another spark to occur also grows.

When cmyo is low, the recovery/refilling dynamics of cjsr plays
very little role in determining the next spark time. While cjsr

refilling occurs on the time-scale of 10s–100s of ms (e.g. see
Figs. 10B and 11B), the mean waiting time for spark generation,
T 01 is of the order of 1–10s of seconds. Thus in this case, the CSQ
buffering effect does not the affect the interspark interval. Rather,
the dependence of the interspark interval on Bq can simply be
accounted for by luminal sensing. Within the low cmyo regime, the
next spark time trel closely follows an exponential distribution
with rate 1=T 01ðc'jsrÞ where c'jsr is the steady-state rest level of the
JSR calcium. Indeed, the difference between the actual prob-
ability distribution for trel, as given in (20) and (21), is almost
indistinguishable from the exponential distribution as shown in
Fig. 14A. The mean interspark interval as a function of Bq for two
different but low values of cmyo are shown in Fig. 14B. Results for
a¼1 and o1 are compared. Here, the mean interspark interval is
defined as the sum of the spark duration (see Fig. 12) and the
expected value of trel following the distribution given in (21).
Although the spark duration and the JSR refilling time are both
increasing functions of Bq, their values are small compared to the
waiting time for the next spark trel. As a result without luminal
sensing (a¼1), the interspark interval is approximately constant
as Bq is varied. On the other hand, with ao1, the interspark
interval is an increasing function of Bq solely due to luminal
sensing effect.

The JSR refilling process affects the interspark interval only
when it is of the same time scale as the spark waiting time T 01.
This occurs when cmyo is high; then, T 01 drops to the order of
10s–100s of ms comparable to that of JSR refilling. The dynamics
of cjsr recovery as well as the distributions for the next spark time,
trel, are shown in Fig. 15A. Three different Bq values are consid-
ered. In all cases, the peak of the PDF, p(t), occurs before cjsr is fully
recovered. The mean interspark interval is an increasing function
of Bq as shown in Fig. 15B. However, note that when ao1, T 01 at
each cjsr value also grows larger as Bq is increased. As a result,
the CDF, P(t), changes even more slowly for the high Bq case and
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the corresponding PDF, p(t), is broader as shown in Fig. 15A.
Moreover, in Fig. 15B, the standard deviation for the next spark
time trel is plotted as a function of Bq. When ao1, the standard
deviation grows larger as Bq is increased. Based on this, we predict
that the interspark interval grows longer and becomes more
irregular as Bq is increased. Note that this effect is not seen when
luminal sensing is not taken into consideration. When a¼1, the
standard deviation remains relatively constant as Bq is varied as
shown in Fig. 15B. Additionally, in Fig. 15C, we plotted the value
of JSR calcium evaluated at the mean trel value. With luminal
sensing ðao1Þ, spark regeneration occurs, on average, at a
relatively constant JSR calcium level regardless of the amount of
Bq. Meanwhile when a¼1, the average cjsr value for spark
regeneration decreases as Bq is increased. This is in agreement
with the experimental observation of Kubalova et al. (2004)
where JSR level is tracked by measuring fluorescent signal of Fluo-
5 entrapped within the SR. Due to luminal sensing, the initiation
of spontaneous calcium release occurs at a constant JSR calcium
concentration regardless of the value of Bq, hence the total JSR
calcium load.

4.5. Deterministic oscillations under high cytoplasmic calcium

Recently, Stevens et al. (2009) showed that when permeabi-
lized myocytes were exposed to high cytosolic calcium level,
regular and periodic whole-cell calcium release occurred. Moti-
vated by these findings, we investigate the behavior of the system
under high cytoplasmic calcium level. Consistent with their
findings, our CRU model also exhibits oscillations. Increasing cmyo

results in a transition from an excitable CRU to an oscillatory unit.
Results from simulations of the deterministic ODE system for
three different values of cmyo are shown in Fig. 16. Within the
oscillatory regime, increasing cmyo causes an increase in the
oscillation frequency accompanied by a decrease in the amplitude
of the oscillation, measured by changes in the JSR calcium level.

A full bifurcation diagram for the system is shown in Fig. 17A.
When cmyo is low, the system forms an excitable system as
discussed above. Within this regime, if cmyo lies below the saddle-
node bifurcation point, labeled LPU in Fig. 17A, there is only one
equilibrium solution. For cmyo values between the two limit-point
bifurcations, (LPU, LPL), three equilibrium solutions exist but only
the rest-level state, with the lowest steady state x-value, is stable.
The rest equilibrium point loses stability through a subcritical
Hopf bifurcation, HBL, as cmyo is increased further. The subcritical
Hopf bifurcation gives rise to a branch of periodic orbits which
rises nearly vertically and is initially unstable but becomes stable
at a saddle-node-of-periodics turning point. As the value of cmyo is
increased further, a supercritical Hopf bifurcation HBU is
observed. The stability of the equilibrium point is regained, but
the system is no longer excitable having high x and low cjsr values.
This corresponds to the state where the RyRs remain open and the
JSR calcium level is at a constant low depleted level.

In Fig. 17B, we give a two-parameter bifurcation diagram
which shows the range of cmyo for stable oscillation at different
values of the total CSQ level, Bq. Specifically, the bifurcation
points, HBL, LPL and HBU, are plotted as Bq is varied. For low Bq,
oscillation onset occurs at a lower cmyo value and the oscillatory
regime is narrow. As Bq is increased, both Hopf bifurcation points
shift to higher cmyo values and the region of oscillation widened.
This effect is consistent with the experimental findings (Stevens
et al., 2009).

In comparison, however, we find that the region of oscillation
in our CRU model is much narrower ðcmyo ¼ 122mMÞ compared to
that in the experiments ð1250mMÞ. Moreover, we find that
increasing cmyo only increases the frequency of oscillation.
Meanwhile, Stevens et al. (2009) observed that at high cytoplas-
mic Ca2 + concentration, the oscillation frequency drops lower
with the JSR content remaining at a low level for an extended
period of time. In general, the whole-cell oscillation also occurs at
a much slower time scale (period of 1–10 s). The result obtained
from our CRU model has several limitations. One important one is
that it only reflects Ca2 + release within a single unit. All the
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calculations presented here are obtained under fixed network SR
concentration, cnsr. The role of network SR depletion is important
in the study of whole-cell events as shown in the global SR
measurement shown by Stevens et al. (2009).

The limitation of our result when compared to experimental
measurement may also shed light on the nature of the oscilla-
tions. Note that in our deterministic CRU system, cmyo affects only
the x-nullcline while the value of cnsr controls the cjsr-nullcline
only. At high cmyo value ð43mMÞ, the x-nullcline no longer has a
cubic-like shaped. If a whole-cell model were to be built by
combining a number of CRU subsystems (see Hinch et al., 2004;
Williams et al., 2007 for possible methods), then each individual
unit would no longer act as an excitable system under high fixed
cytoplasmic calcium concentration. Thus, any oscillation obtained
is controlled by SR refilling dynamics rather than by the closing
and openings of RyRs. Indeed, this also explains the nature of the
slow oscillations observed experimentally. At a high level of cmyo,
the RyR population remains open and the flux of calcium through
the channel is dependent solely on SR calcium content.

5. Discussion

To study the elementary calcium release, or spark, we build a
model of a calcium release unit where individual RyR activities
are incorporated. A whole-cell model built by aggregating
thousands of such release units would be expensive to simulate.
We show that a full CRU model can be reduced to a two-state
stochastic process. By using various asymptotic approximations,
we are able to reduce the CRU model to a two-variable ODE
system which displays excitability. This reflects the all-or-none
nature of calcium release within each release unit. To consider the
stochastic individual RyR activity, a birth–death process reflecting
the number of open RyRs is considered. After solving the mean
first passage time problem for the birth–death process, we
compute the rate of stochastic spark generation and termination.
The CRU can thereafter be written as a two-state stochastic
process with transition rates obtained from solving the mean first
passage time problems. One feature of our reduced CRU model is
that the number of open RyRs can vary within each CRU state and
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it is dependent upon the junctional SR and diadic space calcium
concentration. This is in contrast to other models, such as in
Williams et al. (2007), where a CRU is a assumed to be a single
two-state mega-channel.

The CRU reduction presented here is similar to that derived by
Hinch (2004) and Hinch and Chapman (2005). However, rather than
using asymptotic expansions, we used the full analytic solution of

the mean first passage time problem for a birth–death process
describing the RyR openings. In either case, formulating a CRU as a
two-state process is useful as it allows an extension for building a
whole-cell model that can be formulated in terms of probability
distribution functions for calcium release so that the likelihood of
rare spontaneous events can be determined easily without having to
generate a large sample of stochastic simulations.
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Quasi-equilibrium approximations based on separations of
time-scales are used in obtaining the two-state CRU reduction.
Recently, Higgins et al. (2009) presented results which indicate
that quasi-equilibrium assumptions introduces error into the
statistics describing the activity of IP3 receptors. However, their
results indicate that the largest error for the expected closing time
is obtained when the approximations are taken in the model in
which sequential binding of IP3 and Ca2 + is assumed. In that
model, calcium-dependent inhibition only occurs when the
channel is not bound to IP3. In contrast, in the same version of
the model in which sequential binding is not assumed, the error
obtained is smaller. In our model, we assume very fast
cooperative biding (four calcium to bind simultaneously). More-
over, there is no calcium dependent inactivation in our model
thus the we do not expect the quasi-equilibriums approximations
to affect the statistics of closing time as strongly. However, we
have not explored the effect of sequential Ca2 + binding to RyR on
the statistics of channel activity. To include sequential binding of
calcium will introduce a large single channel model (a sixteen
state model assuming four calcium binding sites). As a result,
analytical and computational work on clusters with high number
of channels will be intractable.

Parameter values in our CRU model are taken from existing
models (Sobie et al., 2002; Hinch, 2004). One critical parameter
which we fixed in our model is the maximum CRU Ca2 +

conductance, gmax. This parameter is defined to be equal to the
sum of all RyR conductance, i.e. gmax ¼N & gR where N is the total
number of channels per CRU and gR is the single channel
conductance. Using the values listed in Table 1, we note that
the single channel conductance is approximately one order of
magnitude lower than the one that had been reported in an
experimental studies of RyR (Mejı́a-Alvarez et al., 1999). However,
this deduced value is also dependent on the number of channels
within a CRU which has been reported to vary from 10 to 200
RyRs (Inoue and Bridge, 2005; Franzini-Armstrong et al., 1999).
We have also checked our result under higher value of gmax

(results not shown). Increasing gmax by 10 fold, we obtain similar
result in that we still see excitability and oscillation and the
system does not become unexcitable. The spark dynamics and
statistics change and the region of oscillation is shifted towards
higher cytoplasmic Ca2 + sensitivity, however, the qualitative
behavior remains.

Having obtained a tractable and simplified CRU description, we
then use it to study in details how calsequestrin mediates changes
in calcium release within a CRU. We incorporate the luminal
sensing effect into a mechanistic model of RyR–CSQ interaction by
assuming that the open rate of a RyR decreases when the receptor
is bound to CSQ. This reflects the fact that CSQ, through its
interaction with Junctin and Triadin-1, desensitizes the RyR from
cytosolic calcium dependent activation. A similar model of RyR–
CSQ interaction which further includes the effect of CSQ
polymerization under varying luminal calcium concentration,
was recently presented by Restrepo et al. (2008). They used their
model to study calcium alternans in a whole-cell system which
consists of a large number of coupled CRUs. Meanwhile, the focus
of our effort is to study in more detail the effect of changing CSQ
expression on spark properties. In particular, in this study, we are
able to distinguish between buffering and luminal sensing effects
of CSQ. Moreover, using asymptotic reductions and mean first
passage time calculations, we are able to obtain a CRU description
that is computationally cheap to simulate and hence analyze. Our
reduction can easily be incorporated to larger whole-cell models
(Restrepo et al., 2008; Williams et al., 2007).

Consistent with experimental observations (Kubalova et al.,
2004; Terentyev et al., 2003), we observe that the level of CSQ
expression modulates basic calcium spark properties through

buffering effects. Increasing CSQ expression increases the spark
duration, the amount of calcium released, and the JSR refilling
period. Due to luminal sensing, we find that increasing the CSQ
level depresses the basal spontaneous spark rate at rest condition.
In addition, we show that under basal conditions (low bulk
myoplasmic calcium), the dependence of the interspark interval
on the amount of CSQ expression is simply determined by the
luminal sensing effect. Within this regime, the mean spark
generation time is much larger than the JSR refilling period so
that the contribution of the buffering effect in determining the
interspark interval is minimal. Next, we also find from our
calculation that the critical JSR calcium concentration at which
calcium release terminates, is dependent on the level of CSQ.
Over-expression of CSQ causes release to terminate at a slightly
higher JSR concentration.

In this paper, our aim is to quantify the effect of luminal
sensing using the simplest mechanistic model of RyR–CSQ
interaction. We thus do not include the effect of dynamics of
CSQ binding/unbinding to RyR and instead use a quasi-equili-
brium approximation to study how CSQ level desensitizes the RyR
by changing the open rate instantaneously. Moreover, we do not
take into consideration the effect of CSQ polymerization under
varying JSR calcium concentration. Park et al. (2004) showed that
under high JSR calcium, calsequestrin forms dimers and multi-
mers. These polymer forms serve as a stronger calcium buffer as
they are able to bind more calcium. Mutation that disrupts
calsequestrin polymerization has also been associated with CPVT
(Terentyev et al., 2008). These effects can be important and affect
the calcium release process significantly. The model proposed by
Restrepo et al. (2008) takes into consideration these different
factors. However, a detail study on how each of these modulate
calcium release and spark generation has not been performed.

We also use our calculations on spark rate and size to explain an
experimental finding by Kubalova et al. (2004) which indicates that
the velocity of propagation for calcium waves does not seem to be
affected by CSQ expression. Although increasing CSQ expression
increases the spark duration thus the amount of calcium released,
the spark rate at each individual CRU decreases due to luminal
sensing. We acknowledge the fact that this result is applicable for a
single CRU. Translation to the whole-cell calcium wave may not be
direct. A full calculation which tracks bulk cytoplasmic and NSR
calcium levels and allows for the interactions and couplings
between CRUs is necessary to study whole-cell events. A more
careful study of whole-cell wave propagation can be accomplished
by putting our stochastic CRU reduction into the stochastic fire-
diffuse-fire model for Ca2+ waves described in Keener (2006)
though additional dynamic variables for the SR concentration need
to be included. Another possibility is to incorporate RyR luminal
sensing, albeit phenomenologically, into a deterministic bidomain
threshold model for wave propagation (Thul et al., 2008).

Finally, we show that by increasing the cytoplasmic calcium
concentration, the CRU model exhibit deterministic oscillation.
A transition from an excitable to an oscillatory system is observed.
A form of coherence resonance in the stochastic CRU system was
also observed: for cytoplasmic calcium concentration below the
deterministic onset point (Hopf bifurcation), the interspark
interval follows a bell-shaped like distribution (see Fig. 15A). In
comparison to experimental findings by Stevens et al. (2009),
however, the range of cytoplasmic calcium for oscillation in our
mathematical model is very narrow. We again note that the result
presented in this paper focuses on a single CRU. The role of
network SR depletion has not been studied. We propose that the
timescale of SR refilling controls the slow oscillation observed
experimentally since oscillations caused by periodic opening and
closing of RyRs occur at a much faster timescale as observed in
our deterministic CRU system.
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Our CRU model is based on the local control model which was
initially proposed by Sobie et al. (2002) and further analyzed by
Hinch (2004). Here, a CRU acts as an excitable system under basal
condition. In a similar system of calcium regulation involving the
IP3 receptor (IPR), Thul and Falcke (2004, 2006) proposed that
the cell is composed of local bistable units rather than excitable
ones. They proposed that oscillations can be generated using
deterministic models only if the IPRs are exposed to calcium
concentration that are close to its calcium activation constant
ð0:1210mMÞ while in reality, local concentration near open
IPRs reached values that are much higher ð252170mMÞ. Using
known IPR kinetics parameter values, the deterministic system
does not exhibit excitability or oscillation except for a very
narrow range of IP3 level. However, the underlying stationary
distribution of the full stochastic system is bistable with one
mode reflecting low calcium concentration with little release, and
another with high calcium concentration with large release. They
propose that whole-cell oscillation results due to stochastic
transition, induced for example due to random single-channel
activities, between these two potentials. It is possible that under
high cytoplasmic calcium concentration, the CRU forms a
stochastic bistable system and the oscillation observed by Stevens
et al. (2009) follows the mechanism proposed by Thul and Falcke
(2004, 2006). However, we do not observe this behavior using the
parameter values used in the standard local control model. A
thorough exploration of the parameter space will be needed to
further study oscillations under high fixed cytoplasmic calcium
concentration.
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Appendix A. Birth death process for open RyRs

The behavior of a cluster of N RyRs in the CRU can be described
by the birth–death process (11) for Sn, a state of having n number
of open channels. The corresponding master equations for pn(t),
the probability of being in state Sn at time t, are

dpn

dt
¼ an#1pn#1#bnpnþbnþ1pnþ1#anpn, ðA:1Þ

where n¼1, 2, y, N#1 and

dp0

dt
¼#a0p0þb1p1,

dpN

dt
¼ aN#1pN#1#bNpN : ðA:2Þ

We first treat cjsr as a parameter before considering its
dynamics. In terms of steady-state solutions, excitability in the
deterministic system corresponds to the fact that the stationary
distribution pn

n is bimodal. Following the calculation given for a
general birth death process in Gardiner (2003), it can be shown
that the stationary distribution satisfies

p'n ¼ p'0
Yn#1

i ¼ 0

ai

biþ1
¼ p'0

N

n

! "
1

bn

Yn#1

i ¼ 0

aðcdsðiÞÞ ðA:3Þ

for n¼1,2,y,N and p0
n is found by normalizing so that the

distribution sums to one,

p'0 ¼ 1þ
XN

n ¼ 1

N

n

! "
1

bn

Yn#1

i ¼ 0

aðcdsðiÞÞ

 !#1

: ðA:4Þ

Plots of the steady-state distributions as cjsr is varied are given in
Fig. 18A. The steady-state distribution is bimodal as shown more
clearly on a semilog axis in Fig. 18B. The first peak of pn

n is at n¼0
and the second one is at a larger n which we refer to on as n1.

Changes in cjsr affect the steady-state distribution by shifting
its most likely position. When cjsr is high, the maximum of pn

n lies
at n1 but as cjsr decreases, p0

n increases so the most likely position
switches to 0. As the JSR content becomes partially depleted,
termination of calcium release becomes more likely. Bimodality of
pn
n is gradually lost as cjsr is decreased towards the critical cjsr

value so that the distribution only has one maximum at 0 as
shown in Fig. 18B for cjsr ¼ 200mM.

Appendix B. Mean first passage time calculation

Following the bimodality in the stationary distribution, we
now reduce the Markov-chain description in Eq. (11) to a two-
state stochastic process corresponding to the two local maxima of
pn or the lower and upper branches of the dx/dt nullclines in the
context of the continuous model. The rates of transition between
the two states are obtained from by solving the mean first passage
time problem as detailed below.

At a particular cjsr value, the expected waiting time for spark
generation, or the 0 to n1 transition, can be computed by solving
the mean first exit time problem for the birth–death process (11).
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Suppose that the system starts at a particular state Sj. Assuming
that nLo jonR, the mean first exit time, tj, from the interval [nL,
nR] satisfies the difference equation,

ajðtjþ1#tjÞþbjðtj#1#tjÞ ¼ #1: ðB:1Þ

A derivation of this relationship involves the backward master
equation and can be found in textbooks such as Gardiner (2003).
tðjÞ can be found by solving the resulting system of algebraic
equations with appropriate boundary conditions at nL and nR.

Applying this specifically to our problem, the expected time for
spontaneous spark generation can be found by first solving the
difference equations (B.1) above for 0o jon1 with a reflecting
boundary at 0 and an absorbing boundary at n1,

t#1 ¼ t0 and tn1 ¼ 0: ðB:2Þ

The solution to this system of equations can be obtained as
follows. A similar derivation can also be found in Gardiner (2003).
First, let uj ¼ tjþ1#tj, so

ajuj#bjuj#1 ¼#1: ðB:3Þ

The reflecting boundary condition at S0 then gives u#1 ¼ 0
and u0 ¼#1=a0. From this, the remaining uj can be solved
sequentially,

u1 ¼#
1
a1
#

1
a0

f1,

u2 ¼#
1
a2
#

1
a1

f2#
1
a0

f1f2,

^

uj ¼#
1
aj
#
Xj#1

k ¼ 0

1
ak

Yj

i ¼ kþ1

fi, ðB:4Þ

where fi ¼ bi=ai. Having solved for uj, tj can then be determined
by first using the absorbing boundary condition at Sn1 . Since
tn1 ¼ 0, tn1#1 ¼#un1#1. Thus, tn1#2 ¼ tn1#1#un1#2 ¼ un1#2#un2#2,
and so on. This results finally in

tj ¼#
Xn1#1

n ¼ j

uj ¼
Xn1#1

n ¼ j

1
an
þ
Xn#1

k ¼ 0

1
ak

Yj

i ¼ kþ1

bi

ai

 !
: ðB:5Þ

We consider the mean spark generation time, T 01, by applying the
previous equation to j¼0. That is, we assume that the initial state
of the system is at S0 where no RyR channel is open. With this,

T 01 ¼
Xn1#1

n ¼ 0

1
an
þ
Xn#1

k ¼ 0

1
ak

Yj

i ¼ kþ1

bi

ai

 !
: ðB:6Þ

The transition from Sn1 to S0 is related to spark termination.
The mean first passage time itself does not reflect the spark
termination time accurately as cjsr dynamics need to be taken into
consideration. However, the mean transition rate as a function of
cjsr has to be determined before the full system can be analyzed.
The transition time can be computed using the same system of
Eqs. (B.1) but with the boundary conditions,

t0 ¼ 0 and tNþ1 ¼ tN , ðB:7Þ

so that now, S0 is an absorbing state and SN is a reflecting state.
Using similar steps as before and applying the initial condition to
be at n1 yields T 10,

T 10 ¼
Xn1

n ¼ 1

1
bn
þ

XN

k ¼ nþ1

1
bk

Yk#1

i ¼ n

ai

bi

 !

: ðB:8Þ
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