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ABSTRACT

We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring
estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation, and ER-dependent cell
proliferation. The network model uses activity patterns across the in vitro assays to predict whether a chemical is an ER
agonist or antagonist, or is otherwise influencing the assays through a manner dependent on the physics and chemistry of
the technology platform (“assay interference”). The method is applied to a library of 1812 commercial and environmental
chemicals, including 45 ER positive and negative reference chemicals. Among the reference chemicals, the network model
correctly identified the agonists and antagonists with the exception of very weak compounds whose activity was outside
the concentration range tested. The model agonist score also correlated with the expected potency class of the active
reference chemicals. Of the 1812 chemicals evaluated, 111 (6.1%) were predicted to be strongly ER active in agonist or
antagonist mode. This dataset and model were also used to begin a systematic investigation of assay interference. The
most prominent cause of false-positive activity (activity in an assay that is likely not due to interaction of the chemical
with ER) is cytotoxicity. The model provides the ability to prioritize a large set of important environmental chemicals with
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human exposure potential for additional in vivo endocrine testing. Finally, this model is generalizable to any molecular
pathway for which there are multiple upstream and downstream assays available.

Key words: estrogen receptor; EDSP; high-throughput screening; In vitro; prioritization; biological modeling

Signaling pathways and networks are key components of com-
plex biological systems. Endocrine signaling commences when
hormones interact with their cognate receptors and initiate
postreceptor functional responses. These important biological
processes can be perturbed when xenobiotics either mimic the
action of the natural ligands or block the action of those ligands
through antagonist action. These perturbations may be pur-
posely efficacious (eg, pharmaceuticals dosed within their ther-
apeutic window) or deleterious (eg, environmental toxicants or
off-target high-dose interactions for pharmaceuticals).

In order to measure the effect of xenobiotics on signaling
pathways and networks, a variety of in vitro assays have been
widely used in drug development and toxicity testing programs.
These range from biochemical assays using purified protein to
more complex cellular assays that can respond to chemical per-
turbations in various ways. Each of these assays is subject to
false positive and false negative results, some of which are the
result of “assay interference.” Conceptually, assay interference
(Auld et al., 2008; Baell and Holloway, 2010; Bruns and Watson,
2012; Thorne et al., 2010) is a phenomenon whereby assays de-
signed to measure binding to a protein or perturbation of a
given pathway may produce false signals when the target pro-
tein itself, or other pathways in the system, are altered non-spe-
cifically. The standard approach to deal with assay interference
issues is to deploy “orthogonal” assays (Miller et al., 2010;
Thorne et al., 2010) that help distinguish activity towards the in-
tended target or pathway from non-specific activities. In addi-
tion to assay interference issues, every assay has inherent
limitations such as dynamic range or levels of background
noise. Using a suite of assays to detect pathway perturbations
may minimize potential non-specific effects or limitations of
any single assay.

In this study, we evaluated ER pathway activity and assay in-
terference using data from a collection of 18 in vitro assays that
probe the estrogen receptor (ER) pathway in mammalian sys-
tems. These 18 in vitro assays are a subset of a larger collection
of assays (821 individual assay endpoints) used in the EPA
ToxCast program (Dix et al., 2007; Judson et al., 2010; Kavlock
et al., 2012). The 18 assays include biochemical and cell-based
in vitro assays that probe perturbations of ER pathway responses
at sites within the cell: receptor binding, receptor dimerization,
chromatin binding of the mature transcription factor, gene tran-
scription, and changes in ER-induced cell growth kinetics
(Fig. 1). The battery of 18 in vitro assays was used to screen a li-
brary of 1812 chemicals. Included in the chemical library were
reference chemicals, ie, known ER agonists and antagonists, as
well as a large number of commercial chemicals with reported
estrogen-like activity, some of which are potentially selective
estrogen receptor modulators (SERMs) (Dutertre and Smith,
2000; Diel et al., 2001; Katzenellenbogen et al., 2000a,b;
Katzenellenbogen and Katzenellenbogen, 2000).

The goal of this article is to test the following hypothesis
about the ER pathway and interference in the assays used to
probe it. We expect that there will be sets of chemicals that are
true ER agonists or antagonists, but that there will also be
chemicals exhibiting a variety of types of assay interference
(Hsieh et al., 2015; Inglese et al., 2007; Thorne et al., 2010). We

hypothesize that assay interference will largely be technology-
specific. For instance, a chemical could cause protein
denaturation, which could give rise to a false positive signal in
cell-free, radioligand competitive-binding assays. Such a chemi-
cal would show activity in all assays of that technology, but not
the cell-based assays. Another example would be fluorescent
compounds, which would show false activity in all fluores-
cence-based assays. Therefore, given a very diverse set of
chemicals and the diversity of cell types and technologies in-
cluded in the battery of 18 in vitro assays, one could expect to
see many patterns of activity (ie, vectors of activities for a
chemical across 18 assays). To navigate this complexity, we de-
veloped a mathematical/statistical model to infer whether
chemicals that activate specific patterns of the in vitro assays
were more likely to be ER agonists, ER antagonists, or were
more likely to be causing assay activity through specific types of
assay interference. Previous modeling approaches have been
developed using a subset of the data presented here (Reif et al.
2010; Rotroff et al., 2014), but the current approach provides a
more generic model framework applicable to other signaling
pathways beyond ER. Supplementary Appendix 4 provides an
overview of the differences between the Rotroff et al. model and
the current one, and provides a quantitative comparison of the
results.

Understanding the results of this analysis will have 3 broad
implications. First, the commercial chemicals identified as
ER-pathway actives can be prioritized for further testing as en-
docrine disruptors. Because such testing is expensive and time-
consuming, there is value in reducing false positives without
significantly increasing false negatives using these in vitro
screens. Second, chemicals or chemical classes that show broad
assay interference may potentially cause similar interference in
other in vitro assays utilizing the same cell types or technology
platforms. These chemicals can be flagged for extra scru-
tiny when analyzing results for other targets. Finally,
methods developed for this test case can be applied to the anal-
ysis of results for other assays and pathways beyond the ER
responses.

MATERIALS AND METHODS

Assays and chemicals. The input data for the model includes
chemical structures and concentration-response data for 18 ER-
related in vitro assays, plus data for many non-ER in vitro assay
endpoints (ranging from 186 to 821 assays, depending on the
chemical). The data used were generated by the EPA ToxCast pro-
gram (Dix et al., 2007; Judson et al., 2010). The dataset comprises
concentration-response data on 1812 chemicals with full data on
ER pathway in vitro assays. These include 3 cell-free biochemical
radioligand ER binding assays [Novascreen/NVS: (Knudsen et al.,
2011; Sipes et al., 2013)]; a set of 3 protein complementation
assays that measure formation of ER homodimers or hetero-
dimers and test for activity against both ER-alpha and ER-beta,
(each measured at 2 separate times for a total of 6 assay readouts)
[Odyssey Thera/OT:(Stossi et al., 2014)]; 2 assays measuring inter-
action of green fluorescent protein (GFP)-tagged ER a or b with
nuclear DNA [Odyssey Thera/OT: (Stossi et al., 2014)];
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2 transactivation assays measuring reporter RNA transcript levels
[Attagene/ATG: (Martin et al., 2010)]; 2 transactivation assays
measuring reporter protein level readouts in agonist mode and 2
transactivation assays in antagonist mode [Tox21: (Huang et al.,

2014)]; and an ER-sensitive cell proliferation assay [ACEA: (Rotroff
et al., 2013)]. The transactivation assays are a mix of formats
including differences in reporter gene technology
(Tox21_ERa_LUC_BG1:luciferase, Tox21_ERa_BLA:b-lactamase,

FIG. 1. (A) Graphical representation of the computational network used in the in vitro analysis of the ER pathway across assays and technology platforms. Colored arrow

nodes represent “receptors” with which a chemical can directly interact. Colored circles represent intermediate biological processes that are not directly observable.

White stars represent the in vitro assays that measure activity at the biological nodes. Arrows represent transfer of information. Gray arrow nodes are the pseudorecep-

tors. Each in vitro assay (with the exception of A16) has an assay-specific pseudoreceptor, but only a single example is explicitly shown, for assay A1. (B) Patterns of as-

says that would be activated when specific receptors are activated by the chemical, in particular R1, R2 and R6. The activating chemical in its receptor are circled in

pink, and the activated assays and the pathways to them are also highlighted in pink.
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ATG_ERE_CIS/ATG_ERa_TRANS:mRNA) and differences in recep-
tor form (Tox21_ERa_LUC_BG1 and ATG_ERE_CIS are full length
ER; Tox21_ERa_BLA and ATG_ERa_TRANS are the GAL4/UAS
mammalian 1 hybrid system utilizing partial receptor constructs
containing the receptor ligand-binding domain.) Use of these dif-
ferent formats allows 1 assay format to compensate for weak-
nesses inherent in another assay technology. The assay sources
refer to the company or laboratory where the assays were per-
formed. The 18 in vitro assays used are summarized in Table 1
and more detail is given in Supplementary Appendix 1. The assay
IDs correspond to Figure 1. The chemicals are listed in
Supplementary File S2 along with summary results from subse-
quent analyses. The chemicals were run in concentration-
response format in all in vitro assays except for the cell-free bind-
ing assays (NVS). The NVS assays were initially run at a single
concentration (25 lM), and if significant activity [3 median abso-
lute deviations (MAD) above the median or 30% activity] was
seen, the chemical was then run in concentration-response
mode.

Reference chemicals. A set of 45 positive and negative reference
chemicals were used to evaluate the performance of the model
(described below). These include 28 agonist positives, 12 agonist
negatives, 4 antagonist positives, and 14 antagonist negatives.
Note that some chemicals are references for both agonist and
antagonist mode, so these numbers sum to greater than 45.
These chemicals have been used to validate ER in vitro assays
and were taken from the OECD (Organisation for Economic
Cooperation and Development) TG457 BG1 guidance document
(OECD, 2012). The reference chemicals and their expected
potencies are listed in Supplementary Appendix 3.

Data processing and synthetic concentration-response data. All of the
concentration-response data were analyzed using a standar-
dized data analysis pipeline, which automates the processes of
baseline correction, normalization, curve-fitting, hit-calling,
and detection of a variety of potential confounders. This pipe-
line, along with all of the raw and processed data, and annota-
tions is publicly available [http://epa.gov/ncct/toxcast/data.html
and http://actor.epa.gov/edsp21]. All in vitro assays except those
run by Attagene were normalized to the range 0–100%, using
the response of 17a-Ethinylestradiol. Attagene data were nor-
malized as a fold-change over the solvent control (0.5–1%
DMSO, which has been determined to have no effect on assay
performance) and then multiplied by a factor of 25 to yield a
range of approximately 0–100. The data from each chemical-
assay pair was fit to 3 models: a constant model, a Hill model,
and a Gain-Loss model. The latter allows the curve to rise from
zero to a plateau, and then fall off again. This curve shape
allowed us to account for non-specific assay interference, such
as cytotoxicity occurring at high concentrations. Activity (“hit”)
calls were determined based on a chemical-assay pair reaching
a set of significance thresholds:

1. Median of normalized response values at a single concentra-
tion above the established response cutoff

2. Modeled top (T) of the curve above the established response
cutoff

3. Hill or Gain-Loss model was the selected model over the
constant model

In order to establish the response cutoff, the baseline
median absolute deviation (BMAD) was calculated per assay
using the distribution of the lowest 2 concentration’s normal-
ized response values for all chemicals run in the in vitro assay.

The response cutoff was then selected per assay as being the
maximum of 3-BMAD, 20% above baseline, or an assay-specific
cutoff, eg, 6-BMAD or 10-BMAD. The Akaike Information
Criterion (Akaike, 1998) (AIC) was then calculated for each
model, and the model with the lowest AIC was selected. For
each model, the output included parameters as well as a num-
ber of diagnostics. The diagnostics were assigned to specific
chemical sample-assay pairs and indicate the presence of
potential confounding factors such as curves that are margin-
ally active and hence could be the result of non-normally dis-
tributed background noise instead of true activity. An AC50
(activity concentration at half-maximal response), Hill-slope,
and maximum activity (T or Top value) were extracted. To allow
computational synthesis across different in vitro assays with dif-
ferent experimental designs (ie, different numbers of concentra-
tions tested), a set of synthetic concentration-response
activities was generated through interpolation for each chemi-
cal-assay pair at standardized concentrations. This procedure
used the experimentally derived AC50, Hill-slope and Top
parameters and a Hill equation. All AC50 values were in mM, and
the synthetic concentrations were a 1.5-fold dilutions series of
45 concentrations from 1 pM to 100 mM.

Accounting for cytotoxicity-related assay interference. For many
chemicals, we observed a large number of hits (positive assay
responses) for ER and non-ER assays in the concentration range
where cytotoxicity was observed. Cytotoxicity was measured
using a collection of 35 assays in the ToxCast battery that detect
cytotoxicity or other forms of cell loss across several cell lines
and primary cell types. Many non-selective cellular responses
are activated as the concentration tested reaches a critical point
associated with cell stress or cytotoxicity. It appears that this is
non-selective activity (assay interference) rather than being due
to activity against the receptors that the assays are designed to
test. The following scheme was used to filter out these non-
selective, cell-stress/cytotoxicity-related assay hits. For chemi-
cals with 2 or more positive responses in cytotoxicity assays, we
calculated the median logAC50(cytotox) and the MAD of the
logAC50(cytotox) hits. Next, we calculated the median of the
MAD of the logAC50(cytotox) distributions across all chemicals
to define the global cytotoxicity MAD. A new value (the Z-score)
was then assigned to each in vitro assay hit:

Zðchemical; assayÞ ¼
logAC50ðchemical; assayÞ �median½logAC50ðchemical; cytotoxicityÞ�

MADglobal

(1)

If fewer than 2 cytotoxicity assays are hit, the median cyto-
toxicity concentration is arbitrarily set to 1000 mM, which simply
sets all Z-values for assay hits to a value >3. A hit with a large
value of Z occurs at concentrations significantly below where
cytotoxicity is occurring. This hit is more likely due to target-
selective mechanism biological activity. . The global cytotoxicity
MAD is 0.26 log units.

Structure of the network model. Figure 1 is a graphical representa-
tion of the network model used to evaluate the integrated
in vitro assay responses. The model was based on the series
of molecular events that typically occur in a nuclear receptor-
mediated response (Gronemeyer et al., 2004; Mangelsdorf
et al., 1995). The process starts with the interaction of a
chemical with an ER (Receptor node R1). For example, an ER
agonist will cause the receptors to dimerize (node N1),
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translocate to the nucleus and recruit co-factors to form the
complete active transcription factor complex (TF) (node N2).
This TF binds to the chromatin DNA (node N3), initiates tran-
scription of mRNA (node N4) and subsequent translation to
protein (node N5). For ER agonist activity, 1 downstream con-
sequence can be cell proliferation (node N6). Note that the
temporal order of these processes is not necessarily as
depicted here. Each of these processes (with the exception of
cofactor recruitment) was measured in the current collection
of 18 in vitro assays (represented in the figure as white stars).
Table 1 provides the assay ID (A1–A18) to match the associ-
ated in vitro assay on Figure 1 and a brief assay description.
More detail is provided in Supplementary Appendix 1. The ER
pathway is shown in 2 modes: agonist (blue) and antagonist
(red). The model assumes that a chemical interacting with
the ER will bind in one or both of the agonist or antagonist
conformations and in turn, trigger activity in the appropriate
pathway. Note that the model allows for the prediction of
mixed agonist/antagonist activity.

In addition to ER-mediated effects, each individual in vitro
assay is subject to processes that can lead to non-specific activ-
ity, independent of the ER pathway node that it is supposed to
measure. The assay interference pathways were modeled as
alternate “pseudoreceptors” (gray arrow nodes). The details of
the process connecting the theoretical pseudoreceptors to the
assays were simplified to a single connection because, in gen-
eral, we do not know the intermediate details of these processes
or even the identity of the pseudoreceptors. Note that the pseu-
doreceptors are conceptualized here as surrogates for generic
processes such as cytotoxicity that can lead to non-ER mediated
assay activity. It is possible to describe many potential alterna-
tive assay interference pathways, but in general, the current
data are not sufficient to distinguish between alternate models.
Pseudoreceptors are then assigned to each group of assays
(technology group) and to each assay individually. Only a single
example of an assay-specific pseudoreceptor is shown in Figure
1, but all assays (with the exception of A16/R8 where the assay
and the receptor are identical) have a corresponding pseudore-
ceptor. The bottom panel of Figure 1 shows the pattern of activ-
ity one would expect if specific receptors are activated, in this
case R1, R2, and R6.

Mathematical representation of the network model. The computa-
tional model assumes that the value (the efficacy, A) returned
by an assay at a given concentration is a linear sum of the con-
tributions from the receptors that it measures, ie, it is a simple
linear additive model:

Ai ¼
XNReceptor

j¼1

FijRj (2)

where the elements of the F matrix are 1 if there is a connection
between a receptor j and an assay i and 0 otherwise. The index i
goes over all assays and the index j goes over all receptors. This
holds for direct connections, where a receptor is directly linked
to an assay in Figure 1, and for indirect connections, where a
receptor is linked through one or more internal nodes, desig-
nated by the circles in Figure 1. Therefore, the model assumes
lossless transmission of signals from the receptor through the
internal nodes to the assays. The goal is then to find a set of Rj

values that minimize the difference between the predicted
assay values (Apred

i ) and the measured ones (Ameas
i ) for each

chemical and concentration. Apred
i is calculated using the for-

ward model (equation 2). For each chemical-concentration pair,

a constrained least-squares minimization approach is used
where the function being minimized is:

e2 ¼
XNAssay

i¼1

Apred
i �Ameas

i

� �2
þ penaltyðRÞ (3)

where Apred
i must satisfy the constraints:

Apred
i 2 ½0; 1�: (4)

It is possible to assign weights to the assays in the sum of
equation 3, but in practice, this did not change the results in
any qualitative way, and introduced a number of additional free
parameters into the model. The term penalty(R) penalizes solu-
tions that predict that many receptors are being simultaneously
activated by the chemical. It is given by

penaltyðRÞ ¼ a
x10

x10 þ 0:510

where x ¼
XNReceptor

i¼1
Ri

(5)

This penalty term helps stabilize the solutions and enforces
a reasonable physical assumption about chemical promiscuity,
eg, it is unlikely that many or most chemicals will selectively
interact with a number of dissimilar molecular targets through
non-covalent binding. Note that this problem is underdeter-
mined because there are more receptors than assays, and so
does not have a unique solution. We investigated 2 other com-
monly used penalty terms, RIDGE(Hoerl and Kennard, 1970)
and LASSO (Tibshirani, 1996) as described in Supplementary
Appendix 2. The penalty term in equation 5 (called
THRESHOLD) was selected because it best enforced the physical
constraint, and because results were less sensitive to the exact
value of a. For most results, we use an intermediate value of
a¼ 1, but the final data files additionally give selected values for
a¼ 0.01 and a¼ 100. The penalized least-squares solution to
equation 3 is carried out using the R-language function optim in
package stats (Ihaka and Gentleman, 1996), with method¼
L-BFGS-B and the constraints in equation 4. When solving the
equations, we start from the low concentration end where the
expected activity is zero and use this as the initial condition for
all receptors in the model. For subsequent concentrations, we
then use the output values for the previous concentration as
the initial values for the current one. The model results in a
response value (between 0 and 1) for each receptor at each con-
centration. The activity for each receptor is summarized as an
area under the curve (AUC), which is the quadrature integral
across the concentration range:

AUCðRjÞ ¼
1

Nconc

XNconc

i¼1

signðslopeÞ � RjðconciÞ: (6)

The factor sign(slope) is included to handle cases where one
of the assays or sets of assays is active at significantly lower
concentrations than the remaining assays. The corresponding
receptor curve will then rise and subsequently fall, and this
AUC needs to be discounted. Finally, AUC values are scaled so
that AUC(agonist)¼ 1 for 17a-Ethinylestradiol, which is the posi-
tive reference compound for all agonist assays. AUC(R1/agonist)
and AUC(R2/antagonist) (or subsequently AUC(agonist)/
AUC(antagonist)) is the terminology used to describe the activ-
ity in the agonist and antagonist modes, respectively.
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AUC(Ri;I> 2) describes activity in one of the other pseudorecep-
tors 3–9. AUC(Ai) describes the AUC value for one of the single-
assay pseudoreceptors.

One challenge with this modeling approach is how to inter-
pret the AUC values. For a pure ER agonist (no activity in any of
the pseudoreceptors), the AUC(agonist) versus concentration
curve closely resembles the concentration-response profile for
any of the assays, with activity going from 0 to 1 with an AC50-
like value close to that observed in the assays. For mixed cases,
the concentration-response curves may be more complex than
a Hill curve and will have a maximum efficacy of less than 1.
Qualitatively, we interpret these AUC values as concentration-
specific probabilities that the chemical is interacting with the
corresponding (pseudo) receptor. One final set of quantities cal-
culated are the “median-AC50” values. These are the median
values of the log-AC50 for assays active for that chemical.

Results

Observed Correlation Among In Vitro Assays From the Same
Technology
Two-dimensional hierarchical clustering was performed on the
potencies (log AC50 values) of the 18 ER-related in vitro assays
(Fig. 2). Strong clustering by technology/pseudoreceptor was
observed. The hypothesis we tested in this article is that assay
interference exists, and is at least somewhat driven by specific
chemical technology activity that is independent of ER-ligand
binding. In a clustering analysis like this, if the clusters largely
line up with technologies, then that is at least supportive of our
hypothesis. Note that the one exception to this clustering is R7
(the Tox21 agonist assays), which were grouped because they
were run in the same lab rather than because they were the
same technology (they have different readouts, cell lines). This
plot suggests that some fraction of positive assay responses are
caused by technology-specific assay interference rather than ER
receptor-mediated activity. Other chemicals showed activity
across a broad range of ER-related in vitro assays.

Network Modeling of In Vitro Assay Activity
Figure 3 illustrates common types of assay activity and model
behavior represented by prototype chemicals. For example,
bisphenol A (BPA) shows a clear concentration-response in ago-
nist activity (right-hand panel, blue curve). However, there is
also activity in the R6 pseudoreceptor (corresponding to the
transactivation assays) that rises at low concentrations and
then drops. The corresponding in vitro assays show activity at
lower concentrations than the others, but at high concentra-
tions, substantial evidence points toward agonist activity. Note
that BPA also has activity in one of the antagonist assays (upper
left panel, A17, gold line), consistent with known SERM activity
at high concentrations (Nagel et al., 2001). 4-hydroxytamoxifen,
a reference antagonist, shows clear antagonist activity. Alpha-
cyclodextrin shows strong activity only in the 3 cell-free binding
assays, resulting in a strong assay interference signal in the R3
pseudoreceptor. This is likely because this chemical interferes
with the radioligand assay by binding to the radioligand. This
molecule is known to bind hydrophobic molecules such as fatty
acids and cholesterol (Christian et al., 1997). The most frequent
case (not shown here, 762 out of 1812, 42%) is one in which there
is no activity in any assay. Notice that 58% of chemicals have at
least some activity in at least 1 assay. A priori, one would not
expect this high a fraction of true positives in a diverse chemical
library, so significant assay interference/false-positive activity

is likely to exist. The data for the complete set of chemicals are
given in Supplementary Files S2 (tabular) and S3 (plots corre-
sponding to Fig. 3). Data are also available through the EDSP21
dashboard: http://actor.epa.gov/edsp21 and the ToxCast data
web site: http://epa.gov/ncct/toxcast/data.html. Table 3 pro-
vides a longer list of positive chemicals across potencies and
structural classes.

Reference Chemicals
The AUC values for the ER reference chemicals are plotted in
Figure 4. For the positive agonist chemicals, all but diethylhexyl
phthalate (DEHP) and dicofol have non-zero AUC(agonist) val-
ues. DEHP is inactive in all assays, but dicofol is active in 3 of
the 6 dimerization assays near the top of the tested concentra-
tion range, which results in a small but non-zero AUC(R4) value
of 0.02. These 2 chemicals are in the “Very Weak” class, so they
are potentially active only at concentrations above where the
current assays have been tested for most or all assays (100mM).
The AUC(agonist) values for the other positive chemicals are
ordered approximately with the expected potency class. All of
the negative agonist reference chemicals showed AUC(agonist)
values of zero.

All 4 of the positive antagonist reference chemicals are posi-
tive with large AUC(antagonist) values. Three negative antago-
nist reference chemicals yield non-zero AUC(antagonist), but all
are <0.05. Most of the negative antagonist reference chemicals
are positive references for the agonist mode, and they appropri-
ately yield a high AUC(agonist) value. A specific example is
dibutyl phthalate, which is defined in the OECD reference list as
a very weak positive agonist and a negative antagonist. Our
data shows very weak activity in both modes, but all activity
occurs in the cytotoxicity region (see the inset in the figure).
Therefore, the activity in the antagonist assays leading to the
non-zero AUC(antagonist) may be driven by false-positive loss
of signal due to cytotoxicity. In general, we see that the positive
reference chemicals, with the exception of some that are very
weak, are classified as having the appropriate activity class (ie,
agonist or antagonist). Negative reference chemicals either
have no activity in any assay or are classed as being active in
only one of the pseudoreceptor channels with scores higher
than for the agonist or antagonist receptors. Supplementary File
S4 provide the agonist and antagonist mode AUC values for the
reference chemicals and plots of the assay and receptor concen-
tration-response profiles, respectively.

Activity Classifications of the Commercial and Environmental
Chemicals. Figure 5 summarizes the results of the modeling
effort over the 1812 chemicals. In the idealized case where all
assays are activated (either for the agonist or antagonist mode)
at the same concentration, and reach 100% efficacy, the relation
between the median-AC50 (which would be the common AC50
for all assays) and AUC would be linear. However, in the more
common case where the assay AC50s are spread out, the ago-
nist/antagonist curve tends to rise sooner than the median of
the assays (See Fig. 3 for BPA comparing the blue agonist curve
with the assays AC50 median, the green vertical line). The
dashed line is the best fit from a linear regression between AUC
and log(minimum-AC50) for chemicals with AUC> 0.1. The hor-
izontal line at AUC¼ 0.1 provides a qualitative break between
chemicals following the linear AC50 vs. AUC trend and those
showing low potency in one or a few assays.

Chemicals fall into one of several general groups. The first
are those lying along the dashed line, which is the expected
behavior for true actives. We have labeled the most potent
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non-reference chemicals, those with AUC> 0.4 (chemicals 1–
10). Fulvestrant, equilin, estriol, clomiphene citrate, and mestra-
nol are all steroid pharmaceuticals that are designed to target
ER (Wishart et al., 2008). Bisphenol AF is a close analog of bisphe-
nol A, one of the reference agonist chemicals. Zearalenone is a
mycotoxin with known estrogenic activity (Higa-Nishiyama
et al., 2005; Le Guevel and Pakdel, 2001). HPTE is a degradate of
the pesticide methoxychlor and is a known environmental
estrogen (Miller et al., 2006). Norethindrone is a progesterone
derivative. 17beta-trenbolone is synthetic androgen. Both of
these steroids appear to be weakly active against ER relative to
their activity in their native receptor. Therefore, none of the
most potent set of actives is novel. It should be noted that

norethindrone, as with other steroid chemicals, could be conta-
minated with a low level of a more potent derivative, which for
this chemical would be the estrogen mestranol. We have ana-
lytical QC on norethindrone (data not shown), which shows all
samples are at least 90% pure. However, given that mestranol is
approximately 2 orders of magnitude more potent, it would
only require a 1% contamination level to exhibit the observed
activity.

A second interesting set of chemicals are those labeled in
cyan in Figure 5 (chemicals 11-13). These have low but signifi-
cant AUC values (0.1–0.2) but have at least one very potent AC50
value. The most potent of these is 4-androstene-3,17-dione, a
potent androgen. The assay plot for this chemical is shown as

FIG. 2. Two-way hierarchical clustering of chemical activity across the 18 in vitro assays used to test for ER activity. Assays and technologies are aligned across the x-

axis, where the “A” and “R” values refer to the assay and receptors/pseudoreceptors from Figure 1 and Table 1.Chemicals are aligned along the y-axis. The heatmap

shows –log10(AC50) values for all assays and all chemicals with at least one assay hit. Darker red indicates more potent activity (lower AC50), while white represents

inactive chemical-assay pairs. Note that the assays cluster by technology/pseudoreceptor.
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FIG. 3. Results of the model for 3 prototype chemicals. For each chemical, the left-hand panel shows the synthetic concentration-response data for the 18 assays, col-

ored by assay groups defined in the legend. The right-hand panel shows the corresponding magnitude of the modeled receptor responses. The agonist receptor (R1) is

designated by blue, the antagonist receptor (R2) by red and the other pseudoreceptors are colored as indicated in the legend. AUC values for the agonist (R1) and

antagonist (R2) receptors are provided below the chemical name. For chemicals with cell-stress/cytotoxicity activity (2 or more cytotoxicity hits, see Methods), the cell-

stress/cytotoxicity center is indicated by a vertical red line, and the cell-stress/cytotoxicity region (starting 3 cell-stress/cytotoxicity MAD below the cell-stress/cytotox-

icity center) is indicated by the gray shaded region. A green horizontal bar indicates the median-AC50 of the active assays. Similar plots for all chemicals are given in

Supplemental File S3.
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an inset in Figure 5. The most potent assays are the ATG trans-
activation assays. This assay platform has 2 interesting fea-
tures, first that it is run in HepG2 cells with some metabolic
activity, and second, that it is highly multiplexed, including
having androgen receptor readouts simultaneous with those for
the ER. So, 2 possibilities exist for the potent activity of this
androgen—there could be metabolic activation, leading to real
ER activity, or there could be assay technology crosstalk.
Understanding this behavior is the subject of ongoing research.
Melengestrol acetate is a progestin, and is most potent in the
ACEA cell proliferation assay. The cells used in this assay (T47D)
are known to be sensitive to progestins and glucocorticoids
(Chan et al., 1989). 3,3’-Dimethylbenzidine dihydrochloride, an
intermediate in the production of dyes, is active in the 3 cell-
free radioligand binding assays, indicating its potential to dis-
rupt the protein in these assays, potentially through protein
denaturation.

A final set of chemicals are those with some weak activity in
one or more of the assays. There are further chemicals with
AUC(agonist) in the range of values seen with the weak
and very weak reference chemicals (green triangles, lower
right of figure), and these would be worth additional investiga-
tion, although with a lower priority than those chemicals that
are more potent. Note that there is greater uncertainty
about activity for chemicals where the “true” activity
approaches the upper limit of testing (100 mM) because of the
large spread in AC50 values across the assays. Finally, there are
a set of chemicals with very low median-AC50s, but low or zero
AUC(agonist/antagonist) (black points running along the bottom
middle). These chemicals are very potent in one assay or tech-
nology, and are the typical chemicals causing assay
interference.

One goal of this study was to determine whether a chemical
interacts with ER based on data from in vitro assay which is sub-
ject to noise and assay interference. Table 2 gives the counts of
chemicals for each of the receptors or pseudoreceptors with at
least 1 chemical having an AUC> 0.2, over selected ranges. For
the agonists and antagonists, one can see that the number of
chemicals in these potency categories shifts as a function of the
penalty term strength a (see equation 5).

Understanding all of the causes of assay interference (and
hence pseudoreceptor activity) is beyond the scope of this
study, but we analyzed 2 major factors that appear to play a
role. These factors include non-normal baseline variability and
cytotoxicity or cell-stress-induced non-specific activity. In the
assay data processing pipeline (see Methods), baseline variabil-
ity is assumed to be approximately normally distributed, and to
be due to noise processes. However, other processes can cause
baseline shifts, for instance uncorrected edge effects on a
microtiter plate. Assay data processing attempts to correct for
these types of effects, but in a high-throughput automated sys-
tem, some issues will remain. A second potential cause of assay
interference is cell-stress or cytotoxicity related non-selective
activity. With in vitro assays, one often observes false activity in
many assays at concentrations near cytotoxicity. The Z-score
(see methods) is used to quantify the relative proximity of an
assay AC50 to the cytotoxicity region. Qualitatively, Z< 3 may
be associated with cytotoxicity, while Z� 3 is not. For most
assays, we observe a bimodal distribution of Z-scores with a
minimum at �3. An example of the Z-score distribution is
shown in Figure 6 for ATG_ERa_TRANS_up (assay A12).

For subsequent analyses, we examined chemical activity
after filtering for likely non-ER activity using the maximum effi-
cacy (Top or T) and cytotoxicity (ie, Z-score). For each chemical,

FIG. 3. Continued
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FIG. 4. Plots showing activity of the agonist (top) and antagonist (bottom) reference chemicals. Chemicals that are intended to be positive are indicated by green circles,

while those intended to be inactive are indicated by red circles. For the agonists, the expected potency range is also indicated (middle column). For chemicals with one

or more pseudoreceptor AUC values greater than zero, the value is indicated by an X, and the pseudoreceptor name is indicated. The inset shows the assay curves for

dibutyl phthalate, as described in the text (colored based on Fig. 3).
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the median T and Z-scores were calculated for the correspond-
ing assays, and chemicals were removed with T< 50% or Z< 3.
A total of 165 chemicals passed this filter. The chemicals filtered
out were typically those with low AUC values (active only at
high concentrations). Figure 7 shows the fraction of chemicals
remaining after the filtering for receptors or pseudoreceptors
with more than 5 hits and with AUC> 0.1 before filtering. For
illustration, only multi-assay pseudoreceptors are shown. One
can see that the low AUC bins lose the most number of chemi-
cals. Pseudoreceptor R9 loses the largest fraction of chemicals
in all bins, likely because the loss-of-signal antagonist assays
making up R9 are the most subject to being confounded by cyto-
toxicity (Huang et al., 2014). This is in contrast to R3, made up of
the cell-free radioligand binding assays, which lose the smallest
fraction of chemicals in the intermediate AUC bins, likely
because these assays are less sensitive to the cytotoxicity proc-
esses. Finally, note that a number of agonist and antagonist

chemicals in the low and intermediate AUC bins are also lost.
These are chemicals that are active in many ER assays, and
include some of known weak estrogens (linear nonylphenol is
an example), but whose activity all occurs in the cytotoxicity
region. We would argue that, while these chemicals may be
truly estrogenic, they are of more concern from their cytotoxic-
ity than as estrogens.

A total of 72 chemicals have an AUC(agonist) or
AUC(antagonist)> 0.1, median-Z-score> 3, and median-T> 50%.
These are listed, along with a variety of annotations in Table 3.
Many of these chemicals fall into 2 main structural classes with
known estrogenic activity—steroids (16, 22%), and phenol-
containing compounds (41, 57%). Pharmaceuticals are the most
widely represented use class (28, 39%). Other use classes include
antioxidants, detergents/surfactants, pesticides, plastics and
other industrial reagents and UV absorbers. Another interesting
class are chemicals that are found in foods, including the

FIG. 5. Plot of the maximum AUC vs. minimum-AC50 values. Each point is a single chemical that was active in at least 1 assay. The AUC value given is the maximum of

the AUC (agonist) and AUC (antagonist) values for the chemical. The dashed line is the best-fit for AUC(agonist) values >0.1. Chemicals are labeled in order: black circle,

at least 1 AUC>0.1; green up-triangle, positive agonist reference chemical; green down-triangle, positive antagonist reference chemical; red diamond, negative refer-

ence chemical; cyan circle, example chemicals with AUC significantly below the fitted line but above 0.1. The vertical line at 100 mM indicates the highest concentration

tested, while the horizontal line at AUC¼0.1 indicates an approximate threshold between chemicals with clear agonist/antagonist activity and those that are poten-

tially active through interference processes. The inset shows graphs of assay activity for 4-androstene-3,17-dione (colored based on Fig. 3).
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natural phytoestrogen flavones genistein, daidzein, biochanin
A, apigenin, kaempferol and chrysin; and the flavor/fragrance
ingredient 4-(2-methylbutan-2-yl)cyclohexanol (also known as
4-tert-amylcyclohexanol), which is a perfume ingredient.

DISCUSSION

We have developed a computational approach to distinguish
true ER receptor-mediated agonist and antagonist activity from
false positive activity often related, we postulate, to assay inter-
ference. The primary driver of this application is the need to
screen thousands of man-made chemicals found in the envi-
ronment for their potential to interact with the ER. Current in
vivo methods used for chemical safety testing are too slow and
resource intensive to screen a set of chemicals of this magni-
tude. The present method ranked large numbers of chemicals
based on potential ER pathway activity in a manner that is use-
ful for setting priorities for further screening or testing.

The method described here uses a network model to inte-
grate concentration-response profiles for a collection of 18
in vitro assays probing different molecular processes in the ER
pathway. The model assigns scores for true agonist and antago-
nist activity as well as scores representing non-receptor medi-
ated effects. Model scores are combined with a measure of
relative efficacy and cytotoxicity-related assay activity. These
results indicate whether the activity of a chemical is most likely
ER mediated, or related to either assay- or technology-specific
assay interference. Model results demonstrated that the
method works well for a set of reference chemicals by correctly
identifying agonist, antagonist and inactive compounds with
high sensitivity and specificity. The model agonist score
[AUC(agonist)] is also correlated with the expected potency class
of the active reference chemicals.

Additionally, this study allowed us to probe mechanisms
behind assay interference. The existence of this phenomenon is
well known in the pharmaceutical industry, and some models

to identify interfering chemicals are available (Baell and
Holloway, 2010; Bruns and Watson, 2012). However, we believe
that the types of interference one sees may indicate important
aspects of the underlying biology triggered by these chemicals,
although typically only at high concentrations. We have dem-
onstrated here that a fraction of pseudoreceptor activity is asso-
ciated with cytotoxicity, but the phenomenon of cytotoxicity is
not uniform. In particular, Figure 7 shows that the chemicals
with lower support for activity against any of the receptors or
pseudoreceptors (as measured by AUC values) are the ones
most likely to have assay activity occurring only in the cytotox-
icity region. In the ToxCast assay portfolio, a total of 35 cytotox-
icity assays are run in multiple cell types (cell lines and primary
cells), and different types of readouts (primarily measuring
decrease in viable cell count, ATP levels or decrease in rate of
cell proliferation). We observed (data not shown) that many
chemicals will trigger only one class of the cytotoxicity assays
in the cell-stress/cytotoxicity region (eg, only the cell-line-based
assays, or only the reduced proliferation assays), indicating the
potential for a specific mechanism for cytotoxicity. The ToxCast
assay portfolio also contains a collection of cell stress assays
(eg, oxidative stress, endoplasmic reticulum stress, mitochon-
drial disruption). We are currently studying how to combine
patterns of assay interference, cell stress and cytotoxicity with
the aim of better understanding how chemicals perturb cells at
high concentrations. Understanding these effects may also help
interpret the results of typical high-dose animal toxicity studies
as many of these effects are dose-dependent.

The goal of this model is to identify potential estrogen-
related hazards, ie, to determine whether a chemical is likely to
interact with the ER. Equally important to carrying out a full risk
assessment are the need to understand exposure (to single
chemicals or mixtures), pharmacokinetics, in vivo adaptation,
etc. To this end, we are also developing high-throughput quan-
titative estimations of pharmacokinetics (Rotroff et al., 2010;
Thomas et al., 2013; Wetmore et al., 2012, 2013; Wambaugh et al.,
2015) and chemical exposure (Wambaugh et al., 2013, 2014). In
combination, these will provide the capability to develop risk-
based priorities for targeted testing within the framework of
high-throughput risk assessment (Judson et al., 2011).

In parallel, we are have also performed a direct comparison
of the current model with data from guideline uterotrophic
studies (Kleinstreuer et al., forthcoming) (Browne et al., 2015).
The result of this comparison is that the current ER model
results are predictive of in vivo uterotrophic assay results. In
particular, for chemicals run in at least 2 uterotrophic, guide-
line-like studies, the sensitivity and specificity of the ER model
were 97% and 89%, respectively, once ER-model-ambiguous
results were excluded, ie, chemicals with 0.01<AUC
(agonist)< 0.1. If all guideline-like uterotrophic data from the lit-
erature is included (incorporating chemicals for which only a
single assay was run), the sensitivity and specificity drop to 89%
and 80%, respectively. These values need to be compared with
the observed discrepancies between guideline-like uterotrophic
assays run for the same chemical in different laboratories.
Kleinstreuer et al. documented that 26% of chemicals had dis-
crepant results, ie, at least 1 positive and 1 negative result. So in
summary, we believe that the agonist model results can serve
as a reliable indicator of ER activity both in vitro and in vivo, with
sensitivity and specificity comparable to that provided by the
guideline uterotrophic assay. Chemicals with AUC(agonist)� 0.1
are likely in vivo active; those with AUC(agonist)< 0.01 are likely
in vivo inactive; and those in the intermediate region are ambig-
uous, and may require further testing to make a definitive call.

TABLE 2. Counts of Chemicals for Each Receptor/Pseudoreceptor as
a Function of AUC Value

Receptor 0.1–0.2 0.2–0.5 0.5–1

AUC(Agonist) a¼ 0.01 22 37 12
AUC(Agonist) a¼ 1 36 42 14
AUC(Agonist) a¼ 100 51 49 16
AUC(Antagonist) a¼ 0.01 4 4 4
AUC(Antagonist a¼ 1 9 4 5
AUC(Antagonist) a¼ 100 10 8 5
AUC(R3) 3 2 0
AUC(R6) 36 7 0
AUC(R7) 0 0 1
AUC(R8) 14 15 2
AUC(R9) 21 4 0
AUC(A1) 0 1 1
AUC(A2) 4 1 0
AUC(A3) 12 7 0
AUC(A12) 17 2 0
AUC(A13) 32 9 0
AUC(A15) 30 5 0
AUC(A17) 29 6 0
AUC(A18) 7 6 0

Only receptors or pseudo receptors with at least 1 chemical with AUC>0.2 are

listed. Counts for the agonist and antagonist modes as a function of a are also

given. Note that for the pseudo receptors, all values use a¼1.
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The agonist and antagonist AUC scores, in addition to all assay
data, are available at the EDSP21 dashboard: http://epa.gov/
ncct/toxcast/data.html and http://actor.epa.gov/edsp21.

In addition, the method described here is general enough to
apply to any pathway for which multiple assays are available
that probe different points in a pathway using multiple technol-
ogies. We currently have equivalent data sets to the one
described here for the androgen receptor, steroidogenesis, and
the peroxisome proliferator activating receptor (PPAR) path-
ways. We are also adding physicochemical properties and other
structural features to try and develop rules to be used in design-
ing safer alternatives to currently widely used chemicals. The
ER context is helpful in this broad area because we can better
assess what is true receptor-mediated activity as opposed to
assay interference. We can likely apply assay interference infor-
mation for specific chemicals derived from this ER study to the

behavior of those chemicals in other pathways, for which we do
not have this large assay coverage.

SUPPLEMENTARY DATA

Supplementary data are available online at http://toxsci.
oxfordjournals.org/.
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