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Abstract We propose a mathematical model that describes the dynamics of mul-
tiple myeloma and three distinct populations of the innate and adaptive immune
system: cytotoxic T cells, natural killer cells, and regulatory T cells. The model in-
cludes significant biologically- and therapeutically-relevant pathways for inhibitory
and stimulatory interactions between these populations. Due to the model complex-
ity, we propose a reduced version that captures the principal biological aspects for
advanced disease, while still including potential targets for therapeutic interven-
tions. Analysis of the reduced two-dimensional model revealed details about long-
term model behavior. In particular, theoretical results describing equilibria and their
associated stability are described in detail. Consistent with the theoretical analysis,
numerical results reveal parameter regions for which bistability exits. The two stable
states in these cases may correspond to long-term disease control or a higher level of
disease burden. This initial analysis of the dynamical system provides a foundation
for later work, which will consider combination therapies, their expected outcomes,
and optimization of regimens.

1 Introduction

Multiple myeloma (MM) is a cancer of plasma cells, and is diagnosed in approx-
imately 30,000 patients in the United States annually [80]. Current standard ther-
apies include combinations of proteasome inhibitors, immunomodulatory drugs,
glucocorticoids, and high dose chemotherapy and autologous stem cell rescue. Re-
cent approvals for targeted monoclonal antibodies, including daratumumab and elo-
tuzumab, have resulted in substantial improvements in survival, but few patients
survive more than ten years [43]. There have been attempts to control the disease
using immune modulation; however, outstanding questions remain unanswered re-
garding both treatment choice and timing [43, 46]. Drugs are commonly used in
combination, and with the number of available therapies and the complex feedback
between the tumor and immune system, finding the best combinations of treatments
for different stages is a challenge.
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In this work, we present a “within-host” mathematical model of MM (“tumor”)
and immune system dynamics that can be used for exploring combination therapy
effects in silico. Our model tracks tumor burden in a hypothetical patient with MM
and several immune cell types that play important roles in disease control or pro-
gression. We include key model components and interactions between them to re-
flect the biology and to represent targets for therapeutic intervention. We explain
the significant components of the model, establish how these components influence
each other, and explore some of the underlying properties of the model with regard
to conditions for disease stability and control. The goal of this work is to determine
and justify the model, and to explore its basic properties. In the future, we plan to
use this foundation to explore and optimize treatment regimens for patients with
MM in various settings.

There is a rich history of mathematical models for tumor-immune system inter-
actions. One of the first papers in which such a model was formulated is that of
Stepanova [84] in 1980. The model highlighted the strong nonlinear interplay and
underlying kinetics between a tumor and an aggregate immune system and resulted
in multi-stability. This model is the basis for numerous extensions and generaliza-
tions such as models by Kuznetsov et al. [48], Kirschner and Panetta [45], de Vladar
and González [19], d’Onofrio [24], and de Pillis et al. [18]. These models are for-
mulated and analyzed as dynamical systems described by ordinary differential equa-
tions (ODEs) while other modeling approaches include structured population mod-
els [20], partial differential equations (PDEs) [55], cellular automata models [91], or
combinations of these approaches [12]. Additional modeling approaches for tumor–
immune system interactions can be found in Eladaddi et al. [27] and Schättler and
Ledzewicz [75]. While many of these models consist of very general descriptions
of cancer dynamics, other papers analyze tumor–immune system interactions for
specific cancer types. Examples of such models include papers by Moore et al. on
chronic myeloid leukemia [52, 61, 62].

In this work, we model population dynamics in the peripheral blood of patients
with MM, although much of these dynamics are driven by interactions that occur
elsewhere (e.g., in the bone marrow or lymph nodes). Levels of myeloma protein
(M protein) in peripheral blood samples are correlated with tumor burden [74]. This
protein is typically a monoclonal immunoglobulin or a monoclonal free light chain
produced by the malignant plasma cells and has harmful effects, such as increased
blood viscosity and organ damage [56]. Sullivan and Salmon [86] developed a sim-
ple tumor growth mathematical model in the early 1970s using M-protein levels to
study chemotherapy-induced tumor regression in patients with MM. Optimal con-
trol principles were shortly thereafter applied in Swan and Vincent [88] to show an
optimal dosing strategy for patients with MM under chemotherapy.

In 2016, Tang et al. [89] published a model fit to data from three bortezomib-
based chemotherapy clinical trial cohorts of patients with MM. Their mathematical
model proposed a differentiation hierarchy in the bone marrow with a myeloma
progenitor cell population that was relatively resistant to therapy. They showed that
rationally-designed combination treatments with decreased selection pressure on
myeloma cells can lead to a longer remission period.
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Overall, prior studies have shown that mathematical modeling in the context of
MM can be a valuable tool with the potential to improve treatments. However, these
prior studies have not examined the role of the immune system in MM disease dy-
namics. Several immunomodulatory drugs have been approved for use in MM, and
more are in the pipeline. As we plan to eventually optimize regimens for patients
with MM and include immunotherapies, in this work we develop and analyze a
mathematical model that captures key tumor–immune interactions in patients with
MM.

The mathematical model we propose consists of a dynamical system that tracks
a tumor burden marker and several immune cell components. We track the level of
M protein in the peripheral blood, which is commonly used as a key diagnostic in-
dicator and as a surrogate of tumor burden in patients with MM [26]. The immune
cells included in our model are cytotoxic T lymphocytes, natural killer cells, and
regulatory T cells. We perform equilibrium and stability analysis to determine the
conditions under which stable disease “immune-controlled” states exist. In partic-
ular, we explore regions of parameter space for which a long-term disease control
(LTDC) state exists (represented by a lower stable equilibrium value for M protein),
and for which a stable state of high tumor burden exists. In addition, we numerically
simulate certain disease conditions to better understand how the system evolves.
This initial analysis of the dynamical system provides a foundation for later work,
in which we will consider combination therapies, their expected outcomes, and op-
timization of regimens.

2 Mathematical Model

Our mathematical model consists of a system of ordinary differential equations that
describes interactions between MM and the immune system. Specifically, we track
the temporal dynamics of the following four populations in the peripheral blood:
M protein produced by MM cells, M(t); cytotoxic T lymphocytes (CTLs), TC(t);
natural killer (NK) cells, N(t); and regulatory T cells (Tregs), TR(t). The NK pop-
ulation is part of the innate immune system, while CTL and Tregs are part of the
adaptive immune response and are assumed to be specific to myeloma cells. The
three immune cell populations included in the model were also chosen for the fol-
lowing additional reasons. First, they are all implicated in the development of MM
[25, 41], and have interrelated dynamics [25]. Second, each is affected by a therapy
we plan to study in silico with this model: NK cells are targeted by the approved MM
therapy elotuzumab [67]; Tregs are affected by the approved MM therapy daratu-
mumab [47]; and the main effect of anti-programmed death 1 (anti-PD-1) therapy is
on effector T cells [66]. Third, levels of each of the three immune cell types could
be obtained from patient peripheral blood samples in clinical studies, which would
allow the estimation of certain parameters in the model. The interactions between
populations included in this model are illustrated in Fig. 1 and listed in Table 1.
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In Section 2.1, we discuss in greater detail the biological basis for each interaction
pathway used in the model.

Figure 1 Diagram of population interactions. M represents M protein produced by MM cells,
TC represents CTLs, N represents NK cells, and TR represents Tregs. The solid curves represent
an increase (arrows pointing in) or decrease (arrows only pointing out) in population sizes. The
dashed curves represent interactions that either boost (arrows) or inhibit (solid circles) population
sizes or rates of change. These interaction pathways (labeled a−k) are described in Table 1 and in
Section 2.1.

The basic structure of each rate of change equation in our model consists of a
constant source rate term s, a logistic growth term with growth rate constant r and
carrying capacity K, and a loss term with rate constant δ . We choose logistic growth
because of its simplicity among smooth functions that tend toward finite population
sizes. Letting P stand for any of the populations M, TC, N, or TR, the basic form of
the rate of change of P with respect to time t is given by

dP
dt

= s+ rP
(

1− P
K

)
−δP . (1)

For the T cell populations, the source term rate constant s, which represents the
spontaneous production of T cells that happen to be specific to myeloma, is assumed
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Pathway Description References
a TC crosstalk with N; boosts N proliferation [6], [54], [58], [76], [77], [79]
b N crosstalk with TC; boosts TC proliferation [6], [65], [76]
c TC increases activation/efficacy of N [54], [58], [77]
d Antigens shed from M stimulate TC proliferation [1], [21], [25], [39], [70], [95]
e N cells kill myeloma cells and decrease M [9], [10], [22], [32], [42], [69]
f TC cells kill myeloma cells and decrease M [22], [42], [95]
g Myeloma cells decrease efficacy of N [34]
h Myeloma cells decrease efficacy of TC [8], [14], [29], [71], [85]
i Myeloma cells boost TR proliferation [14], [28], [30], [29]
j TR decreases efficacy of N [35], [36], [44], [81], [87], [90]
k TR decreases efficacy of TC [11], [23], [44], [57], [78], [90]

Table 1 Description of interaction pathways in the model (the dashed curves shown in Fig. 1).

to be insignificant compared to the proliferation rate, and is set to zero. We model
feedback between the different populations by modifying the growth rate constant
r or the death rate constant δ so that the effective rates increase or decrease in the
presence of certain other cell types.

The dynamics of the myeloma cell population, represented by the concentration
of M protein in the peripheral blood, M (with units of g/dL), are given by

dM
dt

= sM + rM

(
1− M

KM

)
M

−δM

[
1+

( e︷ ︸︸ ︷
aNMN

bNM +N
+

f︷ ︸︸ ︷
aCMTC

bCM +TC
+

c︷ ︸︸ ︷
aCNM

N
bNM +N

· TC

bCM +TC

)
·

(
1−

g,h︷ ︸︸ ︷
aMMM

bMM +M
−

j,k︷ ︸︸ ︷
aRMTR

bRM +TR

)]
·M

(2)

Significant levels of M protein (up to 1.5 g/dL [63]) can be present in the absence of
a MM diagnosis, whereas a Durie-Salmon Stage III diagnosis of MM only requires
levels to be greater than 5-7 g/dL [26]. Thus we include a constant source rate for sM
in our model to account for production by normal plasma cells. The terms labeled e
and f account for NK cell (N) and CTL (TC) killing of myeloma cells, respectively.
The crosstalk between NK and CTL (pathway c) further increases the efficacy of NK
killing of myeloma cells. However, MM (M) and Tregs (TR) decrease the efficacy
of NK and CTL killing of myeloma cells (pathways g, h, j, and k). In the absence
of evidence to the contrary, we assume the effect size of pathways g and h are the
same. Similarly, we assume the effect size of pathways j and k are the same. We
choose saturating functional forms for these interactions (rather than mass action)
so that there is a limit to the size of each possible effect.

The rate of change of TC(t) (measured in units of cells/µL) is given by
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dTC

dt
= rC

(
1− TC

KC

)(
1+

d︷ ︸︸ ︷
aMCM

bMC +M
+

b︷ ︸︸ ︷
aNCN

bNC +N

)
TC−δCTC.

(3)

We assume that antigen shed from myeloma cells is presented to TC and boosts
proliferation (represented by pathway d), and that cytokines secreted by N also lead
to increased proliferation of TC (represented by pathway b). Finally, the rates of
change of the populations of NK, N(t), and Tregs, TR(t), (both measured in units of
cells/µL) are modeled by

dN
dt

= sN + rN

(
1− N

KN

) a︷ ︸︸ ︷(
1+

aCNTC

bCN +TC

)
N−δNN (4)

dTR

dt
= rR

(
1− TR

KR

) i︷ ︸︸ ︷(
1+

aMRM
bMR +M

)
TR−δRTR (5)

As CTLs and Tregs are part of the adaptive immune response, we assume that their
spontaneous production specific to myeloma cells (on the order of 1 out of 107 T
cells) is negligible in comparison to their proliferation once they initially recognize
the myeloma [1]. Thus, we include proliferation terms but not separate source terms
for the increase of the CTL and Treg populations. Since the NK cells are part of
the innate immune response and do not require specificity to tumor antigens [1],
we assume the general production of additional NK cells could contribute signifi-
cantly to the response of NK cells to myeloma, and include a source term for their
increase. Our model also assumes that proliferation of N is increased by crosstalk
with TC (pathway a), and that M increases activation/proliferation of TR (pathway
i). As mentioned above, many of the interactions represented in these equations oc-
cur in locations other than the peripheral blood. However, the results of interactions
outside the peripheral blood are expected to be reflected in the dynamics of the pop-
ulations we track within the peripheral blood. The parameters in equations (2) - (5)
are described in Table 2.

2.1 Evidence for model pathways

Here, we provide details of all model pathways shown in Fig. 1 and described in
Table 1. These pathways represent “net” effects in the system, which may be due to
elements not explicitly included in the model. These elements may include cellular
components such as T helper, B, and antigen-presenting cells (e.g., dendritic cells),
and soluble factors such as cytokines and chemokines that may originate from the
immune system, non-immune normal tissue, or tumor. Thus parameters in the sys-
tem need to be interpreted as “net” effect parameters, which incorporate combined
contributions of interactions and elements that are not measured separately.
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Also, since we assume levels of and changes to MM cells are reflected in levels
of M protein M, effects on or by MM cells are represented by M. Parameters for M
may include proportionality constants that relate MM cell levels with M levels.

Pathway a: CTLs boost NK proliferation. Assistance from activated CD8+ T
cells in stimulating the proliferation of NK cells has been demonstrated in vivo [93].

Pathway b: NK cells boost CTL proliferation. The NK pool boosts effector T
cell proliferation through IFNγ secretion from the NK cells, which stimulates den-
dritic cell (DC) maturation and leads to Th1 polarization of naive T cells, further
promoting NK and CTL activation and IFNγ production by direct contact. Addi-
tionally, NK killing of target cells boosts DC antigen uptake, antigen presentation
by DCs, and subsequent effector T cell proliferation [65].

Pathway c: CTL and NK crosstalk leads to increased MM killing. Assistance
from tumor-antigen specific CD4+ and CD8+ T cells in activating anti-tumor re-
sponse from NK cells has been demonstrated in vivo [5, 77]. (CD8 is a co-receptor
predominantly found on CTLs.) One possible mechanism for this is the large quan-
tity of interleukin-2 (IL-2), produced by activated CD8+ T cells during an immune
response [6]. One clinical study of patients with cancer quantified the extent of ac-
tivation of NK cells when IL-2 was administered [58]. This pathway results in NK
cells having a boosted response to MM, driven by CTL levels.

Pathway d: Myeloma cells stimulate CTL proliferation. Antigens shed from
MM cells induce differentiation and expansion of effector T cells (CD4+ and CD8+
T cells) through antigen presentation by DCs [1, 21, 95].

Pathway e: NK cells kill myeloma cells. NK cell killing of myeloma cells has
been evidenced in vitro and ex vivo [9, 32]. This work also attempts to elucidate
mechanisms for NK cell recognition of myeloma cells.

Pathway f: CTLs kill myeloma cells. CTL killing of myeloma cells is mediated
by perforin secretion, which is responsible for pore formation in cell membranes of
target cells [94, 95].

Pathway g: Myeloma cells decrease NK cell efficacy. Human leukocyte antigen-
1 (HLA-1, also known as major histocompatibility complex I, or MHC I) expres-
sion on myeloma cells confers resistance to lysis by NK cells [34]. PD-1 ligand
(PD-L1) on the surface of myeloma cells can down-regulate NK cells through inter-
actions with PD-1 [4]. Also, several additional mechanisms involved in the tumor
microenvironment, such as tumor cell-derived factors and tumor-derived exosomes,
are immunosuppressive of NK cells [3].

Pathway h: Myeloma cells decrease CTL efficacy. Myeloma cells have been
found to express PD-L1, suggesting the PD-L1 binding to PD-1 on CTLs may de-
crease their cytotoxicity. Anti-PD-1 blocking antibody has been shown to increase
CD8+ T cell killing of myeloma cells [37]. Myeloma cells also secrete IL-6 and pro-
mote paracrine production of vascular endothelial growth factor (VEGF) by stromal
cells [13], which inhibit the differentiation and maturation of DCs and the subse-
quent priming of T cell activity [33, 59, 72].

Pathway i: Myeloma cells boost Treg proliferation. Myeloma cells can gen-
erate inducible Tregs in vitro [29], and Treg levels may be higher as a percentage
of the CD4+ cells in patients with MM than in healthy adults [28, 30]. Our model
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structure causes the Treg levels to increase, but in a bounded manner, as M increases.
With respect to in vivo data, we point out that in one reference, mean Treg levels are
higher in symptomatic MM patients than in the healthy controls [28], while in an-
other reference, mean Treg levels are lower in MM patients than in healthy controls
[68]. In both cases, these are mean values, and the variances are high. Given the
discrepancies between clinical study data, we reduce the model by assuming that
the number of Tregs is constant, as described next in Section 2.2.

Pathway j: Tregs decrease NK efficacy. Tregs can decrease the efficacy of NK
cells via transforming growth factor β (TGF-β ) in a cell-contact dependent manner
[36, 81, 87, 90].

Pathway k: Tregs decrease CTL efficacy. Tregs can decrease the efficacy of
CTLs through TGF-β signaling [11, 57]. There is some debate as to whether reg-
ulatory T cells also slow the proliferation of cytotoxic T cells in patients with MM
[7, 69]. However, Sojka et al. [82] note that the context determines how the regu-
latory T cells affect their target. In our model, the context is the tumor site. At the
tumor site, the primary mechanism of the regulatory T cells is to inhibit CTL effi-
cacy there [11, 57, 90]. Over time, this results in decreased numbers. Therefore, we
do not include a specific pathway for decreased CTL proliferation due to regulatory
T cells in our model, and focus instead on the primary mechanism of decreased CTL
efficacy against the myeloma cells.

2.2 A reduced model for the diseased state

While the full model is comprehensive, it is challenging to analyze mathematically.
To gain insight into crucial model components, we focus on the dynamics of two key
variables, namely M-protein and CTL levels. Our model reduction is informed by
data on the immune cell levels of multiple myeloma patients. Pessoa de Magalhães
et al. [68] reported that NK cell levels in the peripheral blood do not vary signifi-
cantly between patients with various stages of MM, including LTDC and precursor
states such as monoclonal gammopathy of unspecified significance (MGUS). Thus,
if we focus our attention on individuals already in a diseased state, we can assume
that NK levels are approximately constant. In addition, data in Pessoa de Magalhães
et al. [68] and Favaloro et al. [28] indicate that the number of Tregs is relatively con-
stant across disease states. To simplify our analysis, we initially restrict our focus to
patients with the disease, and assume that NK and Treg levels are fixed at constant
steady-state levels.

The reduced model in a diseased state is given by two equations, for M proteins
and TC cells respectively, where N̄ and T̄R are introduced as fixed model parameters.
The equations are
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dM
dt

= sM + rM

(
1− M

KM

)
M

−δM

[
1+

(
aNMN̄

bNM + N̄
+

aCMTC

bCM +TC
+aCNM

N̄
bNM + N̄

· TC

bCM +TC

)
·(

1− aMMM
bMM +M

− aRMT̄R

bRM + T̄R

)]
·M,

dTC

dt
= rC

(
1− TC

KC

)(
1+

aMCM
bMC +M

+
aNCN̄

bNC + N̄

)
TC−δCTC.

(6)

Proofs for existence and uniqueness of solutions for the full and reduced models are
given in the Appendix. We list the range of relevant parameter values used in our
model in Table 2.

3 Equilibria and Stability

In this section, we show theoretical and numerical analyses for the number of
possible equilibrium solutions and their stability properties for the reduced two-
dimensional model. From a mathematical perspective, if there exists a unique
asymptotically stable positive equilibrium point, then a relevant question will be
how it can be moved, through therapy, to reduce the total cancer load. On the other
hand, if multiple stable equilibrium points exist (presumably one with a higher can-
cer load than the others), then the question becomes how one can move the state
into the region of attraction of the equilibrium point corresponding to a lower can-
cer load. For cancer models with tumor–immune system interactions, this is a typical
situation (e.g., see [53, 75]). From a practical point of view the results obtained can
be interpreted in multiple ways. For example, our results can be used as a diagnostic
indicator, helping us to better understand conditions under which patients with MM
might enter a state of LTDC or remission.

We recall that, in the reduced model, constant steady-state values N̄ for N and
T̄R for TR are used in the dynamics for M and TC and we briefly restate the model
equations:

dM
dt

= sM + rM

(
1− M

KM

)
M−δM

[
1+
(

aNMN̄
bNM + N̄

+
aCMTC

bCM +TC

+aCNM
N̄

bNM + N̄
· TC

bCM +TC

)(
1− aMMM

bMM +M
− aRMT̄R

bRM + T̄R

)]
M

dTC

dt
= rC

(
1− TC

KC

)(
1+

aMCM
bMC +M

+
aNCN̄

bNC + N̄

)
TC−δCTC.

The coefficient aCNM represents the net activation of N that depends on the presence
of TC. Setting
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Parameter Description Range of Values References
sM Constant source for M 0.005-0.5 g/(dL·day) Estimated
rM Proliferation rate constant for M 0.002-0.05 /day [2, 18, 40, 64]
KM Carrying capacity for M 7-15 g/dL [68]
δM Basal death/decay rate constant for M 0.006-0.06/day [38, 60]
aNM Maximum fold-increase in death rate of M by N 0-10 Estimated
bNM Threshold for increase in death rate of M by N (0-2)×KN Estimated
aCM Maximum fold-increase in death rate of M by TC 0-10 Estimated
bCM Threshold for increase in death rate of M by TC (0-2)×KC Estimated
aCNM Maximum fold-increase in N efficacy by TC 0-10 Estimated
aMM Maximum extent M decreases TC and N efficacy aMM +aRM ≤ 1 Estimated
bMM Threshold for M decreasing TC and N efficacy (0-2)×KM Estimated
aRM Maximum extent TR decreases TC and N efficacy aMM +aRM ≤ 1 Estimated
bRM Threshold for TR decreasing TC and N efficacy (0-2)×KR Estimated
rC Proliferation/activation rate constant for TC 0.01-1/day [2, 15, 16, 73]
KC Carrying capacity for TC 600-1500 cells/µL [68]
δC Death/inactivation rate constant for TC 0.5-5/day [15, 17, 31, 73, 83]
aMC Maximum fold-increase in activation rate of TC by M 0-10 Estimated
bMC Threshold for increase in activation rate of TC by M (0-2)×KM Estimated
aNC Maximum fold-increase in activation rate of TC by N 0-10 Estimated
bNC Threshold for increase in activation rate of TC by N (0-2)×KN Estimated
sN Constant source rate for N 0.001-5 cells/(µL·day) [18, 96]
rN Proliferation rate constant for N 0.025-0.2/day [96]
KN Carrying capacity for N 300-650 cells/µL [68]
δN Basal death/inactivation rate constant for N 0.02-0.07/day [96]
aCN Maximum fold-increase in activation rate of N by TC 0-10 Estimated
bCN Threshold for increase in activation rate of N by TC 0-1500 Estimated
rR Proliferation/activation rate constant for TR 0.01-0.5/day [92]
KR Carrying capacity for TR 60-120 cells/µL [68]
δR Basal death/inactivation rate constant for TR 0.01-0.5/day [73, 92]
aMR Maximum fold-increase in activation rate of TR by M 0-10 Estimated
bMR Threshold for increase in activation rate of TR by M 0-15 Estimated
M0 Observed values of M protein in diseased state 3-10 g/dL [26]
T 0

C Observed values of CTLs in diseased state 464±416 cells/µL [68]
N0 Observed values of NK cells in diseased state 227±141 cells/µL [68]
T 0

R Observed values of Tregs in diseased state 42±26 cells/µL [68]

Table 2 Table of parameter descriptions and ranges of values used in the model. All parameters
are assumed non-negative. M0,T 0

C ,N
0,T 0

R are used as initial values/conditions.

ξ = 1− aRMT̄R

bRM + T̄R
, ρ =

N̄
bNM + N̄

and η = 1+
aNCN̄

bNC + N̄
,

we obtain the following equilibrium equations:
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0 = sM + rM

(
1− M

KM

)
M−δM

[
1+
(

aNMρ +
(aCNMρ +aCM)TC

bCM +TC

)
(7)

·
(

ξ − aMMM
bMM +M

)]
M,

0 =

[
rC

(
1− TC

KC

)(
η +

aMCM
bMC +M

)
−δC

]
TC. (8)

We call equilibrium points with T ∗C = 0 trivial and those with T ∗C > 0 positive.

3.1 Analysis of trivial equilibrium points: T ∗C = 0

In this case, after multiplying equation (7) with bMM +M we obtain that

0 =

(
sM−δMM+ rM

(
1− M

KM

)
M
)
(bMM +M)

−δMaNMρ (ξ bMM +(ξ −aMM)M)M.

This is a cubic polynomial of the form

P(M) =− rM

KM
M3 + γ2M2 + γ1M+ sMbMM

with coefficients

γ2 = rM−δM−bMM
rM

KM
−δMaNMρ(ξ −aMM)

and
γ1 = sM +bMM (rM−δM)−δMaNMbMMξ ρ.

Thus there exists at least one and no more than three positive roots 0 < M∗1 ≤M∗2 ≤
M∗3 . It follows from Descartes’ sign rule that there is a unique positive root if either
γ2 < 0 or γ1 > 0. Note that for the dynamics to be meaningful we must have ξ > aMM
and thus rM is the only positive coefficient in γ2. However, if γ2 > 0 and γ1 < 0,
then three positive roots are possible. Fig. 2 below, which illustrates the possible
scenarios, shows that this is viable.

The stability of trivial equilibrium points is easily established. If we write the
dynamics as

dM
dt

= f1(M,TC) and
dTC

dt
= f2(M,TC),

then for a trivial equilibrium point we have that

∂ f2

∂M
(M∗,0) = 0
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and thus the eigenvalues of the Jacobian matrix at (M∗,0) are given by

∂ f1

∂M
(M∗,0) and

∂ f2

∂TC
(M∗,0).

We have that
∂ f2

∂TC
(M∗,0) = rC

(
η +

aMCM∗

bMC +M∗

)
−δC (9)

and thus (M∗,0) is unstable if

rC

δC

(
η +

aMCM∗

bMC +M∗

)
> 1. (10)

As the function M 7→ M
b+M is strictly increasing, there exists a unique critical value

Mc defined as the solution to the equation

rC

δC

(
η +

aMCM
bMC +M

)
= 1

and given by

Mc =
bMC

(
δC
rC
−η

)
aMC−

(
δC
rC
−η

) . (11)

Trivial equilibrium points (M∗,0) with M > Mc are unstable. If M < Mc, then
∂ f1
∂M (M∗,0) determines the overall stability. It follows from P(M)= (bMM+M) f1(M,0)
that such an equilibrium point is locally asymptotically stable if there is only one
positive real root and, if there are three distinct real roots, then the low and high equi-
librium points are locally asymptotically stable and the intermediate one is unstable
(see Appendix). In particular, the trivial equilibrium closest to the critical value Mc
from below is always locally asymptotically stable unless there exists a double root
M∗. Then the corresponding eigenvalue is 0 and this equilibrium point is a saddle
node while the other equilibrium point is locally asymptotically stable. This fully
describes the local stability properties of trivial equilibrium points.

3.2 Number of positive equilibrium points: T ∗C > 0

While the trivial equilibrium points are relevant for the overall behavior of the dy-
namical system, more important are the positive equilibrium points. In this case we
have

T ∗C = KC

1− 1
rC
δC

(
η + aMCM∗

bMC+M∗

)
 (12)
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and this quantity is positive if and only if M∗ > Mc. In particular, for the critical
value Mc we have that T ∗C = 0 and, if the trivial equilibrium point is asymptotically
stable for M < Mc near Mc, then this point corresponds to a transcritical or exchange
of stability bifurcation between a trivial and a positive equilibrium point. We record
the following statement:

Proposition 1. Positive equilibrium points (M∗,T ∗C ) are the equilibrium solutions
that lie in the region {M > Mc}. In this region all trivial equilibrium points are
unstable.

Substituting the formula for T ∗C into equation (7) gives

0 = sM−δMM+ rM

(
1− M

KM

)
M (13)

−δM

aNMρ +

(aCM +aCNMρ)KC

(
1− 1

rC
δC

(
η+

aMCM
bMC+M

)
)

bCM +KC

(
1− 1

rC
δC

(
η+

aMCM
bMC+M

)
)


(

ξ − aMMM
bMM +M

)
M.

Fractional linear transformations form a group under composition and thus this last
term is still a fractional linear transformation. Algebraic manipulations (which are
included in the Appendix) lead to the following expression:

aNMρ +

(aCNMρ +aCM)KC

(
1− 1

rC
δC

(
η+

aMCM
bMC+M

)
)

bCM +KC

(
1− 1

rC
δC

(
η+

aMCM
bMC+M

)
) =

β0 +β1M
α0 +α1M

(14)

where

α0 = bMC

[
(bCM +KC)

rC

δC
η−KC

]
,

α1 = (bCM +KC)
rC

δC
(η +aMC)−KC,

β0 = bMC

{
aNMρbCM

rC

δC
η +((aCNM +aNM)ρ +aCM)KC

(
rC

δC
η−1

)}
,

β1 = aNMbCMρ
rC

δC
(η +aMC)+((aCNM +aNM)ρ +aCM)KC

[
rC

δC
(η +aMC)−1

]
.

Note that

α0 > 0⇔ rC

δC
η >

KC

bCM +KC
, and α1 > 0⇔ rC

δC
(η +aMC)>

KC

bCM +KC
.
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In particular, if α0 is positive, then so is α1. Furthermore, if rC
δC

η > 1, then actually
all these coefficients (including β0 and β1) are positive. If TC is small, then rC

δC
η > 1

simply means that the CTLs do not die out which would seem to be a biologically
reasonable assumption. In any case, we always have the following result:

Lemma 1. For M ≥Mc we always have that α0 +α1M > 0.

Proof. If M > Mc then the following holds

bMC

(
rC

δC
η−1

)
+

[
rC

δC
(η +aMC)−1

]
M > 0. (15)

Hence

α0 +α1M = bMC

[
(bCM +KC)

rC

δC
η−KC

]
+

[
(bCM +KC)

rC

δC
(η +aMC)−KC

]
M

= bCM
rC

δC
[η(bMC +M)+aMCM]+KC

{
bMC

(
rC

δC
η−1

)
+

[
rC

δC
(η +aMC)−1

]
M
}

> 0.

The first term is always positive and thus this also holds in a neighborhood of M =
Mc. �

Overall, equation (13) is therefore equivalent to

0= sM−δMM+rM

(
1− M

KM

)
M−δM

(
β0 +β1M
α0 +α1M

)(
ξ bMM +(ξ −aMM)M

bMM +M

)
M.

Multiplying this equation by (α0 +α1M)(bMM +M)> 0 gives

0 =

(
sM−δMM+ rM

(
1− M

KM

)
M
)
(α0 +α1M)(bMM +M) (16)

−δM (β0 +β1M)(ξ bMM +(ξ −aMM)M)M.

This relation defines a fourth-order polynomial Q of the form

Q(M) = ω4M4 +ω3M3 +ω2M2 +ω1M+ω0

with coefficients
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ω4 = −α1
rM

KM
,

ω3 = (rM−δM)α1−
rM

KM
(α0 +α1bMM)−δMβ1(ξ −aMM),

ω2 = sMα1 +(rM−δM)(α0 +α1bMM)− rM

KM
α0bMM−δMβ1ξ bMM−δMβ0(ξ −aMM),

ω1 = sM(α0 +α1bMM)+(rM−δM)α0bMM−δMβ0ξ bMM,

ω0 = α0bMMsM.

If α0 is positive, then there exist at least one positive and one negative real root for
Q. Hence in this case there are at most three positive real roots for M. In principle,
if α0 is negative and α1 is positive, then there could exist four real roots. However,
we are only interested in solutions M > Mc and there is no a priori guarantee that
such solutions exist. We summarize these observations in the following proposition.

Proposition 2. Each root M∗ > Mc of Q(M) = 0 defines a positive equilibrium
point. In general, there are at most four positive roots of Q while there exist at
most three positive solutions if α0 is positive. In this case there exists at least one
positive equilibrium solution (M∗,T ∗C ) if Q(Mc)> 0, and the latter holds if and only
if f1(Mc,0)> 0.

Proof. The statements about the number of positive solutions have already been
verified and, if α0 > 0, it is clear from the mean value theorem that a solution M >
Mc exists if Q(Mc)> 0. As the value Mc corresponds to the bifurcation point when
the positive equilibrium point T ∗C becomes zero, it follows from equation (14) that
aNMρ = β0+β1Mc

α0+α1Mc
and thus Q(Mc) is positive if and only if the dynamics for M at

the point (M,TC) = (Mc,0) are positive, i.e.,

dM
dt

∣∣∣∣
M=Mc,TC=0

= f1(Mc,0)> 0.

This proves the result. �

3.3 Stability of positive equilibrium points: T ∗C > 0

Recall that

f1(M,TC) = sM−δMM+ rM

(
1− M

KM

)
M

−δM

(
aNMρ +(aCNMρ +aCM)

TC

bCM +TC

)(
ξ − aMMM

bMM +M

)
M,

f2(M,TC) = rC

(
1− TC

KC

)(
η +

aMCM
bMC +M

)
TC−δCTC.
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The Jacobian matrix at an equilibrium point (M∗,T ∗C ) is given by

A =


∂ f1
∂M (M∗,T ∗C )

∂ f1
∂TC

(M∗,T ∗C )

∂ f2
∂M (M∗,T ∗C )

∂ f2
∂TC

(M∗,T ∗C )

 (17)

and the equilibrium point is locally asymptotically stable if and only if the trace of
the Jacobian is negative and the determinant is positive. This is elementary and also
follows from the Routh-Hurwitz criterion.

Except for the (1,1)-term in A, all other terms have constant signs (regardless of
the parameter values). We have that

∂ f2

∂M
(M∗,T ∗C ) = rC

(
1−

T ∗C
KC

)
aMCbMC

(bMC +M∗)2 T ∗C

=
δCaMCbMCT ∗C

(η(bMC +M∗)+aMCM∗)(bMC +M∗)
> 0, (18)

∂ f2

∂TC
(M∗,T ∗C ) = −

rC

KC

(
η +

aMCM∗

bMC +M∗

)
T ∗C

= δC− rC

(
η +

aMCM∗

bMC +M∗

)
< 0, (19)

and

∂ f1

∂TC
(M∗,T ∗C )=−δM(aCNMρ+aCM)

bCM

(bCM +TC)2

(
ξ − aMMM∗

bMM +M∗

)
M∗< 0 (20)

where the last inequality is an immediate consequence of the meaning of the dynam-
ics. Also note that the gradient of f2 vanishes at the critical point (M∗,T ∗C ) = (Mc,0)
in agreement with the character of this point as a bifurcation point. For positive equi-
libria, the signs above imply the following statement:

Proposition 3. A positive equilibrium point (M∗,T ∗C ) for which ∂ f1
∂M (M∗,T ∗C ) is neg-

ative is locally asymptotically stable.

While this is only a sufficient condition, it is quite useful for this model. Numer-
ically it is easy to compute the trace and determinant and thus check any particular
point. The (1,1)-term in A is given by

∂ f1

∂M
(M∗,T ∗C ) = rM−δM−2

rM

KM
M∗−δM

(
aNMρ +(aCNMρ +aCM)

T ∗C
bCM +T ∗C

)
·
(

ξ − aMMM∗

bMM +M∗
− aMMbMMM∗

(bMM +M∗)2

)
.

Using the equilibrium condition
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δM

(
aNMρ +(aCNMρ +aCM)

T ∗C
bCM +T ∗C

)(
ξ − aMMM∗

bMM +M∗

)
=

sM

M∗
−δM+rM

(
1− M∗

KM

)
,

this simplifies to

∂ f1

∂M
(M∗,T ∗C )=−

sM

M∗
− rM

KM
M∗+δM

(
aNMρ +(aCNMρ +aCM)

T ∗C
bCM +T ∗C

)
aMMbMMM∗

(bMM +M∗)2

with the first two terms negative and the last term positive. As M∗→∞, the equilib-
rium solution T ∗C = T ∗C (M

∗) approaches its steady-state value

KC

(
1− 1

rC
δC

(η +aMC)

)

and thus the linear term dominates. Hence, if M∗ is large enough, this partial deriva-
tive is negative and a positive equilibrium point will always be locally asymptoti-
cally stable.

3.4 Numerical illustration and interpretation of the results

We illustrate the model results with phase portraits shown in Fig. 2. The number of
equilibrium points, as well as their stability, are consistent with what has been de-
scribed in the theoretical analysis above. The parameters that were kept constant in
all of these simulations are summarized in the caption of Fig. 2. The only parameter
that is varied is aCNM and its value is also given in the caption. We chose to increase
the parameter aCNM as a proof of concept to illustrate the bistable behavior of our
model (a feature also found in other tumor–immune models). Similar to the study
of Sontag [83], we highlight how a relatively simple model can recapitulate some of
the basic features of interactions between the immune system and myeloma cells.

In Fig. 2, we show that the model exhibits bistability. As stated previously, bista-
bility can be interpreted as a situation in which, depending on the TC and M levels,
we can predict whether an individual is more likely to enter a state of LTDC (repre-
sented by a lower stable equilibrium value M), or approach a state of higher tumor
burden (a higher stable equilibrium value for M). Starting with a base set of param-
eters, as shown in Fig. 2(a), high tumor burden is likely, regardless of the initial TC
and M levels. However, as we increase the parameter aCNM (so, as we increase TC’s
activation of N), LTDC becomes possible. In particular, Figs. 2(b) and (c) illustrate
a bistable state where, depending on the initial condition (i.e., the TC and M lev-
els), a state of high tumor burden or LTDC is possible. Lower values of aCNM , as
in Fig. 2(b), correspond to a smaller basin of attraction for the lower level stable
disease. Higher values of aCNM , as in Fig. 2(c), correspond to a larger “favorable
basin”.
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Figure 2 Phase portraits illustrating the bistable behavior of the reduced model (population levels
divided by their carrying capacities). In each figure, the green dots correspond to initial condi-
tions, the black lines correspond to trajectories over time, and the purple dots correspond to stable
equilibrium points. The orange dashed and purple dotted curves show the TC- and M-nullclines,
respectively, which are defined by the equilibrium equations (7) and (8). (a) aCNM = 24: High tu-
mor burden (one stable high MM equilibrium); (b) aCNM = 28.5 and (c) aCNM = 30.6: Bistability,
such that an increase in aCNM results in a larger basin of attraction of the low MM equilibrium
(LTDC); (d) aCNM = 33: LTDC (one stable low MM equilibrium). Other parameter values are:
rM = 0.05, δM = 0.012, sM = 0.0005, rC = 0.6, δC = 0.5, N̄ = 0.6, T̄R = 1.5, aNM = 6, bNM = 0.5,
aMM = 0.35, bMM = 0.1, aRM = 0.64, bRM = 0.1, aCM = 6, bCM = 0.5, aMC = 1, bMC = 0.5, aNC = 1,
and bNC = 0.5.

These results suggest that, as aCNM is increased, the probability of moving to a
state of high tumor burden is less likely, but depends on the M and TC levels. Fig.
2(d) shows the effect of further increasing aCNM . Here, the bistable state is lost, and
individuals end up in a state of LTDC, starting from any M and TC levels. We get
the same qualitative results, starting with the parameters used in Fig. 2(a), by either
lowering T̄R or increasing N̄ (results not shown). These results are consistent with
what we might expect biologically. In particular, if we increase the N cell count
sufficiently high (keeping TR fixed), or if we reduce the TR cell count (while fixing
the N cell count), we see that the high tumor burden state for M becomes smaller
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Figure 3 Both the full (top) and reduced (bottom) models show bistability when the initial condi-
tion for M protein is varied. Initial conditions for immune cells that correspond to a diseased state
[68] are TC(0) = 464,N(0) = 227, and TR(0) = 42. Scale on the left of each plot corresponds to im-
mune cells TC , N, and TR, and scale on the right of each plot corresponds to M-protein concentration
(illustrated by solid red curves). Top left: M(0) = 1.68 and Top right: M(0) = 0.72. Bottom: Sim-
ulation of reduced model. Bottom left: M(0) = 1.62, TC(0) = 252 and Bottom right: M(0) = 0.72,
TC(0) = 252. All non-scaled parameter values for the full simulation are: rM = 0.05, δM = 0.012,
sM = 0.006, rC = 0.6, δC = 0.5, rN = 0.02, δN = 0.025, sN = 1.49, rR = 0.0831, δR = 0.0757.
bNM = 0.5∗KN , bCM = 0.5∗KC , bMM = 0.1∗KM , bRM = 0.1∗KR, bMC = 0.5∗KM , bNC = 0.5∗KN ,
bCN = 0.375 ∗KC , bMR = 0.25 ∗KM , aNM = 6, aCM = 6, aCNM = 16, aMM = 0.35, aRM = 0.64,
aMC = 1, aNC = 1, aCN = 1, aMR = 1. The carrying capacities are: KM = 12, KC = 1000, KN = 550,
and KR = 100.

(the highest stable equilibrium in Fig. 2(b) is shifted to the left) and the basin of
attraction for the LTDC state becomes larger. If we further decrease the TR level (or
increase N) we arrive again at a state of LTDC. We should point out that these are
just example parameter sets. To gain more specific insight into the model dynamics,
model parameterization and sensitivity analysis should be completed.

In Fig. 3, we compare the full (top) and reduced (bottom) models. When ini-
tial M-protein values are varied (keeping all other parameters fixed), we observe a
switch between high tumor burden and LTDC. This bistability is observed in both
the full and reduced models, demonstrating that the underlying dynamics of bista-
bility are well captured by our model reduction, despite Tregs and NK cells being
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held constant. This indicates that the model reduction has good predictive power
overall, but the full model can display rich dynamics that we will examine further
in the future.

In Fig. 3 (top left), we initialize M-protein levels to a value of 1.68 g/dL. In this
case, we note that the M protein approaches a diseased steady-state value of 2.95
g/dL (achieved in around 1200 days), with steady-state values for the immune cell
populations of 533, 229, and 39 cells/µL for CTLs, NK cells, and Tregs, respec-
tively. In Fig. 3 (top right), we initialize the M-protein level at 0.72 g/dL. Note that
there is an initial immune response, in which the CTL population increases. Eventu-
ally, the M-protein levels decrease to a value of 0.306 g/dL and the immune response
is decreased (evidenced by a drop in the CTL population). In this case, steady-state
values for the immune cell populations are 443, 223, and 17 cells/µL for CTLs, NK
cells, and Tregs, respectively. In both cases (diseased and LTDC), NK cells do not
change much. This result is consistent with the work of Pessoa de Magalhães et al.
[68], in which NK cells are approximately 230 cells/µL in both diseased and LTDC
states. However, CTLs are higher in the case of LTDC [68]. Similar to our bistable
results, these results indicate that a potential mechanism for controlling myeloma
level is due to a decrease in the Treg population.

The corresponding reduced two-dimensional model is shown in Fig. 3 (bottom).
We note a similar bistable switch. In both cases, we start with the same initial condi-
tions used in the full simulation for M protein and CTLs, and note similar trends in
the long-term dynamics of both populations. In Fig. 3 (bottom left), we find steady-
state values of M protein and CTLs to be 3.82 g/dL and 569 cells/µL, respectively
(as compared to 2.95 g/dL and 533 cells/µL in the full simulation). In Fig. 3 (bot-
tom right) we find steady-state values of M protein and CTLs to be 0.308 g/dL and
480 cells/µL, respectively (as compared to 0.306 g/dL and 433 cells/µL in the full
simulation).

In these numerical examples, steady state is attained in two to three years. In
other simulations [not shown], we saw times to steady state that were both higher
and lower than these, with more that were lower. The clinical time course for the
progression of the disease from asymptomatic with low M-protein levels to a higher
M-protein level with symptoms requiring therapy is highly variable. In a review of
1027 newly-diagnosed patients, the median survival duration was less than three
years [51]. For comparison, consider monoclonal gammopathy of undetermined
significance (MGUS), a state in which M-protein levels are low and patients are
asymptomatic. The risk of progression from MGUS to multiple myeloma occurs at
a rate of roughly 1% per year [50]. Smoldering multiple myeloma (SMM), another
asymptomatic state, has higher M-protein levels (≥ 3 g/dL [50]). SMM patients
have a 10% annual risk of progressing to MM for the first five years following diag-
nosis [49]. At these rates, it would take an average of about 6.5 years for a patient
to progress from SMM to MM, and longer to progress from MGUS to MM. The
range of time scales observed in our simulations suggests that the parameter sets we
used may be more likely to match patients starting with MM or SMM, rather than
MGUS.
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4 Conclusion and Future Work

In this paper, we formulated a mathematical model for in-host, MM tumor–immune
system interactions. The full model includes four populations: M proteins, CTLs,
NK cells, and Tregs. The interactions of these four populations represented in the
model include key pathways that regulate the crosstalk between MM cells and im-
mune system cells. The model is set in the peripheral blood, which means it can be
calibrated to data from peripheral blood samples, although many of the interactions
represented in the model reflect actions that occur elsewhere. Based on experimental
evidence from the literature, we perform analysis on a reduced system in which NK
cell and Treg populations are roughly constant in the disease state. Thus, we can set
their rates of change to zero, and N and TR take on constant values. This simplifies
the model to a system of two differential equations: one for M proteins and one for
CTLs. The resulting reduced model for M proteins includes the role of CTLs and
NK cells in enhancing the removal of M proteins (and also includes CTLs increas-
ing the activation of NK cells). Further, inhibitory effects of M proteins and Tregs
on M protein loss are also included. The reduced model for CTLs includes the role
of M proteins and NK cells that enhance the growth rate of CTLs.

The theoretical and numerical analysis of the reduced model demonstrates that
there are regions of parameter space for which the system allows for the existence of
two stable, non-zero equilibrium points. Depending on initial values for M protein
and CTLs, the long-term behavior of the model may be LTDC, or may be a state of
high disease burden. If the model is validated, then knowing the initial cell counts,
we could predict if a patient will likely enter a state of LTDC or high disease burden.
Further, once tumor control therapies are added (future work described below), we
can address questions such as how to move from an undesired high M-protein state
(indicative of high tumor burden) to a more favorable LTDC state.

Our analysis indicates that the system behavior may be sensitive to the value
of the parameter that describes CTLs increasing NK cell activation (the parameter
aCNM). Specifically, in cases of high aCNM , a stable, low M-protein level equilibrium
emerges, with a basin of attraction that increases as CTL activation of NK cells
increases. This shows that an immune-controlled state, corresponding to LTDC is
possible in our model, but it requires that either CTLs are extremely effective at
activating NK cells or that there are a large number of CTLs to achieve a similar
effect. Similar bistable results give a state of LTDC if we have a sufficiently high
number of NK cells or a sufficiently low number of Treg cells.

Our findings are in qualitative agreement with data. In Pessoa de Magalhães [68],
a careful examination of the distribution of various classes of lymphocytes in the pe-
ripheral blood of patients with MM who had achieved LTDC revealed differences in
the immune cell composition between healthy adults and patients in various stages
of progression toward MM. In particular, long-term controlled patients with MM
had higher numbers of CD8+ T cells and NK cells. Our analysis results suggesting
that CTLs are key components of immune control in patients with MM agree with
these clinical observations. Further, our model predicted that a low M-protein level
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steady state would be stable if NK cell levels are increased, indicating the impor-
tance of the innate immune system in achieving long-term remission.

This work constitutes a first stage in the analysis of the full model. It is a nat-
ural question to ask whether the analysis of the equilibria and stability completed
for the reduced two-dimensional (2D) model will tell us anything about the dy-
namical properties of the full four-dimensional (4D) system. This answer is not an
easy one, as the full system dynamics are highly nonlinear. Analysis of the reduced
model only provides information for a 2D slice of the 4D model, in which two vari-
ables, NK cells and Tregs, are taken at their steady-state values. We might expect
that, for values close to these steady-state values, the model behavior will remain
similar. However, for values far from the steady-state values, the behavior may be
quite different. The model reduction used here (fixing NK cells and Tregs at their
steady-state values) was motivated by data from the literature. As stated in Section
2.2, multiple sources show that both Treg and NK cell populations do not change
much during the progression of MM [68, 28]. Thus, we expect that the analysis per-
formed in this paper will be of use in understanding the long-term behavior of the
full system.

In addition to our study lacking the full model dynamics, our current model does
not include the effects of therapy. However, there are several types of drugs that
are designed to boost immune responses [46] and their role in achieving long-term
remission can be explored with this model. Future work will be conducted to clearly
define how each of these drugs acts on the model pathways outlined in this paper.
The ultimate goal of that work will be to introduce therapy in a full MM tumor–
immune model and examine whether optimal dosing strategies can move states with
high M-protein levels into a region of attraction of LTDC.

5 Appendix

In this section, we include formal calculations that were omitted in the main text.

Existence and Uniqueness of Solutions

Here, we discuss an existence and uniqueness result for the full model given by
equations (2) through (5), and the reduced model given by system (6).

Proposition 4. Given an initial condition (M0,T 0
C ,N

0,T 0
R ) in the closed first quad-

rant
Q = {(M,TC,N,TR) : M ≥ 0,TC ≥ 0,N ≥ 0,TR ≥ 0},

the differential equations defined by equations (2) through (5) have a unique solution
which exists for all times t ≥ 0 and lies in Q.
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Proof. The right-hand side of this differential equation is continuously differentiable
in a neighborhood of Q and thus for initial conditions in Q locally there exists a
unique solution. As TC ≡ 0 and TR ≡ 0 are equilibrium solutions and as dM

dt

∣∣
M=0

and dN
dt

∣∣
N=0 have source terms and thus are positive, it follows that Q is positively

invariant, i.e., solutions that start in Q will remain in Q throughout their interval of
existence. Finally, since all the Michaelis-Menten type expressions of the form ax

b+x
with x ∈ {M,TC,N,TR} are bounded, it follows that there exist constants C1, C2, C3,
and C4 such that ∣∣∣∣dM

dt

∣∣∣∣≤ sM +C1M,

∣∣∣∣dTC

dt

∣∣∣∣≤C3TC,

and ∣∣∣∣dN
dt

∣∣∣∣≤ sN +C2N,

∣∣∣∣dTR

dt

∣∣∣∣≤C4TR,

hold. Hence each of these quantities grow at most exponentially and thus solutions
exist for all times. �

Analogous to the full model, we have the following existence and uniqueness
result for the reduced system (6):

Proposition 5. Given an initial condition (M0,T 0
C ) in the closed first quadrant Q =

{(M,TC) : M ≥ 0,TC ≥ 0}, the differential equations (6) have a unique solution
which exists for all times t ≥ 0 and lies in Q.

Scaled model

To reduce the number of unknown parameters, we perform the following scaling:
M∗ = M/KM , N∗ = N/KN , T ∗C = TC/KC, and T ∗R = TR/KR.

dM∗

dt
=

sM

KM
+ rM(1−M∗)M∗−δM

[
1+
(

aNMN∗

bNM/KN +N∗
+

aCMT ∗C
bCM/KC +T ∗C

+aCNM
N∗

bNM/KN +N∗
·

T ∗C
bCM/KC +T ∗C

)(
1− aMMM∗

bMM/KM +M∗
− aRMT ∗R

bRM/KR +T ∗R

)]
M∗

dT ∗C
dt

= rC(1−T ∗C )
(

1− aMCM∗

bMC/KM +M∗
+

aNCN∗

bNC/KN +N∗

)
T ∗C −δCT ∗C

dN∗

dt
=

sN

KN
+ rN(1−N∗)

(
1+

aCNT ∗C
bCN/KC +T ∗C

)
N∗−δNN∗

dT ∗R
dt

= rR(1−T ∗R )
(

1+
aMRM∗

bMR/KM +M∗

)
T ∗R −δRT ∗R

Dropping asterisks and introducing the notation s̄M = sM/KM , b̄NM = bNM/KN ,
b̄CM = bCM/KC, etc., we obtain
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dM
dt

= s̄M + rM(1−M)M−δM

[
1+
(

aNMN
b̄NM +N

+
aCMTC

b̄CM +TC

+aCNM
N

b̄NM +N
· TC

b̄CM +TC

)(
1− aMMM

b̄MM +M
− aRMTR

b̄RM +TR

)]
M

dTC

dt
= rC(1−TC)

(
1− aMCM

b̄MC +M
+

aNCN
b̄NC +N

)
TC−δCTC

dN
dt

= s̄N + rN(1−N)

(
1+

aCNTC

b̄CN +TC

)
N−δNN

dTR

dt
= rR(1−TR)

(
1+

aMRM
b̄MR +M

)
TR−δRTR

Based on this scaling, we restrict the values of all scaled threshold parameters b̄pq
(p,q = M,N,C, or R), to be between 0 and 2 (i.e., much smaller or twice the popu-
lation carrying capacity).

Stability of trivial equilibria for M < Mc

Recall that P(M) = (bMM +M) f1(M,0) and thus we have that

P′(M∗) = f1(M∗,0)+(bMM +M∗)
∂ f1

∂M
(M∗,0) = (bMM +M∗)

∂ f1

∂M
(M∗,0).

Hence the second eigenvalue has the same sign as P′(M∗).
If there is only one positive real root, then this equilibrium point is locally asymp-

totically stable: Ignoring the positive factor rM
KM

, if the complex roots are α± iβ , then
we have that

P(M) =−(M−M∗)
[
(M−α)2 +β

2] ,
and thus

P′(M∗) =−
[
(M∗−α)2 +β

2]< 0.

If there are three distinct real roots 0 < M∗1 < M∗2 < M∗3 ,

P(M) =−(M−M∗1)(M−M∗2)(M−M∗3),

then the low and high equilibrium points are locally asymptotically stable and the
intermediate one is unstable. This simply follows from

P′(M∗1) = −(M∗1 −M∗2)(M
∗
1 −M∗3)< 0,

P′(M∗2) = −(M∗2 −M∗1)(M
∗
2 −M∗3)> 0,

P′(M∗3) = −(M∗3 −M∗1)(M
∗
3 −M∗2)< 0.

In particular, the trivial equilibrium closest to the critical value Mc from below is
always locally asymptotically stable except when there exists a double root M∗.
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Then the corresponding eigenvalue is 0 and this equilibrium point is a saddle-node
while the other equilibrium point is locally asymptotically stable.

Algebraic simplification for positive equilibria

We verify equation (14):

KC

(
1− 1

rC
δC

(
η+

aMCM
bMC+M

)
)

bCM +KC

(
1− 1

rC
δC

(
η+

aMCM
bMC+M

)
) =

KC

(
rC
δC

(
η + aMCM

bMC+M

)
−1
)

(bCM +KC)
rC
δC

(
η + aMCM

bMC+M

)
−KC

=
KC

(
rC
δC

(η(bMC +M)+aMCM)− (bMC +M)
)

(bCM +KC)
rC
δC

(η(bMC +M)+aMCM)−KC(bMC +M)

=
KC

{[
bMC

(
rC
δC

η−1
)]

+
[

rC
δC
(η +aMC)−1

]
M
}

bMC

[
(bCM +KC)

rC
δC

η−KC

]
+
[
(bCM +KC)

rC
δC
(η +aMC)−KC

]
M

=
ζ0 +ζ1M
α0 +α1M

with α0, α1, ζ0 and ζ1 defined by this relation. It follows that

aNMρ +(aCM +aCNMρ)

KC

(
1− 1

rC
δC

(
η+

aMCM
bMC+M

)
)

bCM +KC

(
1− 1

rC
δC

(
η+

aMCM
bMC+M

)
) =

β0 +β1M
α0 +α1M

(21)

with
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α0 = bMC

[
(bCM +KC)

rC

δC
η−KC

]
,

α1 = (bCM +KC)
rC

δC
(η +aMC)−KC,

β0 = aNMρα0 +(aCM +aCNMρ)ζ0

= bMC

{
aNMρ

[
(bCM +KC)

rC

δC
η−KC

]
+(aCM +aCNMρ)KC

(
rC

δC
η−1

)}
= bMC

{
aNMρbCM

rC

δC
η +(aNMρ +aCM +aCNMρ)KC

(
rC

δC
η−1

)}
,

β1 = aNMρα1 +(aCM +aCNMρ)ζ1

= aNMρ

(
(bCM +KC)

rC

δC
(η +aMC)−KC

)
+(aCM +aCNMρ)KC

[
rC

δC
(η +aMC)−1

]
= aNMbCMρ

rC

δC
(η +aMC)+(aNMρ +aCM +aCNMρ)KC

[
rC

δC
(η +aMC)−1

]
.
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