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In this work, we analyze a mathematical model we introduced previously for the dynamics of multiple
myeloma and the immune system. We focus on four main aspects: (1) obtaining and justifying ranges
and values for all parameters in the model; (2) determining a subset of parameters to which the model
is most sensitive; (3) determining which parameters in this subset can be uniquely estimated given cer-
tain types of data; and (4) exploring the model numerically. Using global sensitivity analysis techniques,
we found that the model is most sensitive to certain growth, loss, and efficacy parameters. This anal-
ysis provides the foundation for a future application of the model: prediction of optimal combination
regimens in patients with multiple myeloma.

© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

Multiple myeloma (MM) is a cancer of plasma B cells. Although
there are almost two dozen treatments approved in the US and
others currently in clinical trials, many patients do not survive
more than ten years (Kazandjian and Landgren, 2016). Regimens
usually combine multiple therapies (two, three, or more drugs) si-
multaneously. Patients receive additional combination therapies if
they do not respond to the initial combination, or when they re-
lapse. Without direct comparison studies, it is difficult to know
the best combinations and doses for treatment, and questions re-
main regarding both treatment choice and timing (Kazandjian and
Landgren, 2016). A mathematical model that accurately captures
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important features of the disease and therapy dynamics can be
used to test regimens in silico. It can also be used to calculate a
regimen that is predicted to perform optimally.

A number of mathematical models for the progression of MM
and its response to treatments have been developed previously.
Most of these models have made use of the correlation be-
tween MM tumor burden and a protein that is shed by MM
cells, M protein, that can be measured in the peripheral blood
(Durie and Salmon, 1975; Salmon and Smith, 1970). Sullivan and
Salmon (1972) published a simple mathematical model to char-
acterize chemotherapy-induced tumor regression in patients with
MM. Swan and Vincent applied optimal control in Swan and Vin-
cent (1977) to predict an optimal chemotherapy dosing strategy for
patients with MM. Hokanson et al. (1977) fit individual M-protein
data with mathematical models of myeloma cell populations that
were sensitive or resistant to chemotherapy. More recently, several
groups have examined the disease progression in the presence of
various treatments. Jonsson et al. (2015) published a model of pa-
tient M-protein levels in response to treatment with carfilzomib.
Tang et al. (2016) published a model for patient M-protein lev-
els in clinical trials of bortezomib-based chemotherapy. They pre-
dicted that rational combination treatments with decreased selec-
tion pressure on myeloma cells could lead to a longer remission
period. Nanavati et al. (2017) published a semi-mechanistic protein
production and signaling model with seven main compartments.
The model was fit to aggregate in vivo xenograft data (digitized
from the literature) for mice treated with vorinostat.

These prior studies have not directly examined the role of the
immune system in MM disease dynamics, though there is a long
history of tumor-immune dynamics models (cf. d’Onofrio, 2005;
Kirschner and Panetta, 1998; Kuznetsov et al., 1994; Moore and
Li, 2004; de Pillis et al., 2005; Stepanova, 1980; de Vladar and
Gonzalez, 2004). One contribution of our work is the incorpora-
tion and careful parameterization of immune-disease interactions
in a mathematical model for MM. This is important as several im-
munomodulatory drugs have been approved for use in patients
with MM, and more are currently in clinical trials (Kazandjian and
Landgren, 2016). A well-justified model of tumor-immune dynam-
ics would support in silico exploration of regimens that include
immunomodulatory therapies.

In Gallaher et al. (2018), we introduced a semi-mechanistic
mathematical model of MM (tumor) and immune system dynam-
ics in a hypothetical patient. We focused on the structure of the
model, and how best to incorporate tumor-immune dynamics. The
mathematical model consists of a dynamical system that tracks tu-
mor and immune components in the peripheral blood of patients
with MM. Although MM is a disease based in the bone marrow,
myeloma cells overproduce a myeloma protein or M protein, which
can circulate outside the bone marrow. Our model uses the level
of M protein in the peripheral blood as a surrogate of tumor bur-
den in patients with MM (Durie and Salmon, 1975; Salmon and
Smith, 1970). The immune cells included in our model play impor-
tant roles in disease control or progression, and can also be mea-
sured in the peripheral blood. In addition to justifying the struc-
ture of the full model, this work also considered a reduced version
of the model that still captures key long-term dynamics, and ana-
lyzed equilibria and stability of this reduced model.

In this paper, we present methods to determine important com-
ponents or interactions in the model. This information can be used
to help decide which therapies to consider in combination regi-
mens. We began with extensive literature searches to determine
and justify parameter values and ranges to use in the model. For
the ranges considered feasible for the parameters, we used sam-
pling to perform global sensitivity analyses. We found eight pa-
rameters that have the largest effect on long-term levels of M pro-
tein. We refer to this subset as “sensitive parameters”. We numer-

ically explored how small changes in the sensitive parameters can
lead to qualitatively different types of model behavior. In particu-
lar, changes in values of the sensitive parameters can result in a
switch between high and low tumor burden states.

With all except the sensitive parameters fixed, we used identifi-
ability analysis to determine that the model is globally structurally
identifiable. In other words, the eight sensitive parameters could
be uniquely estimated if we had continuous data from all four pop-
ulations in our model. Although we did not find time-series data in
the literature, we did find steady-state patient values for the four
tumor and immune populations included in our model (Greipp et
al., 2005; Pessoa de Magalhdes et al., 2013; Tang et al., 2016). Fit-
ting to this small amount of data, we were able to explore rela-
tionships between the sensitive parameters.

We propose a model for tumor-immune dynamics of multiple
myeloma that can be used in future work. The model we pro-
pose was developed in Gallaher et al. (2018), has parameter val-
ues/ranges we based on literature searches, and has fixed values
for all but the eight most sensitive parameters found in this cur-
rent work. The analysis and findings in this and previous work
(Gallaher et al., 2018) add to our overall confidence in the model.
If individual-level clinical data become available for each of the
four populations in the model, the eight sensitive parameters could
be estimated. In silico exploration and optimization could then
identify regimens predicted to have best outcomes. Such regimens
could be tested either preclinically or clinically and compared to
others to evaluate outcomes and calibrate the results.

2. The mathematical model

Our mathematical model, originally presented in
Gallaher et al. (2018), consists of a system of ordinary differ-
ential equations (ODEs) which represent interactions between
myeloma cells and the immune system. We include the following
four populations in the peripheral blood, considered as functions
of time, t: M protein produced by MM cells, M(t); natural killer
(NK) cells, N(t); cytotoxic T lymphocytes (CTLs), T¢(t); and regula-
tory T cells (Tregs), Tg(t). A detailed description and justification
of the model interactions is given in Gallaher et al. (2018). The
interactions between the populations are represented in Fig. 1 and
summarized in Table 1.

2.1. Model equations
Egs. (1)-(4) describe the temporal dynamics of M protein, CTLs,

NK cells, and Tregs, respectively. The labels a - k correspond to
interactions described in Table 1.
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Fig. 1. Diagram of population interactions. M represents M protein produced by MM cells, T¢ represents CTLs, N represents NK cells, and Ty represents Tregs. The solid curves
represent an increase (arrows pointing in) or decrease (arrows only pointing out) in population sizes. The dashed curves represent interactions that either boost (arrows) or
inhibit (solid circles) population sizes or rates of change. These interactions (labeled a - k) are summarized in Table 1.

Table 1
Description of interactions between populations in the model.
Label Interaction References
a Tc crosstalk with N; boosts N proliferation Boyman and Sprent (2012); Lehman et al. (2001); Meropol et al. (1998); Shanker et al. (2010,
2007); Shook and Campana (2011)
b N crosstalk with T¢; boosts T¢ proliferation Boyman and Sprent (2012); Pallmer and Oxenius (2016); Shanker et al. (2010)
c Tc increases activation/efficacy of N Lehman et al. (2001); Meropol et al. (1998); Shanker et al. (2007)
d Antigens shed from M stimulate T¢ proliferation Abbas et al. (2015); Dhodapkar et al. (2003); Dosani et al. (2015); Janeway (2001);
Raitakari et al. (2003); Wen et al. (2002)
e N cells kill myeloma cells and decrease M Carbone et al. (2005); Cerwenka et al. (2001); Diefenbach et al. (2001); Frohn et al. (2002);

Kawarada et al. (2001); Pratt et al. (2007)

f Tc cells kill myeloma cells and decrease M Diefenbach et al. (2001); Kawarada et al. (2001); Wen et al. (2002)
g Myeloma cells decrease efficacy of N Gao et al. (2014)
h Myeloma cells decrease efficacy of T¢ Brown et al. (1998); D’Arena et al. (2016); Feyler et al. (2012); Raja et al. (2012); Suen et al. (2016)
i Myeloma cells boost Ty proliferation D’Arena et al. (2016); Favaloro et al. (2014); Feyler et al. (2009, 2012)
j Tg decreases efficacy of N Ghiringhelli et al. (2006, 2005); Kim et al. (2007); Smyth et al. (2006); Sungur et al. (2013);
Tran (2012)
k Tr decreases efficacy of Tc Chen et al. (2005); DiPaolo et al. (2005); Kim et al. (2007); Mempel et al. (2006);
Shevach et al. (2006); Tran (2012)
NK cells (d and b, respectively). Eqgs. (3) and (4) describe the dy-
; namics of NK cells and Tregs, respectively. NK cell proliferation is
—_——— increased by crosstalk with CTLs (a), and Treg proliferation is in-
dTg _ Tr amrM creased through activation by myeloma cells (i).
7—7’R‘1—f 1+ —— TR—(SRTR (4)
dt Kg bur + M

Each population is assumed to grow logistically (with growth
rate constants denoted by r;) and decline exponentially (with loss
rate constants defined by §;) in the absence of the other popula-
tions.

Eq. (1) describes the dynamics of the myeloma cell population,
represented by the concentration of M protein in the blood. The
population growth includes a constant source term, representing
production of similar proteins from sources other than myeloma
cells (Dimopoulos et al., 2011). The expanded term multiplying the
loss rate constant §,; describes how this loss rate can be increased
or decreased, depending on tumor and immune interactions. In
particular, the first part of this term indicates that NK cells (N)
and CTLs (T¢) kill myeloma cells (e and f respectively), and that
the crosstalk between NK cells and CTLs (c) further increases the
efficacy of NK cell killing of myeloma cells. However, myeloma cells
(whose levels are assumed proportional to levels of M protein, M)
and Tregs (Tgr) decrease the efficacy of NK cells and CTLs in their
killing of myeloma cells (g, h, j, and k). We use saturating func-
tional forms for feedback (rather than mass action) so that there is
a limit to the size of each possible effect.

Eq. (2) describes the dynamics of the CTL population. The pro-
liferation of CTLs is increased by the presence of myeloma and

2.2. Parameter ranges and values

We performed in-depth literature searches to determine rele-
vant parameter ranges. The details are provided in the Appendix
and summarized in Table 2. Given differences in experimental con-
ditions, disease types, as well as variability among patients and un-
certainty in the data, we found parameter estimates that differed
by orders of magnitudes. We explored possible behaviors of the
model for the parameter ranges in Table 2 by performing numeri-
cal simulations and sensitivity analyses. All simulations used MAT-
LAB ODE solvers, either ode15s or ode45, with default values used
for relative and absolute tolerances unless otherwise indicated.

3. Numerical simulation

We used numerical simulation to explore the spectrum of dis-
ease dynamics given by the range of parameter values in our
model system.

3.1. Latin hypercube sampling

We created ~ 10,000 parameter sets (each consisting of 30 pa-
rameter values and 4 initial conditions) by sampling the ranges in
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Table 2

Table of parameter descriptions and ranges of values used in the model. All parameters are assumed non-negative. M, T?, N°, T are used as initial values/conditions.
“Number” gives us a way to refer to or order the parameters later. “Base” is used when we need to choose a single value for a parameter. “Bistable” values are used in the

section exploring bistability.

Number Name  Description Base Bistable Range considered  References
- Sm Constant source for M 0.001 0.001 0.001 g/(dL- day) van der Giessen et al. (1975);
Gonzalez-Qunitela et al. (2008);
Hansen et al. (2014); Mills et al. (2017);
Plebani et al. (1989); Stoop et al. (1969)
1 ™ Growth rate constant for M 0.0175 0.025 0.004-0.5/day Arciero et al. (2004);
Jonsson et al. (2015);
de Pillis et al. (2005)
2 Ky Carrying capacity for M 10 13 7-15g/dL Pessoa de Magalhdes et al. (2013)
3 Sm Natural loss rate constant for M 0.002 0.007 0.001-0.1/day Hansen et al. (2014); Mills et al. (2017)
4 anv Maximum fold-increase in loss rate of M by N 5 5 0-20 Estimated
5 bxm Threshold for increase in loss rate of M by N 150 275 0-650 cells/uL Estimated
6 ey Maximum fold-increase in loss rate of M by T¢ 5 5 0-20 Estimated
7 bem Threshold for increase in loss rate of M by T¢ 375 500 0-1500 cells/uL Estimated
8 acvm Maximum fold-increase in N efficacy from T¢ 8 10 0-20 Estimated
9 aym Maximum extent M decreases Tc and N efficacy 0.5 0.35 0-1 Estimated
(apm + ary < 1)
10 bum Threshold for M decreasing T¢ and N efficacy 3 1.56 0-15 g/dL Estimated
1 [PV Maximum extent Tg decreases Tc and N efficacy 0.5 0.64 0-1 Estimated
(amm +agm < 1)
12 brm Threshold for Tz decreasing T¢ and N efficacy 25 10 0-120 cells/uL Estimated
13 rc Proliferation/activation rate constant for T¢ 0.013 0.45 0.01-0.5/day Arciero et al. (2004); de Boer et al.
(1985, 2003); de Pillis et al. (2013)
14 Ke Carrying capacity for Tc¢ 800 1000 600-1500 cells/uL  Pessoa de Magalhdes et al. (2013)
15 Sc Loss/inactivation rate constant for T¢ 0.02 0.35 0.01-0.5/day Arciero et al. (2004); de Boer et al.
(1985, 2003); de Pillis et al. (2013);
Sontag (2017)
16 anc Maximum fold-increase in activation rate of Tc by M 5 1 0-10 Estimated
17 bumc Threshold for increase in activation rate of Tc by M 3 6.5 0-15 g/dL Estimated
18 anc Maximum fold-increase in activation rate of Tc by N 1 1 0-10 Estimated
19 bne Threshold for increase in activation rate of Tc by N 150 275 0-650 cells/uL Estimated
20 SN Constant source rate for N 0.03 149 0.001-5 de Pillis et al. (2005);
cells/(uL - day) Zhang et al. (2007)
21 ™ Proliferation rate constant for N 0.04 0.02 0.01-0.5/day de Pillis et al. (2013, 2005);
Zhang et al. (2007)
22 Ky Carrying capacity for N 450 550 300-650 cells/uL Pessoa de Magalhdes et al. (2013)
23 Sn Natural loss/inactivation rate constant for N 0.025 0.025 0.01-0.5/day de Pillis et al. (2013, 2005);
Zhang et al. (2007)
24 aey Maximum fold-increase in activation rate of N by Tc 1 1 0-10 Estimated
25 bey Threshold for increase in activation rate of N by T¢ 375 375 0-1500 cells/uL Estimated
26 TR Proliferation/activation rate constant for Ty 0.0831 0.1 0.01-0.5 Vukmanovic-Stejic et al. (2006)
cells/(pL - day)
27 Kr Carrying capacity for Tg 80 100 60-120 cells/uL Pessoa de Magalhdes et al. (2013)
28 S Natural loss/inactivation rate constant for Ty 0.0757 0.077 0.01-0.5/day Robertson-Tessi et al. (2012);
Vukmanovic-Stejic et al. (2006)
29 ayr Maximum fold-increase in activation rate of Tz by M 2 1 0-10 Estimated
30 bur Threshold for increase in activation rate of Tz by M 3 3.25 0-15 g/dL Estimated
31 MO Observed values of M protein in diseased state 4 2.08 or 1.04 0.5-10g/dL Greipp et al. (2005); Kyle et al. (2003);
Tang et al. (2016)
32 TC0 Observed values of CTL in diseased state 464 464 464 £416 cells/uL  Pessoa de Magalhdes et al. (2013)
33 NO Observed values of NK in diseased state 227 227 2274141 cells/uL  Pessoa de Magalhdes et al. (2013)
34 TR0 Observed values of Ty in diseased state 42 42 42 426 cells/uL Pessoa de Magalhades et al. (2013)

Table 2. To produce approximately n samples, we first used Latin
hypercube sampling (LHS) to generate 2n samples in the full rect-
angular region with apy, agy €10, 1]. In LHS, each parameter range
is partitioned into 2n equiprobable subintervals. Random samples
are then generated with each subinterval sampled exactly once for
each parameter. This helps guarantee that the parameter space is
evenly covered and the entire range is sampled for each param-
eter (Iman, 2008). In this paper, each application of LHS assumed
uniform distributions of the parameters in the ranges from Table 2.
We then restricted to the subspace defined by ay; + agy < 1, leav-
ing us with n = 10,018 samples. Whenever required, such as in
performing local sensitivity analysis or steady-state calculations,
the samples were further filtered to remove simulation results
leading to numerical instabilities or non-convergence to steady-
state solutions. The same 10,018 parameter sets obtained using our
LHS sampling procedure were used for preliminary numerical ex-

plorations in this section and sensitivity analysis as described in
the next section.

3.2. Range of steady-state values in the population

Using 10,011 parameter sets (7 sets from the original 10,018
generated by LHS were removed due to numerical instabilities), we
tested the basic behavior of the model (Eqs. (1)-(4)) by looking at
distributions of steady-state values and the distribution of times
to reach steady-states. Additionally, we looked for possible distin-
guishing features, such as immune-cell levels or efficacy values, be-
tween the long-term high vs. low M-protein cases.

Simulation results using the specific parameter values listed in
the Base column of Table 2 are shown in Fig. 2A. Fig. 2B shows
histograms of steady-state values of the model variables using
the 10,011 sets of parameter values. The distributions of steady-
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Fig. 2. (A): Dynamics of model variables using parameter values and initial conditions listed in the Base column in Table 2. (B): Histograms of steady-state values of model
variables obtained from simulating the model to 6000 days using parameter sets obtained as described in Section 3.1. Out of 10,018 sets of parameter values, 7 sets were
removed due to numerical instabilities, leaving a total of n = 10, 011 sets with population values at time t = 6000 days shown here.
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Fig. 3. Histogram of times to steady state (TTSS) for 10,018 simulations normalized
so that the total area is one. Time is measured in days and is presented on a log
(base 10) scale. Median time is 161 days and mean time is 194 days.

state values are consistent with observations in the literature
(Greipp et al., 2005; Pessoa de Magalhdes et al., 2013; Tang et al.,
2016).

The distribution of times to steady state is analyzed further
by plotting the histogram in Fig. 3 (shown in log scale and nor-
malized so that the total area is equal to one). We computed
the steady-state solution by simulating the system (1)-(4) until
the solution ¥ = (M, T, N, Tz) satisfied W <1078, Out of
10,018 samples, 24.1% reached steady state within 3 months, 54.9%
reached steady state within 6 months, and 77.7% reached steady
state within one year. On a log scale, the distribution is unimodal
with median 161 days and mean 194 days.

3.3. Distinctions between low and high disease burden states

We examined the simulated outcomes further, to see whether
certain immune-cell levels or parameter values were associated
with high M-protein levels. Specifically, for the simulations with
the same 10,018 sets of parameter values, we classified the model
outcomes into two categories according to long-term M-protein
levels: (1) M <3 g/dL (“low”), and (2) M > 3 g/dL (“high”). Statisti-
cal comparisons between these two cases were made using a two-
sided Wilcoxon rank sum test (computed using the ranksum com-
mand in MATLAB Statistics and Machine Learning Toolbox), a non-
parametric test for equality of population medians. The level 3 g/dL
is the same M-protein threshold that distinguishes between MM
and monoclonal gammopathy of unknown significance (MGUS),
which is usually asymptomatic despite elevated M-protein values
(Kyle et al., 2011). In addition, data from Pessoa de Magalhdes

et al. (2013) suggest that long-term disease control patients with
MM have a particular immune signature corresponding to high av-
erage CTL counts and slight variations in average NK and Treg cell
counts as compared to patients with fully symptomatic MM. We
looked for any distinguishing behavior in our model corresponding
to either high or low steady-state M-protein values and compared
this with the data.

In Fig. 4A, we show box plots of steady-state values obtained by
simulations from 10,011 sampled parameter sets. Given the wide
range of parameter values considered, there was variability in the
results (wide distributions) as reflected by the number of out-
liers in the box plots. However, our simulation results associated
high M-protein levels with lower NK and higher Treg populations
than for low M-protein levels. The CTL population did not show
the same type of distinction. This is in contrast to data shown in
Pessoa de Magalhdes et al. (2013) which showed a higher CD8+ im-
mune population for patients with long-term disease control (how-
ever, when all effector T cells, CD4+ and CD8+, were combined,
the differences between patients with long-term control and those
with poor outcome were not as prominent).

We do not expect the steady-state values in our model simu-
lations to reflect the true efficacy of immune cells in keeping the
myeloma cell population in check, since we varied all parameter
values during sampling, including a;; and b;. Hence, we computed
the size of loss-related terms in Eq. (1) as described in the caption
of Fig. 4B. We found that killing terms by both NK and CTL were
higher, on average, for the low M-protein case, indicating that both
immune populations contribute in killing myeloma cells, in agree-
ment with the results shown in Pessoa de Magalhdes et al. (2013).
Interestingly, we saw slightly higher CTL steady-state values for the
low M-protein case when we performed simulations with fixed
feedback killing efficiency parameters (all a; and b; were set to
the values in the Base column in Table 2 instead of sampled from
a range; figure not shown). These results suggest that while CTLs
may contribute to lowering M-protein level, the primary mecha-
nisms for controlling myeloma cell levels in the absence of ther-
apy may be due to an increase in NK cell and a decrease in Treg
populations.

4. Sensitivity analysis

Due to the high levels of uncertainty and variability in the
model parameter values, we performed sensitivity analysis to see if
the values of some of the parameters are more important than oth-
ers in determining the outcome of the system. We used the long-
term M-protein level M as the outcome of interest, as M protein
continues to be an important measure of tumor burden in patients
with MM (Dimopoulos et al., 2011; Durie and Salmon, 1975).
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Fig. 4. Comparison between long-term low M-protein and high M-protein levels. (A) Box plots of steady-state values. (B) Box plots of sizes of loss terms that appear
in Eq. (1): NK Killing, (ayy N)/(byy + N); CTL Killing, (acy Tc)/(bem + Te); NK+CTL Killing, (acyy - Te - N)/((bym + N) - (bem + Tc)); Natural loss, 8y Kill Reduction by M,

(aym M) /(byy + M); Kill Reduction by Treg, (agy Tr)/(bgm + Tr). Steady-state values

of variables were used to compute killing terms. Model simulation was performed

for 6000 days using parameter values sampled from the range listed in the Range Considered column in Table 2. Latin hypercube sampling (LHS) was used to create the
10,018 sets of parameter values as described in Section 3.1; 7 sets were removed due to numerical instabilities (total shown here, n = 10, 011). For each panel, the result
from a two-sided Wilcoxon rank sum test for equality between the two population medians gave p < 0.001, indicating that the two population medians are statistically

significantly different.

We used two different methods for evaluating parameter sensi-
tivities. Both methods are global, which means that we varied all
parameters simultaneously, without fixing any. In the first method,
as described in Olufsen and Ottesen (2013), the effects of small
parameter changes (local sensitivity) were considered for each pa-
rameter set. Global sensitivities for each parameter were then de-
termined by averaging results from local sensitivity calculations.
The second method is based on the partial rank correlation coef-
ficients (PRCC), as discussed in Marino et al. (2008), which deter-
mines the monotonicity of the relationships between the parame-
ters and the system output.

We explored the parameter ranges listed in Table 2 by consid-
ering 10,018 parameter sets, obtained using LHS, assuming uniform
distributions on each specified parameter range of values (same

sets as used in Fig. 4). We used global methods because we do not
assume any of the parameters have values that are a priori well-
estimated or do not vary between individuals. Establishing a sub-
set of parameters the system is most sensitive to (a subset we call
sensitive parameters) allows us to freeze the values of the other pa-
rameters without expecting a large impact on the model dynamics.
We can then use our best estimate (shown in the Base column in
Table 2) for each of these fixed values, and perform identifiability
of the system with only the sensitive parameters allowed to vary.
If the system is identifiable, then the sensitive parameters can be
estimated by fitting the model to appropriate data. The sensitive
parameters also represent pathways that may lead to better out-
comes when targeted therapeutically, as changes to the sensitive
parameters lead to changes in the outcome.
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4.1. Sensitivity index and SVD/QR decomposition

The first sensitivity method we used is based on a sensitivity
matrix. For a given set of parameter values, the sensitivity matrix
records the change in the steady-state M value when each parame-
ter is perturbed slightly. As in Olufsen and Ottesen (2013), we con-
structed a sensitivity matrix with (i, j)th entry corresponding to

d
5= g5, (M@). (5)
where parameter p; is indexed as in Table 2 (j=1,2,...,35) and
time ¢; is the discrete time point at which M protein is measured
(i=1,2,...,K, for some positive integer K). This gives the sensitiv-
ity matrix S, in the following form,
r oM oM oM 7
371(“) sz(tl) W(ﬁ)
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—(t —(t — (&
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Since different parameters can have different units (and thus can

have orders of magnitude difference in size), we considered the

relative sensitivity S by comparing the size of a relative perturba-

tion in parameter p to the resulting relative change in M (Ingalls,

2013; Olufsen and Ottesen, 2013), i.e.,

oM p

ap M’

We approximated the partial derivatives %—";’ using a finite differ-

ence approximation (Olufsen and Ottesen, 2013; Pope et al., 2009),

with

oM ) ~ M(t;; pj + €) — M(t;; pj)
i)~ s

a; z

S= (7)

where € ~ O(+/tol) and tol is the tolerance (size of the abso-
lute error) of the numerical solution of the differential equation.
The numerical solutions to the ODE system were obtained by us-
ing odel5s in MATLAB with relative and absolute tolerances of
tol = 10-10, Thus, the sensitivity matrix has an error of ©(10-5)
(Olufsen and Ottesen, 2013; Pope et al., 2009).

The sensitivity of each parameter p; is given by the sensitivity
index, defined as the magnitude of the corresponding jth column
of S,

- s KoM p \
S:=1[S; = _ ti 2 . 8
=I5l = /3 (ap,.< )M(t,-)> (®)

The values of S ; can be ordered from largest to smallest, indicating
parameters the model is most sensitive to according to this mea-
sure.

For a given parameter set, we computed the relative sensitiv-
ity matrix S by simulating the ODE system for 6000 days (with
solutions evaluated every 30 days at t; = 0,30, 60, ...,6000 days).
From Fig. 3, approximately 78% of the 10,018 parameter sets de-
scribed in Section 3.1 had populations that reached steady state
within one year. Thus the time period of 6000 days includes both
transient dynamics and steady-state values. We examined how pa-
rameter values affected steady-state levels of M protein, as well as
the transition to steady state. For each parameter set, we recorded
the sensitivity index of each parameter (Eq. (8)). For the sensitivity
analysis considered here, we discarded 29 of the 10,018 parame-
ter sets, as these resulted in numerical instability or did not reach

Table 3

Ordering of parameters from most to least sensitive with respect to
steady-state M-protein level, based on average, or expected, values of
the sensitivity index in Eq. (8). Parameter Numbers correspond to the
ordering initially listed in Table 2. The expected values E[S_j] were ob-
tained by averaging the values S'J over 9989 sets of parameter values ob-
tained as described in Section 4.1. For each parameter set, S; was com-
puted by simulating the system for 5000 <t <6000 days.

Number ~ Parameter  E[S;] Number  Parameter  E[S;]

3 Sm 28.610 8 acnm 3.610
1 P 25603 16 ame 3133
15 Sc 20.691 11 arm 3.038
23 SN 19.232 20 SN 2.392
13 re 17877 17 buc 2265
21 n 16268 9 aum 2.047
4 anm 11.241 28 Sk 2.012
2 Ky 10451 26 - 1.860
14 Ke 90077 12 bru 1217
6 dem 8.426 27 Kr 1.216
5 bnm 7.869 10 bum 0.931
18 ane 7836 29 v 0303
24 daen 6.272 30 bur 0.234
7 bcu 5.768 32 TCO 0.018
2 Ky 5.518 33 NO 0.011
19 bnc 5.178 31 MO 0.006
25 ben 4.443 34 TI? 0.001

steady state within 6000 days (so a total of n =9, 989 parameter
sets were considered).

In addition to the sensitivity index, we also considered a subset
selection approach presented in Olufsen and Ottesen (2013) and
Pope et al. (2009) when categorizing parameters as sensitive or in-
sensitive. The rank p of the relative sensitivity matrix S is com-
puted by finding the number of singular values of S that are larger
than 10~4 (since the sensitivity matrix has an error of ©(10~>)).
The rank p defines the maximum number of sensitive parame-
ters. The subset of parameters considered sensitive can be found
by considering the following matrix decompositions. Given the sin-
gular value decomposition (SVD) of the relative sensitivity matrix,
§=UXVT, we partition V into two blocks, V = [Vo V34_,], where
V, contains the first p columns of V. Then we perform a QR ma-
trix decomposition of V,. That is, we find a permutation matrix P
so that V;P: QR, where Q is an orthogonal matrix and R is an
upper triangular matrix whose diagonal elements are arranged in
order of decreasing magnitude (Golub and Van Loan, 2012). The
permutation matrix P can then be used to determine the ordering
of parameter sensitivity, § = PT0, where 8 =[1,2,...,34]" and the
first p entries of 0 determines the group of parameters that may
be considered sensitive.

4.1.1. Sensitivity of steady-state M values

To examine the sensitivity of the steady-state value of M to
changes in each parameter, we recorded the sensitivity index from
Eq. (8) for each parameter evaluated for t; between 5000 and 6000
days. Results from 9989 different parameter sets (those that reach
steady states within 6000 days) are shown in Table 3. The aver-
age, or expected, value of the sensitivity index in Eq. (8), E[§j], is
listed for each parameter p;. The distribution of sensitivity index S i
values over the 9989 parameter sets is shown by parameter in the
box plot in Fig. 5.

4.1.2. Sensitivity of transient M dynamics

We also examined how parameter values may change the time
course of M from initial to steady-state conditions by analyzing
the relative sensitivity matrix S for the system evaluated from 0
to 6000 days. The sensitivity index ordering of parameters listed
in Table 3 was preserved. However, subset selection using SVD/QR
decompositions gave slightly different results. In Fig. 6A, we show
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Fig. 5. Box plot of steady-state sensitivity index value S_J for each parameter num-
berj=1,2,..., 34 (in the order listed in Table 2) for the same 9989 parameter sets
used for Table 2. The boxes of sensitivity index values for parameters directly affect-
ing the M population are colored in red, the CTL population in dark blue, the NK
cell population in light blue, and the Treg population in green. Sensitivity indices
for the initial conditions are colored in gray. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

the fraction of times (among 9989 parameter sets) that a particu-
lar parameter is characterized as sensitive. The initial value of M,
My, was characterized as sensitive for all parameter sets, as it sig-
nificantly impacts values of M at early times. Parameters governing
the dynamics of M in the absence of immune cells, namely 8y, Ky,
and ry, were characterized as next-most sensitive. Fig. 6B shows
the distribution of singular values. Fig. 6C shows the fraction of
times that the relative sensitivity matrix S has a particular rank.
A rank between five and eight appears most often, with each ap-
pearing in more than 10% of trials (a total of 55% of 9989 param-
eter sets considered have rank between five and eight). We used
this result to conclude that likely at most eight parameters can be
considered sensitive.

4.2. Partial rank correlation coefficients

The second sensitivity method we used was the method
of partial rank correlation coefficients (PRCC), as discussed in
Marino et al. (2008). PRCC can be used when the relationships be-
tween the model parameters and the model output are nonlinear,
as long as the relationships are monotonic (Kendall, 1942). To com-
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pute the PRCC, the data are first rank-transformed. That is, for each
parameter/output, we take the 10,018 values generated by LHS, and
map them to the set {1, 2,...,10018} according to their rank from
lowest to highest, keeping track of which sample parameter set
they came from. This transforms all monotone relationships into
linear ones, and thus removes any correlation issues due to non-
linearity so long as the relationships are still monotone. The par-
tial correlation coefficient between a rank-transformed parameter
p; and system output y is then computed as the correlation co-
efficient between the two residuals (pj — p;) and (y —J). where
p; and y are linear regression models in terms of the remaining
parameters (Marino et al., 2008). A PRCC value of 1 indicates a
strictly increasing relationship, while a PRCC value of -1 indicates
a strictly decreasing relationship. In this work, PRCC was computed
using the partialcorr function in MATLAB 2014b using 10,018
LHS samples.

Sensitivity coefficients and the corresponding p-values for each
parameter are listed in Table 4 and displayed graphically in Fig. 7A.
The sensitivity analysis shows that there are 27 parameters that
have a statistically significant PRCC value, assuming a p-value cut-
off of 0.01. There are 7 parameters that have statistically insignif-
icant PRCC values, including all four initial conditions. The PRCC
results indicate that the system is most sensitive to the loss and
growth rate constants of M (8y; and ry;, respectively). The results
also indicate that the system is highly sensitive to the growth and
loss rate constants of Tc and N (r¢, ¢, 1y, and 8y) and the effects of
N and Tc on M, and that the system is less sensitive to parameters
directly related to T; and to the four initial conditions.

4.3. Comparison of sensitivity index and PRCC methods

We compared the parameter sensitivity results in Tables 3 and
4, obtained using two different global sensitivity methods. Of the
ten most sensitive parameters determined by each method (the
first ten listed in each Table), there are eight parameters shared in
common. These are 8y, Iy, SN, 'n, ¢ Te, Anm, and acy. This subset
of eight parameters includes growth and loss rate constants for M,
Tc, and N, and the efficacy rate constants for Tc and N. We note
that parameters directly related to Tz do not appear in this subset.
This appears to be in agreement with the data in Pessoa de Magal-
hdes et al. (2013) that show there are not significant differences in
Treg levels between healthy adults and patients with various stages
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Fig. 6. Results from the subset selection approach using SVD/QR decomposition. (A) Fraction of trials for which the given parameter was characterized as sensitive over the
full time course by the SVD/QR subset selection method. Only parameters that were characterized as sensitive at least 10% of times (from 9989 parameter sets) are shown.
(B) Box plot of singular values of S (dashed line shows the threshold value of 10~4 for computing the matrix rank). (C) Histogram of values of Rank(S) (dashed line shows

the threshold for 10% of all trials).
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Table 4

Table of PRCC values by parameter, in order of descending magnitude, and their corre-
sponding p-values (p-values smaller than 10~ are rounded to 0). The response vari-
able is the steady-state value of M. Results were obtained using LHS with 10,018 sam-
ples (samples as described in Section 3.1). For each sample, steady state is determined

39

as in Section 3.2.

Parameter ~ PRCC p-value  Parameter  PRCC p-value
Sm —0.77038 0 Ky —0.090636 0
v 0.48974 0 bne 0.080751 0
Tc -0.42271 0 TR 0.07711 1.2031e-14
anm —0.35933 0 ben 0.070195 2.187e-12
It -0.3518 0 brm —0.066549 2.8053e-11
acym —0.34242 0 SN —0.059274 3.0767e—-09
Sn 0.31079 0 ape —0.043035 1.6946e—05
3¢ 0.2991 0 bum —0.038472 1.2041e—-04
bnm 0.26877 0 bmc 0.034305 6.0694e—04
bem 0.24588 0 ayr 0.030291 0.0024691
acn —0.16422 0 ? —-0.02378 0.01749
anc —-0.15877 0 aym 0.020392 0.041591
acnm —-0.15286 0 Kg 0.019943 0.046287
Ky 0.11825 0 NO —-0.013022 0.19323
Sr -0.099828 0 M° —0.0070448  0.48151
arm 0.095047 0 bmr 0.0069206 0.48928
Kc -0.092935 0 0 —0.0051749 0.60513
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Fig. 7. (A): Plot of the absolute value of PRCCs and p-values for 34 parameters (sy, fixed), ranked from highest to lowest magnitude of PRCC. (B): Scatter plots of steady-state
M values vs. the eight most-sensitive parameters, with 1000 samples shown. Black curves indicate a loess (local regression) fit to the data.

of MM. Scatter plots of the steady-state M values vs. the eight sen-
sitive parameters are shown in Fig. 7B.

We conclude this section by noting that the parameter sensitiv-
ity approaches we took allow us to select a subset of parameters
that appear to be the most sensitive for model outcomes. This has
two important consequences. One is that it can help identify po-
tentially important pathways that can alter the progression of dis-
ease. The second is that it can indicate a parameter subset that can
be fit to available data. In the next section, we focus on this second
aspect. We fix the least-sensitive parameters to values we identi-
fied in the literature (listed in the Base column of Table 2) and
only vary the eight most-sensitive parameters, namely: ry;, 8y, T,
Sc, N, 51\], anM, and dcyp-

4.4. Small changes in MM growth and loss rates can switch disease
state - a consequence of model bistability

We next show numerical simulations that illustrate how slight
changes in the values of the most sensitive parameters can shift
the model outcome between high and low M-protein steady state
values, representing states of high tumor burden and long-term
disease control (LTDC), respectively. These results indicate that our
model exhibits bistability, a result that was also identified for a
reduced version of our model in which NK cells and Tregs were
held fixed (Gallaher et al., 2018). It is important to note that we

can not determine bistability a priori from the eigenvalues of the
associated Jacobian matrix. This is because we can not analytically
compute all model steady states (required for the Jacobian analy-
sis), since they are the zeros of a high-degree polynomial.

Before we show how small changes in the values of the sensi-
tive parameters can lead to different model outcomes, we simulate
using a parameter set that demonstrates bistability. In particular,
we show how different initial M-protein levels can lead to differ-
ent model outcomes.

Fig. 8A corresponds to high tumor burden (achieved for a larger
M initial condition), while Fig. 8B represents a state of disease con-
trol (achieved for a smaller M initial condition). For each simula-
tion, we initialize our model using immune cell counts that corre-
spond to a diseased state (Pessoa de Magalhdes et al., 2013), where
we assume a diseased individual to have an M-protein level higher
than 1.5g/dL (Stoop et al., 1969). The scale to the right of each
figure corresponds to immune cell concentrations (Tc, N and Tg),
while the scale to the left of each figure corresponds to M-protein
concentration (the solid red curves represent the M-protein con-
centration over time). The steady-state value for M in the case of
higher tumor burden is 3.37 g/dL, and is 0.16 g/dL for disease con-
trol.

In Fig. 8A, we initialized M protein to a value of 2.08 g/dL.
In this case, we note an immune response, where both NK cell
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Fig. 8. Simulations with the initial condition for M varied. Initial conditions, corresponding to a diseased state (Pessoa de Magalhdes et al., 2013), are set as T (0) = 464,
N(0) =227, and Tz(0) = 42. The scale on the right corresponds to immune cells Tc, N, and Tk, and the scale on the left corresponds to M-protein concentration (solid
curve). (A) M(0) = 2.08. The final M-protein level is 3.37. (B) M(0) = 1.04. The final M-protein level is 0.16. For both simulations, other parameter values are those shown in
the Bistable column in Table 2. sy = 0.001, ryy = 0.025, 8§y = 0.007, rc = 0.45, 8¢ =0.35, sy = 1.49, ry =0.02, 8y =0.025, rg = 0.1, g = 0.077, byy = 0.5 %Ky, by = 0.5
Kc, byum = 0.12 % Ky, bryy = 0.1 % Kg, byc = 0.5 % Ky, byc = 0.5 x Ky, bey = 0.375 % Kc, byr = 0.25 % Ky, any = 5, dey = 5, aeny = 10, ayy = 0.35, agy = 0.64, ayc =1, anc = 1,
acy = 1, ayg = 1. The carrying capacities are: Ky = 13, Kc = 1000, Ky = 550, and K = 100.

and CTL populations increase (although NK cells increase only
marginally). However, this immune response is not enough to
lower the tumor burden. Here, the steady-state value for M-protein
is high (3.37 g/dL), and the steady-state values for the immune cell
populations are 567, 231, and 49.0 cells/uL for CTLs, NK cells, and
Tregs, respectively.

In Fig. 8B, we initialized an M-protein level of 1.04g/dL. The
CTL population increases slightly at first, the NK cell population
remains near constant, and the Treg population decreases. As the
M-protein levels progressively decrease to a state of disease control
(steady-state value of M-protein 0.16g/dL), the immune response
is suppressed (the CTL population drops). The steady-state values
for the immune cell populations are 472, 225, and 26.5 cells/uL for
CTLs, NK cells, and Tregs, respectively.

We illustrate the model sensitivity by numerically showing the
effect of varying sensitive §), and r); on final M steady-state values.
By doing so, we create a similar switch in the model outcome (sim-
ilar to the above bistable result). In Fig. 9, we use the same initial
conditions as in our bistable result in Fig. 8. The figures on the left
correspond to high initial values of M (M(0) = 2.08), and those to
the right correspond to low initial values of M (M(0) = 1.04). The
solid and dashed curves show the M-protein levels, demonstrating
the different possible outcomes due to a small variation in the in-
dicated parameter.

One of the goals of this work is to refine our original model so
that it can be used in the future to explore optimal treatment reg-
imens. The results shown here emphasize the need for not only a
careful exploration of model sensitivity, but also a careful explo-
ration of model behavior, and in particular model bistability.

5. Identifiability

Model identifiability is an important step that considers the
possibility of obtaining unique parameter values from data. Struc-
tural identifiability considers the problem of fitting parameters to
perfect data, continuous in time and space, and is related to model
structure and independent of the parameter values. Practical iden-
tifiability considers the problem for more realistic data availability
and error within. We consider both types in this section.

There are three possible outcomes for model structural identi-
fiability: 1) globally identifiable, corresponding to a case in which
parameters can be estimated uniquely to error-free data, 2) locally
identifiable, corresponding to a finite number of parameter values
that can equally well fit the data, and 3) non-identifiable, corre-

sponding to a case in which there is not enough information to ob-
tain parameters from error-free data. The nonlinear nature of our
model (common for tumor-immune models) is typically a chal-
lenge in obtaining parameter identifiability. Indeed we were not
able to establish identifiability of our full model, which indicates
it may not be possible to obtain all parameter values uniquely or
non-uniquely from error-free data for the four model populations.

In this section, we consider whether the subset of eight sen-
sitive parameters determined in Section 4, can be uniquely es-
timated from measurements of values of M, T, N, and Tg. This
is similar to the approach in Balsa-Canto et al. (2010). We ex-
amine both structural identifiability (assuming error-free measure-
ments at all times) and practical identifiability (data with measure-
ment error, only available at discrete times). Structural identifiabil-
ity should be checked before the model is fit to data. If a model
is structurally non-identifiable, then any parameter estimates ob-
tained numerically should not be relied on.

5.1. Structural identifiability

There are multiple approaches for computing structural identifi-
ability. We analyzed our model using the MATLAB package GenSSI
(Chis et al.,, 2011), which handles nonlinear systems of differential
equations by applying a power series approach. Briefly, GenSSI uses
Lie derivatives of the model system in order to construct a system
of equations; the solvability properties of these equations provide
information about the global and local structural identifiability as
well as non-identifiability.

One feature of GenSSI is that in addition to providing expres-
sions for the solutions to algebraic relations, it also provides a
graphical representation through the generation of identifiability
tableaus (Chis et al., 2011). Identifiability tableaus, as shown in
Fig. 10, are binary representations of the Jacobian of the series co-
efficients with respect to the parameters. Each column represents a
parameter, and each row shows which of the series coefficients are
non-zero (shown as black in the tableau) (Balsa-Canto et al., 2010).
The structure of the tableau is used to help decide how to solve
equations for a particular parameter (Balsa-Canto et al., 2010; Chis
et al., 2011). Specifically, the GenSSI Jacobian matrix rank obtained
by taking a predefined set of derivatives must match the number
of unknown model parameters in order for local identifiability to
be guaranteed.

For the generated model tableaus, if a parameter column con-
sists solely of zeros, then that parameter cannot be identified. If a
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Fig. 9. Effect of small changes in &y and ry values on M. The plots on the left have higher initial M values (M(0) = 2.08) than the plots on the right (M(0) = 1.04). The solid
and dashed curves show different M-protein dynamics for slight differences in values of the indicated parameters. (A): Effect of varying &y. We show a switch from state of
high tumor burden to long-term disease control (LTDC) for increasing 8y (left), and a switch from a state of LTDC to a state of high tumor burden for decreasing 8y, (right).
(B): Effect of varying ry on final M values. We show a switch from state of high tumor burden to LTDC for decreasing ry (left) and a switch from state of LTDC to a state of
high tumor burden for increasing ry; (right). All parameters used here are listed in Table 2 in the Bistable column.
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Fig. 10. Model identifiability results with the subset of eight parameters the model is most sensitive to. (A): Identifiability tableau. (B): Results and reduced tableau. All
eight parameters shown are globally identifiable. The structurally globally identifiable parameters are: ry, Sy, r'c, 8¢, 'n, On, anm, and acy. For the generated tableaus, values
of one are represented as black, and values of zero are represented as white. Columns consisting solely of zeros indicate that the respective parameter cannot be identified
and rows consisting solely of zeros provide no information and are deleted. A row consisting of a single non-zero (black) entry indicates that the corresponding parameter
is structurally identifiable. Tableau rows that consist of two or more ones indicate that there are relations that must be solved algebraically as detailed in Chis et al. (2011).
When parameters from the identifiability tableau in (A) can be computed as functions of the power series coefficients and eliminated, then a reduced tableau shown in (B)

is obtained.

row consists of a single one (shown as a black rectangle) then the
parameter is structurally identifiable, whereas multiple ones in one
row indicates that there are relations that might be solved to pro-
vide identifiability (Chis et al., 2011). We obtain an identifiability
tableau in Fig. 10A (note that sometimes this is referred to as min-
imum tableau of rank equal to the number of parameters, i.e., rank
eight in our case) that shows 18 non-zero rows/generating series

coefficients that depend on the model parameters (dependency
marked in black on the tableau). If any parameters from the iden-
tifiability tableau can be computed as functions of the power se-
ries coefficients and eliminated, then a reduced tableau is obtained,
as shown in Fig. 10B. Using the reduced tableaus the GenSSI algo-
rithm solves for the parameters and in our case we obtain unique
solutions for the algebraic relations that arise for the parameters.
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So with the subset of eight most-sensitive parameters allowed to
vary, the model is globally structurally identifiable, which indicates
that error-free time series data for the four relevant model popu-
lations would be sufficient to identify a unique subset of eight pa-
rameters.

When we added one or more parameters to the list of eight free
parameters (for example, by adding one or more carrying capacity
parameters, which rank high in sensitivity), we obtained only lo-
cally identifiable results. We say that the eight most-sensitive pa-
rameters are a priori identifiable. Next, we pursue practical (or a
posteriori) identifiability. That is, we test whether it is possible to
evaluate parameters from a specified set of experimental data sub-
ject to experimental noise, explored in the next section.

5.2. Practical identifiability

Given the structural identifiability for the model with the eight
sensitive parameters allowed to vary, we subsequently examined
its practical identifiability. Structural identifiability assumes the
availability of noiseless, complete time-series data. In practice, such
data are not available; thus we also explored whether the eight
most-sensitive parameters are identifiable from noisy steady-state
data. In this section, we seek to determine whether a distribution
with a clear mode can be determined for each of the eight sensi-
tive parameters given such data.

To estimate the parameter distributions, we used a Markov
Chain Monte Carlo (MCMC) method with Metropolis-Hastings sam-
pling, which we ran in MATLAB as in Hastings (1970). Given data
for the system output, MCMC is a method for sampling the pos-
terior distributions of parameter values given a prior distribution
and a likelihood function that is known (up to constant scaling). It
achieves this by constructing a Markov chain whose stationary dis-
tribution is the posterior distribution of interest (Brooks, 1998). At
each iteration of the Markov chain, a new parameter set is pro-
posed; the proposed parameter set is then accepted or rejected
according to an acceptance criterion. We used the Metropolis-
Hastings updating scheme which, given a symmetric proposal dis-
tribution and uniform prior distribution, accepts the new sample
with probability given by the ratio of the new likelihood to the old
likelihood (Hastings, 1970). In this work, prior distributions for the
parameters were taken to be uniform within the ranges in Table 2,
with the growth and loss rate constants (r; and §;, respectively)
taken on a log (base 10) scale for each ie{M, T¢, N}.

If we assume that patients are at a steady state at the time of
diagnosis, we can use certain clinical data to try to infer parameter
values. Pessoa de Magalhdes et al. (2013) provide means and stan-
dard deviations for the three immune cell populations (T¢, N, Tg)
for patients with MM. These are listed in Table 2 as “mean + stan-
dard deviation” in the Range Considered column. We used a mean
of 3.9¢g/dL for M in patients prior to treatment (cf. Greipp et al.,
2005; Tang et al., 2016). The standard deviation data for M protein
was estimated as 1g/dL based on data shown in Tang et al. (2016).
We additionally assumed that the cell populations are log-normally
distributed and bounded by the ranges in Table 2.

We used a chain length of 100,000 with a burn-in period of
10,000 iterations. The resulting parameter distributions are pre-
sented in Fig. 11 in the form of one-dimensional histograms and
two-dimensional heat maps. Many of the parameters have broad
distributions and thus are not practically identifiable given the
available steady-state data. This is not surprising given the limited
amount of data (steady-state values for the four populations) and
the large amount of uncertainty in the data (as evidenced by the
large standard deviations). In particular, the standard deviation of
the T¢ population size is almost as large as the mean. However, it
is clear from Fig. 11 that log(ry;) and log(éy) have a strong linear
relationship. Thus, while the parameters themselves are not iden-

High density

Low density

"M
Fig. 11. Matrix of two-dimensional heat maps showing the parameter distributions
obtained using MCMC, with one-dimensional histograms on the diagonal. In the
heat maps, red indicates areas of high density and blue indicates areas of low den-
sity, as shown in the temperature guide in the upper right. The axis limits are given
by the parameter ranges in Table 2. Axes for r and § parameters are on a log (base
10) scale. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 12. Distributions of the four populations M, T, N, and Ty for the MCMC chain.

tifiable, a combination of them is identifiable. Similarly, the heat
maps reveal linear inequalities between log(rc) and log(S¢) and
between log(ry) and log(dy).

Fig. 12 shows the distributions for the four populations M, T,
N, and Ty for the MCMC chain. While the M distribution matches
the assumed distribution well, the immune cell populations do not
match the data well. In particular, the Tc and N compartments tend
toward their respective carrying capacities and cluster there, while
the Tz compartment size is tightly controlled. This may indicate
that by fixing some of the parameters deemed less sensitive, we
are neglecting their influence in controlling these cell populations.
For example, since the growth/loss rate constants and carrying ca-
pacity of Ty are fixed, we would expect its steady-state population
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size to have small variance. This is in agreement with the data in
Pessoa de Magalhdes et al. (2013), in which the Treg populations
are similar between healthy volunteers and patients with various
stages of MM.

6. Conclusion

In this work, we explored a mathematical model of tumor-
immune dynamics for MM that we originally presented in
Gallaher et al. (2018). Our model uses M-protein and immune
cell populations in the peripheral blood to represent the dynam-
ics of disease burden and immune response in a patient with
MM. The value of a model depends not only on the model struc-
ture, but also on the parameter values used with the model. In
Gallaher et al. (2018), our focus was on the model structure; in
this new work, our focus was to carefully determine and jus-
tify parameter values and ranges, evaluate parameter sensitivity
and model identifiability, and to explore relevant model behav-
ior. Although our objective was to analyze a specific mathematical
model, the techniques we present are applicable to mathematical
models more broadly.

We applied two different global sensitivity methods, and found
that the top ten sensitive parameters for each method (results
shown in Tables 3 and 4) have eight parameters in common. These
are Sy, ™, 8¢ SNy oo T, Gnm, and acy. The SVD/QR decomposition
results support up to eight sensitive parameters, so we propose
that this set of eight parameters is the maximum set of sensitive
parameters to be considered for this model.

We allowed these eight most sensitive parameters to vary in ex-
plorations of the model, while we kept the values of the other pa-
rameters fixed. Small changes in the sensitive parameters can pro-
duce large changes in the steady-state value of M. The sensitive pa-
rameters thus may indicate vulnerabilities in the model pathways,
which can guide the choice of therapeutic interventions to try in
combination.

The behavior of the model for different values of two highly-
sensitive parameters, &y and ry, is shown in Fig. 9. This change in
behavior (switching between high tumor burden and disease con-
trol) is a consequence of the fact that there are certain parame-
ter sets for which our model exhibits bistable behavior. Numerical
simulation (not shown) suggests the set of parameter values for
which bistability occurs may be small, which indicates that further
investigation of model behavior may be needed in future work.

Limitations of our model include the following: (1) our model
tracks populations in the peripheral blood, although many of the
interactions that drive our model dynamics occur in the bone mar-
row and lymph nodes; (2) we use M protein in the peripheral
blood as a measure of tumor burden, which correlates with tumor
burden (Durie and Salmon, 1975; Salmon and Smith, 1970) but is
an indirect measurement of tumor burden; (3) we have limited our
model to a small number of immune cell types, although others
may also be important (Dosani et al., 2015; Kawano et al., 2015);
and (4) our model includes terms in Eq. (1) that represent immune
system removal of M protein even in the absence of disease, which
may not be accurate. Additionally, our ability to estimate parame-
ters for this model would be improved if time series data were
available from individual patients with MM who have not yet been
treated, perhaps from historical data sets.

The careful parameter estimation, the work to determine sen-
sitive parameters in the model, the identifiability analysis, the
re-examination of parameter values for the sensitive parameters,
and the numerical simulations, all add confidence to the struc-
ture and the parameter values of the model. This model could be
used in other work similarly focused on steady-state M-protein
values, with the eight most-sensitive parameters allowed to vary,
and the others fixed to values in the Base column of Table 2. The

work done here provides the necessary foundation for natural next
steps: the prediction of optimal combination regimens for patients
with MM, and the experimental validation of such a prediction.
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Appendix A. Determination of parameter ranges and values

We provide the details of literature information related to pa-
rameters in our model, and explain our calculations and decisions
for the parameter values and ranges summarized in Table 2.

Growth and loss parameters for M protein, M

Normal plasma cells produce immunoglobulin (Ig), which has
multiple types. A patient with MM typically overproduces one im-
munoglobulin type, with the majority of patients overproducing
IgG and most other patients overproducing IgA (Kyle et al., 2003).
We used values associated with IgG whenever a choice had to be
made for patients with MM (Greipp et al.,, 2005; Tang et al., 2016).

Constant source term, sp: In healthy adults, a typical level
of IgG in the peripheral blood is approximately 1g/dL (van der
Giessen et al., 1975; Gonzalez-Qunitela et al., 2008; Plebani et al.,
1989; Stoop et al,, 1969). In the absence of myeloma (ry; =0 in
healthy cases), we reduced Eq. (1) to dM/dt = sy — §yM. Using
Sy = 0.001/day (the low end of the range determined in the &),
section below) and a steady-state value of Mg = 1g/dL yields sy, =
0.001 g/(dL-day). The sy, term is the only term in our model that
is not related to MM. Additionally, global sensitivity analysis (not
shown) indicates that the model is only sensitive to sy; when lev-
els of M are around 1g/dL or lower. Thus we fixed sy, to a value of
0.001 g/(dL-day), as we focused on patients with MM.

Growth rate constant, r,: The mathematical model of
Jonsson et al. (2015) for M-protein levels in patients with MM lists
an M-protein growth rate constant of 0.0283/week = 0.004/day,
which corresponds to a doubling time of In(2)/0.004 ~ 173 days.

In Nardiello et al. (2011), a plasma cell proliferation index (PCPI)
assay was used to determine the fraction of cells undergoing pro-
liferation in MM cell samples from the bone marrow of patients.
Due to the design of the PCPI assay, which measures the prolifera-
tion marker Ki-67 in cells, the resulting values are over-estimates.
The lowest value in that work was 6.9%, which was for the group
of newly-diagnosed patients. Kumar et al. (2004) used bromo-
deoxyuridine (BrdU) to assess proliferation of myeloma cells from
patients (as a percentage of cells entering S phase during the incu-
bation time). The labeled cells had median values of 0.4% and 1.2%
in samples from peripheral blood and bone marrow, respectively.
Considering the results of both the PCPI and BrdU assays, we used
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a value of 3.5% of cells initiating proliferation over two days, giving
a rate constant of 0.0175/day.

We also considered growth rate values from several mathemat-
ical models of tumor and immune cell interactions that are not
specific to MM. Arciero et al. (2004) used a growth rate value of
r = 0.18/day to represent growth of an aggressive tumor (doubling
time of 3.85 days). de Pillis et al. (2005) used a tumor growth rate
of 0.51/day based on mouse data from Diefenbach et al. (2001).
Thus, we used a parameter range of 0.004-0.5/day for ry;.

Loss rate constant, §,,: Hansen et al. (2014) estimated the
half-life of M protein to be 11.9 days (equivalent to 0.058/day).
Mills et al. (2017) cited the following half-life values for M protein:
21-25 days for an IgG subtype and 7-14 days for an IgA subtype
(0.028-0.099/day). However, both of these studies were of patients
who had received treatment that should contribute to the loss rate
of M protein, so the cited half-lives are not due to §,, alone. More-
over, in our equation for M, we also have several immune inter-
actions contributing to loss of M, which we expect would be re-
flected in the half-lives cited above. Thus &y would be lower than
if it were the only contribution to the half-lives cited above. If we
assume Eq. (1) is in steady state, and if we use values shown in
Table 2 for parameters other than &y, then we get a value between
0.001 and 0.002 for §,;. We chose a range of 0.001-0.1/day for &y,
and a value of 0.002.

Carrying capacity, Kj;: Among 10,750 patients characterized in
Greipp et al. (2005), the median M-protein level was 3.9g/dL. A
similar range was also observed in Tang et al. (2016) prior to treat-
ment. Anecdotally, there are reports of values higher than 10 g/dL.
We chose a range of 7-15 g/dL for the carrying capacity.

Growth and loss parameters for CTLs, Tc

Growth rate constant, rc: de Boer et al. (2003) fit a differ-
ential equation model to data to characterize immune response
during viral infection (lymphocytic choriomeningitis). They found
that CD8+ cells have a biphasic response: an initial expansion
phase with doubling time of 8 hours followed by a contrac-
tion phase with a half-life of 41 hours. The initial doubling time
translates to a growth rate constant of rc~2.31/day. We used
this number (for stimulated response) as an upper bound for
rc. A mathematical model of tumor and immune response by
Arciero et al. (2004) used a sigmoidal dependence for effector cell
proliferation, dependent on transforming growth factor beta (TGF-
B) both for immune suppression and stimulation, with a maximum
proliferation rate constant of 0.1245/day. de Pillis et al. (2013) esti-
mated that IL-2 induces CD8+ T cell activation with a rate constant
1.11/day in a model of immune response for renal cell carcinoma. A
mathematical model by de Boer et al. of T-lymphocyte anti-tumor
response used a doubling time of 16 hours (1.04/day) for activated
T cells (de Boer et al., 1985). We chose a parameter range of 0.01-
0.5/day, which is slightly lower than the higher values cited above,
as rc reflects regular proliferation for CTL, with additional activa-
tion by myeloma and NK cells controlled by the parameters ayc,
bMCv anc, and ch.

Carrying capacity, Kq: Using data presented in Pessoa de Mag-
alhdes et al. (2013), we estimated that CTL populations can reach
levels as high as 1500 cells/uL in patients with MM, particularly in
patients with long-term disease control. Thus, we chose 600-1500
cells/uL for the range of values considered for the carrying capacity
Kc.

Loss rate constant, §-: Using a half-life value of 41 hours
during a contraction phase of a viral infection as in de Boer
et al. (2003), the loss rate constant would be 0.405/day. Sontag
(2017) used a loss rate constant of 0.1/day. However, smaller rate
constants have also been used. Arciero et al. (2004) gave a loss rate
constant of 0.03/day for effector cells. de Boer et al. (1985) gave

a turnover time for T lymphocytes of 50 days (0.014/day). de Pil-
lis et al. (2013) cited that CD8+ cells have a half-life of 77 days
in healthy donors, which translates to a loss rate constant of
0.009/day (denoted by parameter m in their work). We thus con-
sidered a range of 0.01-0.5/day for 4.

Growth and loss parameters for NK cells, N

Constant source term, sy: The source term sy is included
in our model because we expect the innate immune system to
have non-negligible production of NK cells with efficacy against
myeloma cells. de Pillis et al. (2005) used a constant source term
of 1.3 x 10* cells/day for NK population dynamics. Dividing by a
typical total blood volume of 5 liters for an adult, this results in
0.0026 cells/(pL-day). Zhang et al. (2007) gave a production rate
of about 14 x 10% cells/(L - day) for healthy subjects and about
7 x 106 cells/(L-day) (7-14 cells/(uL-day)) for elderly subjects. We
chose a parameter range of 0.001-5 cells/(uL - day).

Growth rate constant, ry: An in vivo study of NK cells from
healthy subjects found a doubling time of 16 days in healthy
young adults (equivalent to 0.04/day), but a slower rate constant
of 0.02/day (doubling time of 28 days) in healthy elderly subjects
(Zhang et al.,, 2007). De Pillis et al. used a maximal rate con-
stant of 0.5/day for NK cell recruitment by tumor cells (de Pil-
lis et al., 2005), and another of their models gave a value of
0.0668/day for the maximum rate constant for NK cell prolifera-
tion induced by IL-2 (de Pillis et al., 2013). We chose a parameter
range of 0.01-0.5/day for ry.

Carrying capacity, Ky: Based on the higher range of observed
NK cell levels of about 600 cells/uL among patients with MM
(Pessoa de Magalhdes et al., 2013), we chose a range of 300-650
cells/uL for the carrying capacity Ky.

Loss rate constant, Jy: The in vivo studies of
Zhang et al. (2007) gave half-lives of 10 or 11 days (mean for
healthy elderly and healthy young adults, respectively), which
translates to a loss rate constant of 0.06-0.07/day. The model in
de Pillis et al. (2013) used a turnover rate constant of 0.0125/day
for NK cells, and the model in de Pillis et al. (2005) used
0.0412/day. We chose a parameter range of 0.01-0.5/day.

Growth and loss parameters for Tregs, T

Growth rate constant, rg: Vukmanovic-Stejic et al. (2006) as-
sayed human samples and found that Tregs have a typical pro-
liferation rate constant of 0.0831 cells/(uL-day). Similar to ranges
we used for growth/loss rate constants for other immune cells, we
considered a range of 0.01-0.5/day for rp.

Carrying capacity, Kz: The high end of the range of Tregs re-
ported in Pessoa de Magalhdes et al. (2013) is about 100 cells/uL.
We used a range of 60-120 cells/uL for K, and a value of 80
cells/pL.

Loss rate constant, dz: Vukmanovic-Stejic et al. (2006) also
studied the turnover of Tregs. They found a turnover or loss rate
constant of 0.0658/day. A mathematical model of tumor-immune
interaction (Robertson-Tessi et al.,, 2012) used a loss rate constant
of 0.1/day for the Treg population. We considered a range of 0.01-
0.5/day, and a value of 0.757/day.

Saturating influence parameters

We allowed most of the a; values to vary from 0 to 10, ie.,
from no change to more than an order of magnitude increase in
size, depending on their function. We considered a slightly wider
range for any,acy and acyy, reflecting a high killing efficacy by
immune cells. To ensure the correct sign for the loss rate for M,
we needed ayy + agy < 1. We allowed the threshold values, by, to
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vary between 0 to 2 times the respective carrying capacities. For

point estimates of the by, we chose values below half the respec-

tive carrying capacities.

Supplementary material

Supplementary material associated with this article, including
code for the simulations and plots, can be found online at doi:10.
1016/j.jtbi.2018.08.037.
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