KEY TO EXAM ON PROCESSES AND SCHEDULING — SPRING 2007
CSC 262 — OPERATING SYSTEMS
NICHOLAS R. HOWE
1. Vocabulary (18 points). Give a definition or description of the following terms.
a). MIC chip

The Master Interrupt Controller receives signals from devices requesting interrupts,
and relay those signals to the CPU.

b). O(1) Scheduler

Used in the Linux 2.6 kernel to schedule processes.

c). Atomic operation

An operation that cannot be interrupted by any interleaved operations.
d). Peterson Algorithm

A software mechanism for ensuring mutual exclusion between two cooperating
processes.

e). TSL operation
Stands for “Test and Set Low™. TSL(s,l) = <l:=s; s:=false;>
f). Two Generals Problem

A situation modeling distributed agreement, in which it is impossible to reach
agreement using an unreliable channel.

g). Pipe

A mechanism used for interprocess communication, whereby one process sends
output to the pipe, and another process reads input from it.

h). Multicast

A style of message passing communication where multiple sending processes send to
multiple receiving processes.

i). Dutch Banker

A simple model for the allocation of a single resource.

2. Process Scheduling (24 points). Consider the process table below.

ProcessID [0 |1 |2 |3 |4]|5]|6
Queue ojo0oj1(2 1|22
Priority 0]1]3]1]4]3]|5

Draw a Gantt chart showing which processes would execute when under the following
scheduling policies over the next 1000 ms. You may ignore time spent on context
switching overhead, and assume that each process runs for its full quantum without
blocking or interrupts. However, a process that is allowed to run for 300 ms in total will
terminate and be removed from the process table, perhaps allowing other processes to go.

a. Scheduling with multiple queues. Use round-robin scheduling between queues (all
assumed to be equal priority; start in numerical order from 0) and strict priority
scheduling within a queue (high numbers are high priority). Quantum is 100 ms.

Oms | 100 200 300 400 500 600 700 800 900 1000

PL | P4 | P6 | PL | P4 | P6 | PL | P4 | P6 | PO

b. Scheduling with multiple queues. Queue 0 is lowest priority, queue 2 is highest.
Use strict priority scheduling between queues, and simple round-robin scheduling within
a queue. (Assume that the process with the highest “priority” has been waiting longest
for a turn.) Quantum is 150 ms.

Ooms |150 [300 |450 600 |750 | 900 | 1000
P6 P5 P3 P6 P5 P3| P4

3. Threads (10 points). Which of the following will be shared by two related
lightweight processes?

Code Segment -- Call Stack -- Data Segment (Heap) -- Status Registers — Resources

Code segment, data segment, and resources are shared.
Call stack and status registers are not.

4. Deadlock (24 points). The municipality of Deadlock City has a number of railroads
passing through the town. Each railroad crosses the others at multiple points, and the
trains passing though are long enough that they sometimes extend past several crossings
at a time.

a. If multiple trains enter the city at once, it has been found that sometimes a situation
arises where no train can continue to move forward. The only solution is to force one or

more trains to reverse slowly out of the city to let the others proceed. Draw a diagram
showing one possible configuration of trains matching the description above.

b. It has been proposed to require all trains to “reserve” all the crossing points they wish
to use before their entry into the city. Once a train has reserved a crossing point, no other
train can reserve it until the original train has passed through. Trains unable to reserve all
the crossings they need will have to wait outside the city until their crossings are free.
Will this solve the problem? Comment on any disadvantages of this approach.

This will solve the problem: it prevents partial resource allocation. However, it is less
efficient because trains will have to wait,and not all waiting trains would cause a
problem if they were allowed to proceed. (Note that trains have to reserve all the
crossings at once in order for this to work. If they can acquire them one at a time while
they are waiting outside the city, then the problem is the same as before.)

c. An alternate solution is proposed. Each train would be given a unique priority
number. Trains would declare the crossings they intend to use on entry to the city as
described above. However, instead of being required to wait, trains can enter the city and
proceed until they come to a crossing that has been declared on the itinerary of a train
with higher priority, at which point they will have to wait until the higher-priority train
passes through. Will this solve the problem in (a)? Comment on the
advantages/disadvantages relative to (b).

This wouldsolve the problem: it prevents circular waiting. It is more efficient than the
solution in (b), because some trains will be allowed to proceed that were not in (b).
However, it still makes some trains wait unnecessarily. (Note also that we must be
careful what to do when a new train comes in with higher priority than those already in
the city. If we allow it to enter right away, it may become deadlocked with a lower-
priority train.)

d. List Coffman’s necessary conditions for deadlock, and identify any connections the
the scenarios described above.

Coffman’s conditions are mutually exclusive access to resources, non-preemptive
granting of resources, partial resource allocation, and circular waiting. The scenario in
(b) prevents partial allocation, while the scenario in (c) prevents circular waiting.

[Note: this problem was inspired by the city of Pine Bluff, Arkansas.]

5. Classic Problems (24 points). Consider the following proposed solution to the
east-west bridge problem.

semaphore mutex(1), queue(O);
int crossing(0), waiting(0);
enum {east,west} dir = east;

void entryEast() { void entryWest() {
down(mutex) ; down(mutex) ;
it (crossing > 0) ifT (crossing > 0)
&& (dir == west) { && (dir == east) {
waiting++; waiting++;
up(mutex); up(mutex);
down(queue); down(queue);
waiting--; waiting--;
} }
dir = east; dir = west;
crossing++; crossing++;
up(mutex); up(mutex);
} }
void exitEast() { void exitWest() {
down(mutex); down(mutex);
crossing--; crossing--;
if (crossing == 0) if (crossing == 0)
&& (waiting > 0) { && (waiting > 0) {
up(queue) ; up(queue) ;
} else { } else {
up(mutex); up(mutex);
}
} }

a). Does this protocol ensure mutual exclusion between eastbound and westbound
processes? Explain why/why not.

Yes, it does. If a process is in its critical section, then crossing will by greater than zero,
and the direction variable will be set appropriately. Processes trying to enter in the
opposite direction will be stopped.

b). Does the protocol prevent starvation in all cases? If yes, explain why. If not, explain
how to fix it so that starvation cannot occur.

It does not. A steady stream of cars in one direction will prevent the other direction from
crossing. To fix this, change if (crossing > 0) t0
if ((crossing > 0) || (waiting > 0)).

c). Contrast the protocol above with the protocol we developed on the homework for the
north-south bridge, in terms of its efficiency.

It is less efficient. Because there are no separate queues for eastbound and westbound
cars, we can only let one car at a time off the queue, even if all the waiting cars are going

in the same direction. In the homework protocol, multiple cars could be released when
the direction changed.

d). Contrast the protocol above with the much simpler protocol below, again in terms of
its efficiency.

semaphore bridge(1);

void entryEast() { void entryWest() {
down(bridge); down(bridge);
} }
void exitEast() { void exitWest() {
up(bridge); up(bridge);
}

The simpler protocol always allows no more than one car at a time. The
original protocol will allow multiple cars at some times (if they are
new processes in the correct direction), so it is more efficient.

