
 KEY: EXAM ON PROCESSES AND SCHEDULING – SPRING 2005
CSC 262 – OPERATING SYSTEMS

NICHOLAS R. HOWE

1. Vocabulary (16 points). Give the technical term that matches the following
definitions.

a). This term describes a situation where some set of processes is blocked while
waiting for an event that can only be caused by another process in the set.

Deadlock

b). This term refers to a style of interprocess communication where participating

processes block until the communication is complete.
Synchronous

c). These terms both refer to a style of process synchronization where processes

repeatedly check a variable to see whether they should proceed. (Give two alternate
terms.)

Spin-lock, busy waiting

d). This term refers to a scheduling algorithm that must guarantee execution of

certain processes by certain pre-specified deadlines.
Real-time or deadline scheduling

e). These terms both refer to an entity stripped to the barest essentials for executing

code on a system. (Give two alternate terms.)
Thread, lightweight process

2. Bounded Buffer (16 points). This problem has two parts.

 a). Consider the following protocol implementing the bounded buffer in a message-
passing system, which is missing several key commands. Add the missing commands at
appropriate points, choosing from the following options:
 synch_send(process,message); // synchronous send
 synch_receive(process,message); // synchronous receive
 asynch_send(process,message); // asynchronous send
 asynch_receive(process,message); // asynchronous receive

producer: process
 record rec;
 message m;

 while true do
 produce(rec);
 synch_receive(consumer,m);
 m = build_message(rec);
 asynch_send(consumer,m)
 endwhile;
endprocess;

consumer: process
 record rec;
 message m;

 for int i = 1 to N
 asynch_send(producer,m);
 endfor;
 while true do
 synch_receive(producer,m);
 rec = extract_record(m);
 asynch_send(producer,m);
 consume(rec);
 endwhile;
endprocess;

 b). There is no buffer apparent in the above code, yet it is supposed to be an example
of a bounded buffer. Explain where the buffering occurs.

The operating system must implement a buffer to hold the message queue. Messages
sent by one process wait in this system buffer until they are received. In some sense, this
bounded buffer is simply built on top of another one at a lower level.

3. Process Scheduling (24 points). Consider the process table below, and answer the
questions that follow under the following assumptions:

• After it has executed for 30 ms, process P1 will block.
• After 140 ms (regardless of which process executes), a device interrupt will

unblock P3.
• After it has executed for 180 ms, process P3 will terminate.
• After 220 ms (regardless of which process executes), a new low-priority process

is created with PID 4.
• The “last ran at” field gives the system time in ms at which the process’s last

execution was interrupted. The current system time is 10000 ms.

PID 0 1 2 3
Priority Low High Low High
Status Ready Ready Ready Blocked
Last ran at 9750 9930 9850 10000

a). The kernel uses priority queues for scheduling. If there are multiple processes in

a queue, they are scheduled round-robin based upon the last-ran-at entry. The quantum
length is 100 ms, and context switching time is negligible (essentially zero). Draw a

Gantt chart showing the running processes over the next 500 ms. Label the time of each
transition.

 0 30 130 140 420 240 320 500

P2

0

P1
rob
co
tra

 3

4.

int
inv

on
an
co
the

is

in

 P0

b). Draw the updat

PID
Priority
Status
Last ran at

c). Now assume th
in scheduling, but h

ntext switching takes
nsition.

P
120 100

150 0

 Interrupt Sequenc

a). When an interru
errupt? Be precise i
olved.
The piece of hardw

 a dedicated wire. T
 interrupt. When the
de on the system bus
 bus.

b). When a process
desired by the proces

Before making the
a predetermined reg
P3
ed process table as

L
Run

9

at there are two CP
igh-priority proces
 20 ms. Draw a ne

2220

170 50

e (12 points). This

pt occurs, how do
n your answer, refe

are causing the int
he interrupt contro
 CPU acknowledg
 corresponding to t

 makes a system c
s?

system call, the pro
ister.
P3
 it should appea

0 1
ow High
ning Blocked

750 10030

Us. This time,
ses get an extra
w Gantt chart.

40

 problem has tw

es the kernel de
rring by name

errupt sends a
ller then sends

es the interrupt
he interrupt typ

all, how does th

cess stores a c
P4
r after 500 ms.

2 4
Low Low

Ready Rea
 9850

 the kernel uses sim
-long quantum (20
 Label the time of

360340

370350

o parts.

termine the cause
to the pieces of har

signal to the interr
 a signal to the CP
, the interrupt cont
e. The CPU reads

e kernel determine

ode describing the
P0

dy

ple round-
0 ms), and
each

P0

490470
P1
 P2

P4
P4
P2

P0
 0
P3

P0
 480460

of the
dware

upt controller
U requesting
roller puts a
 this code off

 what action

desired action

5. Race Conditions and Semaphores (16 points). For each of the following programs,
state whether the program will always terminate, sometimes terminate, or never
terminate.

Next, state all the possible values for x and y if the program terminates. Express your
answer as a set of (x,y) pairs. For example, the starting configuration should be written as
{(3,5)}.

You may assume that the variables are initialized as follows:
 x : integer init 2
 y : integer init 3
 s : general semaphore init 1
 t : general semaphore init 1

a). cobegin x := y; // y := x; coend
Always terminates; possible values {(3,2),(3,3),(2,2)}

b). cobegin

DOWN(s); x := y; UP(s);
 //

DOWN(s); y := x; UP(s);
 coend
Always terminates; possible values {(3,3),(2,2)}

c). cobegin

DOWN(s); x := y; UP(s);
 //

DOWN(t); y := x; UP(t);
 coend
Always terminates; possible values {(3,2),(3,3),(2,2)}

d).
 cobegin

DOWN(s); x := y; UP(s); UP(s);
 //

DOWN(s); DOWN(s); y := x; UP(s);
 coend
Sometimes terminates; possible values { (3,3)}

6. Deadlock (16 points). The D. Edwin Locke Memorial Library has unusal lending
policies. Patrons may take out books on indefinite loan, and the library has no recall
mechanism in place. Fortunately, the patrons are very conscientious and always return
books they no longer need. Nevertheless, there have been complaints recently of book
hoarding on the part of some patrons. When the library investigates, the patrons accused
of hoarding claim that they are working on a project and need one more book before they
can finish it and return everything. As soon as someone else returns the books they need,
they will finish their project and return all the books they have out.

a). Is it possible to reach a state of deadlock with these policies? State the conditions
necessary for deadlock and whether or not each one applies in this case.

It is possible to reach deadlock. Conditions:
1. Mutually exclusive access to resources: applies
2. Partial allocation possible: applies
3. Circular waiting possible: applies
4. No preemption: applies

b). A change is proposed to the lending rules. Patrons may still keep books

indefinitely, but they are now only allowed to check out one set of books at a time. If
they find they need other books, they must first bring back the ones they have out. (Of
course, they may renew books at this time if no other patrons are waiting to take them
out.) Discuss how this change affects your answer given in part (a) above.

This change voids requirement 2, on partial allocation. Thus deadlock is no longer
possible under the proposed policy. (Circular waiting can occur momentarily.)

c). Instead of the above change, a different policy is adopted. All patrons working on

a project are required to submit in advance a list of the full set of books they might need
to take out. When they need a book, they must request it from a librarian, who may or
may not give it to them right away. The library promises, however, that if every patron
abides by this new policy, everyone will eventually get the books they have requested.
Discuss this policy in relation to your answer to part (a) above. Is it possible that the
library can keep its promise?

None of the conditions necessary for deadlock is voided. However, if the librarians
adopt a deadlock-avoidance strategy and only make loans that maintain a safe state, then
deadlock may be avoided and the library’s promise can be kept.

