
 EXAM ON PROCESSES AND SCHEDULING – SPRING 2003
CSC 262 – OPERATING SYSTEMS

NICHOLAS R. HOWE

1. Vocabulary (32 points). Identify the term defined in class that matches the following
definitions.

a. An executing program, plus its data and resources. – Process

b. An executing program with only the minimum data necessary to sustain its

execution (typically status registers and call stack). Code, variables, and resources may
be shared with other similar entities. – Thread or Lightweight Process

c. This piece of hardware is responsible for signaling the CPU that an interrupt has

been requested. – Interrupt Controller

d. This data structure, maintained by the kernel, maintains vital information on all the

current processes in the system. – Process Table

e. This term refers to the a microprocessor operation that cannot be split into two or

more simpler operations, and thus cannot be interrupted. – Atomic

f. This term refers to a situation where the outcome depends unpredictably upon the

order of execution of some set of events. – Race Condition

g. This term refers to a set of code where interleavings must be avoided in order to

prevent the situation described in item (f) above. – Critical Section

h. This term refers to a situation in which some set of processes are blocked while

waiting for an event that can only occur through execution of the processes in the set. –
Deadlock

2. Scheduling (16 points). A newly proposed operating system will use multiple queues
for process scheduling. It will have three process queues: High, Medium, and Low
(maintained via a threaded list). Scheduling between the queues is by strict priority
scheduling (with pre-emption). Within queues, round-robin scheduling is used. A
hypothetical process table for this system is shown below:
���������	
��� �

��� ��� �
��� �� � � � �

� � � �
��� �� � � �

� ��
��� �

���������	
��� �

��� ��� �
��� �� �

� � � �
��� �� � � �

� ��
��� �

���������	
��� �

��� ��� �
��� �� � � � �

� � � �
��� �� � � �

� ��
��� �

���������	
��� �

��� ��� �
��� � � �

� � � �
��! " ��# �� �

� ��
��� �

���������	
��� �

��� ��� �
��� �� � � � �

� � � �
��� �� � � �

� ��
��� �

a. If the dispatcher must choose a process to run from the process table above, which

processes could possibly be chosen in accordance with the policies described above? – 0,
2, or 4.

b. Draw a Gantt chart showing the processes run for the next 500 ms, under the
following assumptions: No process terminates, blocks or becomes unblocked during that
time; the execution quantum is 100 ms and the switching time is negligible; Process 4 is
chosen to run first.

0 ms 100 ms 200ms 300 ms 400 ms
Process 4 Process 2 Process 0 Process 4 Process 2

c. What change in circumstances would result in Process 1 running? – All other

processes must be blocked.

d. What change in circumstances would result in Process 3 running? – Process 3

must become unblocked.

3. Deadlock (16 points). Draw the resource allocation graph for each of the following
situations, and determine which processes (if any) are deadlocked in the following
situations. Note that in any given scenario, some, none, or all of the processes may be
deadlocked.

a. Printer Plotter Tape Drive Disk Buffer
Process A Has Has Has
Process B Wants Has Wants Wants
Process C Wants Wants

b. Printer Plotter Speaker Microphone Disk Buffer
Process A Has Wants
Process B Wants Has Wants
Process C Wants Has
Process D Wants Wants Has

Printer Tape Disk

Plotter

Process A

Process B

Process C

4. Linux Processes (12 points). Explain how to set and/or modify the priority of a
process in Linux, assuming the kernel is using the SCHED_OTHER protocol. What
limitations are placed on ordinary users (as opposed to root) as far as the ability to set
process priorities?

Priorities are represented by a number from -19 to +20, and default to 0. The nice
command may be used to run a process at a different priority level. Only root may
run a process at priority less than 0. The renice command adjusts the priority of a
running process. Only root may upgrade the priority (i.e., lower the number).

5. Message Passing (8 points). A friend is working on a protocol for a branch library’s
computer system using message passing. The checkout computer in the branch library
cannot check out the book without making sure the central library records are updated.
The central library computer won’ t update the records until it is certain the item is being
checked out. The cable connecting the branch to the main library has been shorting out
lately, and so your friend has been hired to come up with a foolproof mechanism that will
make sure both computers act at the same time. She is having some trouble getting a
working protocol, and has come to you for advice. What do you suggest to her? Can you
help her to write such a protocol?

There is no protocol that can achieve the desired result. This is an application of the
Two Generals problem. Since the communications channel is unreliable, whoever
sends the last message cannot be sure that it has gotten through, and therefore cannot
be certain that the other computer will act. No protocol or amount of communication
will ensure that.

 6. Semaphores (16 points). The dining
philosophers problem is a classic example in
concurrent programming. Five philosophers
(represented by processes) sit at a table
alternately thinking and eating. To eat, they must
pick up the fork to both their left and right, which
are shared with the neighboring philosophers on
either side. A philosopher attempting to eat will
wait (potentially forever) until she has both forks.
A philosopher who is done eating will put down

Speaker

Mike

Plotter

Process A
Process B

Process C Process D

Printer

Disk

both forks and begin thinking. Consider the following solution to the dining
philosophers problem, using semaphores:

1: var semaphore fork[5] init 1;
2: philosopher[i]: process
3: {think}
4: if even(i) then // even(i) tests whether i is not odd
5: DOWN(fork[i]);
6: DOWN(fork[(i+1) mod 5]);
7: else
8: DOWN(fork[(i+1) mod 5]);
9: DOWN(fork[i]);
10: endif;
11: {eat}
12: if even(i) then
13: UP(fork[(i+1) mod 5]);
14: UP(fork[i]);
15: else
16: UP(fork[i]);
17: UP(fork[(i+1) mod 5]);
18: endif;
19: endprocess;

a. How would the protocol’s behavior change if lines 5 and 6 were exchanged? If

there could be a change in behavior, describe a specific scenario where it would be
evident.

If lines 5 and 6 are exchanged, then we have the classic dining philosophers problem

except that every philosopher picks up the left fork first. If all philosophers try to eat at
the same time, and each picks up the her left fork, then deadlock will occur.

b. How would the protocol’s behavior change if lines 13 and 14 were exchanged? If

there could be a change in behavior, describe a specific scenario where it would be
evident.

The behavior will not change.

c. Is this protocol deadlock-free? If so, which of the four necessary conditions for

deadlock is negated by this algorithm?

Circular waiting is impossible. The protocol above effectively establishes ordered

classes of resources, where even-numbered forks must be picked up before odd-numbered
forks. Because of this restriction, circular waiting cannot occur.

d. What are the possible values that fork[i] might take on during the execution of this

protocol?

The only possible values are 0 and 1. (Recall that a semaphore’s value cannot be

negative; a process attempting to execute a DOWN on a semaphore with value equal to
zero will block until the semaphore’s value increases.)

