
 EXAM ON PROCESSES AND SCHEDULING – SPRING 2003 
CSC 262 – OPERATING SYSTEMS 

NICHOLAS R. HOWE 
 
1.  Vocabulary (32 points).  Identify the term defined in class that matches the following 
definitions. 
 

a.  An executing program, plus its data and resources. – Process 
 
b.  An executing program with only the minimum data necessary to sustain its 

execution (typically status registers and call stack).  Code, variables, and resources may 
be shared with other similar entities. – Thread or Lightweight Process 

 
c.  This piece of hardware is responsible for signaling the CPU that an interrupt has 

been requested. – Interrupt Controller 
 
d.  This data structure, maintained by the kernel, maintains vital information on all the 

current processes in the system. – Process Table 
 
e.  This term refers to the a microprocessor operation that cannot be split into two or 

more simpler operations, and thus cannot be interrupted. – Atomic 
 
f.  This term refers to a situation where the outcome depends unpredictably upon the 

order of execution of some set of events. – Race Condition 
 
g.  This term refers to a set of code where interleavings must be avoided in order to 

prevent the situation described in item (f) above. – Critical Section 
 
h.  This term refers to a situation in which some set of processes are blocked while 

waiting for an event that can only occur through execution of the processes in the set. – 
Deadlock 
 
 
2.  Scheduling (16 points).  A newly proposed operating system will use multiple queues 
for process scheduling.  It will have three process queues:  High, Medium, and Low 
(maintained via a threaded list).  Scheduling between the queues is by strict priority 
scheduling (with pre-emption).  Within queues, round-robin scheduling is used.  A 
hypothetical process table for this system is shown below: 
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a.  If the dispatcher must choose a process to run from the process table above, which 

processes could possibly be chosen in accordance with the policies described above? – 0, 
2, or 4. 

 



b.  Draw a Gantt chart showing the processes run for the next 500 ms, under the 
following assumptions:  No process terminates, blocks or becomes unblocked during that 
time; the execution quantum is 100 ms and the switching time is negligible; Process 4 is 
chosen to run first. 

 
0 ms 100 ms 200ms 300 ms 400 ms 
Process 4 Process 2 Process 0 Process 4 Process 2 

 
 
c.  What change in circumstances would result in Process 1 running? – All other 

processes must be blocked. 
 
d.  What change in circumstances would result in Process 3 running? – Process 3 

must become unblocked. 
 
 
3.  Deadlock (16 points).  Draw the resource allocation graph for each of the following 
situations, and determine which processes (if any) are deadlocked in the following 
situations.  Note that in any given scenario, some, none, or all of the processes may be 
deadlocked. 

a. Printer Plotter Tape Drive Disk Buffer 
Process A Has  Has Has 
Process B Wants Has Wants Wants 
Process C  Wants  Wants 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. Printer Plotter Speaker Microphone Disk Buffer 
Process A Has  Wants   
Process B Wants Has   Wants 
Process C    Wants Has 
Process D  Wants Wants Has  
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4.  Linux Processes (12 points).  Explain how to set and/or modify the priority of a 
process in Linux, assuming the kernel is using the SCHED_OTHER protocol.  What 
limitations are placed on ordinary users (as opposed to root) as far as the ability to set 
process priorities? 
 

Priorities are represented by a number from -19 to +20, and default to 0.  The nice 
command may be used to run a process at a different priority level.  Only root may 
run a process at priority less than 0.  The renice command adjusts the priority of a 
running process.  Only root may upgrade the priority (i.e., lower the number). 

 
 
5.  Message Passing (8 points).  A friend is working on a protocol for a branch library’s 
computer system using message passing.  The checkout computer in the branch library 
cannot check out the book without making sure the central library records are updated.  
The central library computer won’ t update the records until it is certain the item is being 
checked out.  The cable connecting the branch to the main library has been shorting out 
lately, and so your friend has been hired to come up with a foolproof mechanism that will 
make sure both computers act at the same time.  She is having some trouble getting a 
working protocol, and has come to you for advice.  What do you suggest to her?  Can you 
help her to write such a protocol? 
 

There is no protocol that can achieve the desired result.  This is an application of the 
Two Generals problem.  Since the communications channel is unreliable, whoever 
sends the last message cannot be sure that it has gotten through, and therefore cannot 
be certain that the other computer will act.  No protocol or amount of communication 
will ensure that. 
 
 
 6.  Semaphores (16 points).  The dining 
philosophers problem is a classic example in 
concurrent programming.  Five philosophers 
(represented by processes) sit at a table 
alternately thinking and eating.  To eat, they must 
pick up the fork to both their left and right, which 
are shared with the neighboring philosophers on 
either side.  A philosopher attempting to eat will 
wait (potentially forever) until she has both forks.  
A philosopher who is done eating will put down 
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both forks and begin thinking.  Consider the following solution to the dining 
philosophers problem, using semaphores: 

 
1: var semaphore fork[5] init 1; 
2: philosopher[i]: process 
3:  {think} 
4:  if even(i) then  // even(i) tests whether i is not odd 
5:   DOWN(fork[i]); 
6:   DOWN(fork[(i+1) mod 5]); 
7:  else 
8:   DOWN(fork[(i+1) mod 5]); 
9:   DOWN(fork[i]); 
10:  endif; 
11:  {eat} 
12:  if even(i) then 
13:   UP(fork[(i+1) mod 5]); 
14:   UP(fork[i]); 
15:  else 
16:   UP(fork[i]); 
17:   UP(fork[(i+1) mod 5]); 
18:  endif; 
19: endprocess; 

 
a.  How would the protocol’s behavior change if lines 5 and 6 were exchanged?  If 

there could be a change in behavior, describe a specific scenario where it would be 
evident. 

 
If lines 5 and 6 are exchanged, then we have the classic dining philosophers problem 

except that every philosopher picks up the left fork first.  If all philosophers try to eat at 
the same time, and each picks up the her left fork, then deadlock will occur. 

 
b.  How would the protocol’s behavior change if lines 13 and 14 were exchanged?  If 

there could be a change in behavior, describe a specific scenario where it would be 
evident. 

 
The behavior will not change. 
 
c.  Is this protocol deadlock-free?  If so, which of the four necessary conditions for 

deadlock is negated by this algorithm? 
 
Circular waiting is impossible.  The protocol above effectively establishes ordered 

classes of resources, where even-numbered forks must be picked up before odd-numbered 
forks.  Because of this restriction, circular waiting cannot occur. 

 
d.  What are the possible values that fork[i] might take on during the execution of this 

protocol? 
 
The only possible values are 0 and 1.  (Recall that a semaphore’s value cannot be 

negative; a process attempting to execute a DOWN on a semaphore with value equal to 
zero will block until the semaphore’s value increases.) 


