
 FINAL EXAMINATION – MAY 2005
CSC 262 – OPERATING SYSTEMS

NICHOLAS R. HOWE

This is a closed-book exam. You may use two double-sided 8.5x11 sheets of notes.

All answers to this exam should be written in your exam booklet(s). Start with the
questions that you know how to do, and try not to spend too long on any one question.
Partial credit will be granted where appropriate. You will have two hours and twenty
minutes. Good luck!

Vocabulary (16 points)

Define the following terms in a sentence or two. Elucidate any acronyms.

a). Busy Waiting
 Describes a process that repeatedly checks the status of a blocking variable to see
if it can proceed, thus using up cpu resources without accomplishing anything.

b). Working Set
 The set of pages that will be needed by a process in the near future.

c). Linux Kernel Module
 A piece of code that may be linked with the kernel as it is running; typically used
for device drivers and other services.

d). Inode
 A data structure used to keep track of a disk file under Unix. Stores all
administrative details about the file except for its name.

e). ELF (as pertaining to Linux)
 Executable and Linking Format. The newer format used for compiled object and
executable files in Linux (as opposed to a.out format, which is older).

f). TLB
 Translation Lookaside Buffer. A cache that holds information about recently
accessed pages and/or segments to help speed up the Memory Management Unit.

g). Kernel
 The most basic part of the operating system, responsible for interrupt handling
and process scheduling.

h). File System
 Refers to the data structures and mechanisms for organizing files on persistent
storage media.

Linux Memory Management (12 points)

Page frames in Linux belong to one of four non-overlapping sets: the free list, the page
cache, the inactive_dirty list and the inactive_clean list. Draw a diagram similar to the
one below, with arrows indicating transitions that a particular page can make. Label each
arrow with a description of the circumstances that would cause such a transition.

Free → Page Cache: Frame allocated

FREE
LIST

INACTIVE
DIRTY

INACTIVE
CLEAN

PAGE
CACHE

Page Cache → Inactive Dirty: Dirty page unused
Page Cache → Inactive Clean: Clean page unused
Inactive Dirty → Page Cache: Request for page
Inactive Clean → Page Cache: Request for page
Inactive Dirty → Inactive Clean: Written to disk
Inactive Clean → Free: Frame recovered by OS

Replacement Policies (16 points)

Suppose that a process running on a paged virtual memory with four available frames
has the history shown below. Give the number of the frame whose page would be
evicted (or none if the page would already be in memory) according to each of the
replacement policies that follow, for the next four requests (underlined). Additional
requests are also shown, but you should only give answers for the underlined items.

Request String: 1 2 3 1 4 2 2 1 4 1 5 6 2 7 6 1 2 5 4 3
Frame 1 1 1 1 1 1 1 1 1 1 1
Frame 2 2 2 2 2 2 2 2 2 2
Frame 3 3 3 3 3 3 3 3 3
Frame 4 4 4 4 4 4 4

a). FIFO: 1, 2, 3, 4

b). LRU: 3, 2, 4, 1

c). LFU: 3, 3, none, 3

d). OPT: 3, 4, none, 3

Concurrent Processes (12 points)

A computer is running multiple concurrent processes. The operating system allows a
number of different communication and synchronization styles. Below is show the actual

sequence of interleaved actions during a particular time period. Assume that all message
queues are initially empty.

P0: mutex_init(m1);
P0: mutex_init(m2);
P0: mutex_init(m3);
P0: mutex_init(m4);
P1: lock (m1);
P2: lock (m2);
P3: lock (m3);
P4: lock (m4);
P4: asynch_send(msg,P1);

(continued)
P4: lock (m3);
P3: lock (m4);
P1: synch_receive(msg,P2);
P5: synch_receive(msg,P6);
P6: synch_receive(msg,P7);
P7: synch_receive(msg,P5);
P1: lock(m2);
P8: asynch_receive(P7);

a). Draw the resource allocation diagram at the end of this sequence. (You may treat
an unsent message as a resource that is held by the potential sender.)

b). Which set(s) of processes are deadlocked?

 P3 and P4 are deadlocked, as are P5, P6, and P7.

Virtual Memory (16 points)

On a 16-bit machine, the designers of a new operating system wish to implement a
segmented memory system. They would like to provide a large number of segments, and
also to provide segments of large size. This is difficult to do in only 16 bits, so they settle
on a compromise. The new system will have two-level segmentation. Each 16-bit
address will be split into three parts: two for the main segment index s1, six for the
secondary segment index s2, and eight for the segment offset w. Alternately, s2 and w
may be combined to give a large segment offset w'. A bit in the main segment descriptor
indicates which behavior is desired.

a). What is the maximum number of large segments that can be created with this
setup? What is their maximum size?

 Four segments of size 214 = 16384 B = 16 KB

b). What is the maximum number of small segments that can be created? What is

their maximum size?
 256 segments of size 256 B.

P0 P1 P8P7P6P5P3 P2 P4

m1 m2 m3 m4 msg(P2) msg(P5) msg(P6) msg(P7)

c). Suppose that the system has two large segments in use at a particular point in

time. How many small segments may be in use concurrently?
 128 small segments.

d). Draw a diagram showing the process of converting from a virtual address to

physical address in a small segment. (This should be similar to the diagrams we drew
inclass, showing the index into the appropriate tables, etc.) Give a formula for the
conversion.

STAR Virtual
s1 s2 w

Main
Segment

Table

Secondary
Segment

Table

s1 s2

Segment

w

Working Set (12 points)

Comment on the relationship between page placement policy (i.e., local vs. global frame
allocation) and the possibility for thrashing to occur in a system. In particular, state
whether there are any differences in thrashing behavior to be observed under the two
different policies, and how the solution to thrashing may differ. [Note: we did not
explicitly discuss this in class, but given an understanding of the two concepts, you
should be able to infer how they will interact.]

 With local frame allocation, each process is granted a fixed number of frames by
the operating system. If that number of frames is insufficient to hold the working set of
the process, then that process will thrash, but other processes will be unaffected. Thus
thrashing may be contained to a subset of the processes running. To prevent it, the
operating system must actively watch for thrashing processes, and include mechanisms to
increase their allotment of frames when thrashing occurs. With global frame allocation,
processes can steal frames from one another. Thus an individual process that needs
more frames for its working set can take them from another process, automatically
correcting the deficiency. Thrashing will only occur if the total memory available is
insufficient to store the working sets of all running processes. If this occurs, then all
processes will thrash at once. The solution is to temporarily block some processes from
running, until the total size of the working sets of the remaining processes will fit in
memory.

Process Scheduling (16points)

The Simple Simon operating system uses round-robin scheduling, and a standard
quantum of 100ms. If an interrupt occurs in the middle of a process’s assigned quantum,
the scheduler will try to restart the interrupted process. If it cannot do so because the
previously running process has blocked, then it will choose the next ready process in the
queue. Preparing for such a context switch requires 10 ms of system overhead before the
new process can be run. Newly created processes are added to the front of the run queue,
i.e., they will be chosen to run before any previously existing process. Unblocked
processes are assigned a spot in the run queue based upon the time of their last run.

Following are details about six user processes that are scheduled on the system:

Process 0: Created at time t = 0 ms. After 60 ms, will block until Process 3 has
run and terminated. Will terminate after 800 ms of execution total.

Process 1: Created at time t = 100 ms. Will terminate after 300 ms of execution.
Process 2: Created at time t = 280 ms. Will block after 90 ms of execution, and

not unblock.
Process 3: Created at time t = 300 ms. Will terminate after 20 ms of execution.
Process 4: Created at time t = 600 ms. Will terminate after 40 ms of execution.
Process 5: Created at time t = 650 ms. Will terminate after 120 ms of execution.

a). Draw a Gantt chart showing the processes executed over a period of one second

(1000 ms).

Time (ms) Activity
0 Context Switch
10 Process 0
70 Idle
100 Context Switch
110 Process 1
210 Process 1
310 Context Switch
320 Process 3
340 Context Switch
350 Process 2
440 Context Switch
450 Process 0
550 Context Switch
560 Process 1
660 Context Switch
670 Process 5
770 Context Switch

780 Process 4
820 Context Switch

780 Process 4
820 Context Switch

b). Compute the CPU utilization and throughput for user processes during this

period. For processes that terminate, compute the latency.

