
CSC 262
Homework #6

Due at the start of class on Wednesday, March 28.

1. Mutual Exclusion. The software-based mutual exclusion protocol discussed in class works
with only two processes. Suppose that we have n processes that must have mutually exclusive
access to a critical section. The bakery algorithm works in this setting:

1: entry_i: choosing[i]:=true;
2: number[i]:=max(number[0]..number[n-1])+1;
3: choosing[i]:=false;
4: for j:=0 to n-1 do
5: while (choosing[j]) do skip;
6: while (number[j]!=0)
7: and (number[j],j)<(number[i]),i) do skip;
 // note: (a,b)<(c,d) means (a<c) or (a=c and b<d)
8: end;

9: exit_i: number[i]:=0;

Examine the algorithm carefully. You may wish to run a few simulations by hand, imagining
what can happen under different circumstances.

a. Suppose a process is in the critical section, and one or more additional processes are
waiting for it at lines 6-7. If another new process begins the entry protocol at line 1, what can
you say about the number assigned to it relative to the numbers already assigned? What can you
say about when it will enter its critical section, relative to the processes already waiting?

b. Why is the test in line 7 (number[j],j) < (number[i]),i) instead of just

number[j] < number[i]? Give a set of circumstances that could result in two processes
being assigned the same number.

c. Consider the simpler entry protocol below. Explain how it could fail to provide mutual

exclusion, and therefore why the more complex protocol above is necessary. (Hint: consider the
atomic steps necessary to achieve line 1 for one process, and what might be interleaved between
those steps.)

1: entry_i: number[i]:=max(number[0]..number[n-1])+1;
2: for j:=0 to n-1 do
3: while (number[j]!=0)
4: and (number[j],j)<(number[i]),i) do skip;
5: // note: (a,b)<(c,d) means (a<c) or (a=c and b<d)
6: end;

d. Put the observations above together to form a coherent argument that the bakery algorithm
ensures mutual exclusion of the critical sections for all n processes. (Devise a formal proof for
extra credit.)

2. Interlock Instructions. Consider the following interlock instruction, which is can be
executed atomically in hardware:

 INC(s,x): 〈x:=s; s:=s+1〉

a. This should simplify the distribution of bakery tickets. Use it to give a new, simpler
implementation of the bakery algorithm from question 1. Show the old protocol in one color ink
and your modifications and edits in another color. Make as many simplifications as possible
while maintaining the integrity of the protocol.

b. Discuss whether the value of s is bounded (i.e., whether it has a maximum value).

Explain the practical consequences of this and how the boundedness of s interacts with the
argument for of mutual exclusion you gave in part a of this problem. (No need to modify your
answer given above, however.) Can you suggest any way of addressing this issue?

