
CSC 262
Homework #5

Due at the start of class on Wednesday, March 14.

1. Context Switching. As discussed in class, when a process running on a Pentium chip is
interrupted, the Pentium stores the current state within the process table entry for the current process.
Older chips used a more simple strategy: on an interrupt, all registers that form part of the process
state are dumped by the hardware into a specific area of memory reserved for the purpose (say,
memory addresses 0010 to 001F). Among other things, this saves some space in the process table and
is slightly easier to implement. This question is designed to make you think about why the Pentium
designers may have chosen to use a more complex design.

a. The Pentium allows different priorities to be assigned to different types of interrupts. High-
priority interrupts are allowed during the handling of a lower-priority interrupt. Explain why this
would be a problem with the simpler chip design described above. Can you design a way to work
around the shortcoming? (Assume that interrupts are disabled when an interrupt occurs, but we would
like to enable them again as soon as possible. Similarly, a return from interrupt instruction reenables
interrupts if necessary.) Hint: simulate the entire interrupt sequence by hand, keeping track of what
information is stored where.

b. Multiple processor chips may sometimes be combined to create a parallel computer. Two
configurations are common: each processor may have its own bus and private memory, or all the
processors may share a common bus and memory. In any case, suppose that each processor can
disable interrupts only for itself, but not for the other processors.1 Which memory configuration would
you recommend if the processor chips use the simpler design described above, and why? Would the
workaround you proposed above work in this case also?

2. Process Scheduling. The diagram below shows relevant parts of a system’s process table at a
particular point in time. The Next entry is used to store two circular threaded linked lists, one for
ready/running processes and one for blocked processes.

{Stack Area} {Stack Area} {Stack Area} {Stack Area} {Stack Area}
Process ID: 0 Process ID: 1 Process ID: 2 Process ID: 3 Process ID: 4
Status: Ready Status: Running Status: Ready Status: Blocked Status: Ready
Priority: 20 Priority: 40 Priority: 15 Priority: 50 Priority: 25
Next: 2 Next: 4 Next: 1 Next: 3 Next: 0

a). Suppose that round robin scheduling is used, and a timer interrupt occurs. What process would

run next?

b). Suppose instead that process 1 is interrupted because it requests a resource that is busy. Draw

the updated process table after a new process has been started, again assuming round robin scheduling.

c). Suppose that priority scheduling is used instead. What process would be selected to run after a

timer interrupt? After a request for a busy resource?

1 Mechanisms for disabling interrupts across chips have been devised, but they are expensive to implement.

