
CSC 240 Computer Graphics
Video 7: Matrix Compositions

Nick Howe
Smith College

Coordinate Systems

 World coordinates provide a
global framework for all objects

 Object coordinates are chosen
for their convenience in defining
a given object

 Viewport coordinates define
the pixels displayed on screen

Coordinate systems define positions in 2D space

http://docs.mcneel.com/rhino/5/usersguide/en-us/html/ch-05_accuratemodeling.htm
https://bengarney.com/2011/12/07/fast-bitmap-fonts-in-flash/

Viewport

𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

Coordinate Systems

https://www.stockio.com/free-icon/nature-icons-orange-flower

Tflower1

Tflower2

Modeling transform:
places object in world

coordinates

Rendering transform:
maps world coordinates

into viewport*

Tview

*Note: in 2D, the world coordinates and viewport
coordinates are often the same. In 3D they will differ.

𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

Coordinate Systems
Fundamental ambiguity: is shift in appearance caused by change to modeling
transform or to viewport transform?

Did the flower shift left?

Or did the viewport shift right?

Disagreement on this question is the reason
Mac and Windows have different scroll behavior!

?

𝑃𝑃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Which is responsible?

Questions
1. If you see the flower as moving to the left, which transformation is

responsible?
The modeling transform

2. If you see the viewport as moving to the right, which transformation is
responsible?

The rendering transform

3. What circumstance would make it possible to resolve the dispute?
If there were another object in the scene with fixed world coordinates, then we
could tell which type of motion was responsible.

PAUSE NOW & ANSWER

Canvas Graphics
HTML5 2D graphics (what we’re using):
 Supports one current transform, applied to new drawing
 Alter transform by composing additional primitives on top
 Use inverse transform to remove last effect, or revert to saved

Two views of what is happening

ScreenDrawing axes

Draw blue

Canvas Graphics
HTML5 2D graphics (what we’re using):
 Supports one current transform, applied to new drawing
 Alter transform by composing additional primitives on top
 Use inverse transform to remove last effect, or revert to saved

Two views of what is happening

ScreenDrawing axes

Draw blue
Scale x2
Draw red

Canvas Graphics
HTML5 2D graphics (what we’re using):
 Supports one current transform, applied to new drawing
 Alter transform by composing additional primitives on top
 Use inverse transform to remove last effect, or revert to saved

Two views of what is happening

ScreenDrawing axes

Draw blue
Scale x2
Draw red
Scale x2

Draw yellow

Canvas Graphics
HTML5 2D graphics (what we’re using):
 Supports one current transform, applied to new drawing
 Alter transform by composing additional primitives on top
 Use inverse transform to remove last effect, or revert to saved

Two views of what is happening

ScreenDrawing axes

Draw blue
Scale x2
Draw red
Scale x2

Draw yellow
Rotate -30
Draw green

Personally,
I prefer the

screen view!

Specifics
Let’s revisit my example with attention to the transform:

Visualization

Command sequence: Transform matrix: Square in viewport:
drawSquare("blue"); 𝐼𝐼 80 120

80 80
120 80
120 120

function drawSquare(color) {
graphics.fillStyle = color;
graphics.fillRect(80,80,40,40);

}

Command sequence: Transform matrix: Square in viewport:
drawSquare("blue"); 𝐼𝐼 80 120

80 80
120 80
120 120

graphics.scale(2,2); 𝑆𝑆

Command sequence: Transform matrix: Square in viewport:
drawSquare("blue"); 𝐼𝐼 80 120

80 80
120 80
120 120

graphics.scale(2,2); 𝑆𝑆
drawSquare("red"); 𝑆𝑆 160 240

160 160
240 160
240 240

Command sequence: Transform matrix: Square in viewport:
drawSquare("blue"); 𝐼𝐼 80 120

80 80
120 80
120 120

graphics.scale(2,2); 𝑆𝑆
drawSquare("red"); 𝑆𝑆 160 240

160 160
240 160
240 240

graphics.scale(2,2); 𝑆𝑆𝑆𝑆

Command sequence: Transform matrix: Square in viewport:
drawSquare("blue"); 𝐼𝐼 80 120

80 80
120 80
120 120

graphics.scale(2,2); 𝑆𝑆
drawSquare("red"); 𝑆𝑆 160 240

160 160
240 160
240 240

graphics.scale(2,2); 𝑆𝑆𝑆𝑆
drawSquare("yellow"); 𝑆𝑆𝑆𝑆 320 480

320 320
480 320
480 480

Command sequence: Transform matrix: Square in viewport:
drawSquare("blue"); 𝐼𝐼 80 120

80 80
120 80
120 120

graphics.scale(2,2); 𝑆𝑆
drawSquare("red"); 𝑆𝑆 160 240

160 160
240 160
240 240

graphics.scale(2,2); 𝑆𝑆𝑆𝑆
drawSquare("yellow"); 𝑆𝑆𝑆𝑆 320 480

320 320
480 320
480 480

graphics.rotate(-0.5); 𝑆𝑆𝑆𝑆𝑆𝑆

Command sequence: Transform matrix: Square in viewport:
drawSquare("blue"); 𝐼𝐼 80 120

80 80
120 80
120 120

graphics.scale(2,2); 𝑆𝑆
drawSquare("red"); 𝑆𝑆 160 240

160 160
240 160
240 240

graphics.scale(2,2); 𝑆𝑆𝑆𝑆
drawSquare("yellow"); 𝑆𝑆𝑆𝑆 320 480

320 320
480 320
480 480

graphics.rotate(-0.5); 𝑆𝑆𝑆𝑆𝑆𝑆
drawSquare("green"); 𝑆𝑆𝑆𝑆𝑆𝑆 434 575

127 51
651 511
191 268

𝑃𝑃 = 80 120
80 80

120 80
120 120

𝑆𝑆 = 2 0
0 2 𝑆𝑆𝑆𝑆 = 4 0

0 4

𝑆𝑆𝑆𝑆𝑆𝑆 = 3.51 1.92
−1.92 3.51

𝑅𝑅 = 0.88 0.48
−0.48 0.88

Modeling with Transforms
Typical work flow:

1. Build object

2. Add to scene using
scale, rotate, translate

Note that in code, the applications must be applied in the opposite order
(translate first, rotate second, scale third)

𝑇𝑇 = 𝐼𝐼 𝑃𝑃′ = 𝐼𝐼 � 𝑃𝑃 Initial state
𝑇𝑇 = 𝐼𝐼 � 𝑇𝑇 𝑃𝑃′ = 𝐼𝐼 � 𝑇𝑇 � 𝑃𝑃 Apply translate
𝑇𝑇 = 𝐼𝐼 � 𝑇𝑇 � 𝑅𝑅 𝑃𝑃′ = 𝐼𝐼 � 𝑇𝑇 � 𝑅𝑅 � 𝑃𝑃 Apply rotate
𝑇𝑇 = 𝐼𝐼 � 𝑇𝑇 � 𝑅𝑅 � 𝑆𝑆 𝑃𝑃′ = 𝐼𝐼 � 𝑇𝑇 � 𝑅𝑅 � 𝑆𝑆 � 𝑃𝑃 Apply scale Usually best to restore

previous transform
when done!

Animation
We can use transforms to do simple animation.

 Initialization: Define object appearance, initial model transform

 Infinite loop:
1. Erase screen
2. Draw object(s) using current transform(s)
3. Update transform for next iteration

https://www.deviantart.com/flutterluv/art/A-Cow-Jumped-Over-The-Moon-622575145

Buffering
 For animation, need to draw and redraw graphics

 Complex renderings take time to produce

 Don’t want user to see drawing process

 Solution: double buffering
Display this buffer
Draw in this buffer

Swap when finished

Hierarchical Modeling
 Complex objects can be built up of subparts

 Overall object has one modeling transform
 Subparts apply their own transform on top of the parent’s
 If they have subparts, they can apply yet another, etc.

 After adding each subpart, revert to the parent transform

 When animating, a change to the transform of the overall object modifies all
the subparts as well

DEMO

https://www.canstockphoto.com/kicking-mannequin-4280471.html
https://www.canstockphoto.com/wooden-mannequin-lying-43108622.html

http://prezi.com/i5cravrvr2i9/?utm_campaign=share&utm_medium=copy&rc=ex0share

Questions
A hierarchical model is used for a steam locomotive, with the boiler as the root
and the hierarchy shown

1. What is the full transformation applied to driver wheel #1?
𝑅𝑅𝑊𝑊𝑇𝑇𝑊𝑊1𝑇𝑇𝐵𝐵

2. What is the full transformation applied to smoke puff #2?
𝑆𝑆𝑠𝑠𝑇𝑇𝑆𝑆2𝑆𝑆𝑠𝑠𝑇𝑇𝑆𝑆1𝑇𝑇𝐵𝐵

3. Why can the smoke puffs use the same
scale transformation but need different
translations?

They grow by the same amount, but the
movements are different.

PAUSE NOW & ANSWER

𝑇𝑇𝐵𝐵

𝑅𝑅𝑊𝑊𝑇𝑇𝑊𝑊2

𝑆𝑆𝑠𝑠𝑇𝑇𝑆𝑆2

𝑅𝑅𝑊𝑊𝑇𝑇𝑊𝑊1

𝑆𝑆𝑠𝑠𝑇𝑇𝑆𝑆1

HTML5 2D Graphics
Object creation:
 fillRect(x,y,w,h)

 strokeRect(x,y,w,h)

 clearRect(x,y,w,h)

 fillText(str,x,y)

 strokeText(str,x,y)

Transforms:
 scale(sx,sy)

 rotate(theta)

 translate(dx,dy)

 transform(a,b,c,d,e,f)

 setTransform(a,b,c,d,e,f)

 save()

 restore()When working on a subpart,
save the parent transform

and restore it later

(Replace current transform)

𝑎𝑎 𝑐𝑐 𝑒𝑒
𝑏𝑏 𝑑𝑑 𝑓𝑓
0 0 1

Animations
 Need something here

Review
After watching this video, you should be able to…

 List three types of coordinate systems used in graphics

 Describe the transforms used to relate the different coordinate systems

 Recognize that the same effect can be achieved through either transform

 Know how the current transform affects objects added to a scene

 Manipulate the current transform to achieve desired effects

 Understand that transforms accumulate through object part hierarchies

Music: https://www.bensound.com

https://www.bensound.com/

	CSC 240 Computer Graphics�Video 7: Matrix Compositions
	Coordinate Systems
	Coordinate Systems
	Coordinate Systems
	Questions
	Canvas Graphics
	Canvas Graphics
	Canvas Graphics
	Canvas Graphics
	Specifics
	Modeling with Transforms
	Animation
	Buffering
	Hierarchical Modeling
	Questions
	HTML5 2D Graphics
	Animations
	Review

