CSC 240 Computer Graphics Lecture 6: Transformations

Nick Howe Smith College

Transformations

What is a 2D transformation? Any $T: \mathbb{R}^2 \to \mathbb{R}^2$

- > Special categories of transformation:
 - **Rigid translation**: preserves distance
 - Affine transformation: preserves collinearity & distance ratios
 - Linear transformation: Expressed via matrix & vector operations

$$\vec{u} = T\vec{v} + \vec{b}$$

Key point here: any 2x2 matrix represents a 2D transformation!

Transformations

Why does a house look different depending on where you stand?

- Object is the same; arrangement shifts with viewpoint
 - Transformations allow the viewpoint to be treated separately from the object
 - Define geometry once; change viewpoint via transformations
 - Simplifies thinking and organizes mathematics

PAUSE NOW & ANSWER

Which of the following could be the result of a spatial transformation?

Specific Transformations

Identity Transformation

Identity Transformation

• The **identity** transformation leaves points unchanged $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

• Note:
$$\begin{bmatrix} v_x & v_y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} v_x & v_y \end{bmatrix}$$
 and $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$

- For any other matrix *M*, define its inverse M^{-1} such that $M^{-1}M = I = MM^{-1}$
- What is the inverse of *I*?

WHY PROGRAMMERS ARE SECRETLY VAMPIRES

WWW.INKONTHESIDE.COM

©2014 SAREEN AKHARJALIAN

http://inkontheside.com/2014/01/20/why-programmers-are-secretly-vampires/

- Consider the vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. What is its reflection across the y axis?
 - Note $\vec{v} = 1e_1 + 1e_2$

Wha

- Reflection $\vec{v}' = -1e_1 + 1e_2$
- Only the *x* component is negated
- How about across the x axis?

$$\vec{v}' = -1e_1 + 1e_2$$

• A matrix can express the treatment of each component:

$$F_{horiz} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, F_{vert} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

at is the inverse of a reflection? $F_{horiz} \cdot F_{horiz} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

- Can apply transformation to a set of points
- $P = \begin{bmatrix} 0 & 1 & 1 & 0.5 & 0 \\ 0 & 0 & 1 & 1.5 & 1 \end{bmatrix}$

$$P' = FP = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} P = \begin{bmatrix} 0 & -1 & -1 & -0.5 & 0 \\ 0 & 0 & 1 & 1.5 & 1 \end{bmatrix}$$

• What matrix gives a reflection across the y axis?

• What matrix gives a reflection across the x axis?

What matrix gives a reflection across an arbitrary line?

Let's revisit this question later...

Scaling Transformation

Scaling Transformation

• Scaling grows or shrinks everything by a scalar multiple

• Can differ by axis

• Matrix:
$$S = \begin{bmatrix} S_{\chi} & 0 \\ 0 & S_{y} \end{bmatrix}$$

• Inverse: $S^{-1} = \begin{bmatrix} 1/s_{\chi} & 0 \\ 0 & 1/s_{y} \end{bmatrix}$

Scaling Transformation

- Applied to set of points: $P = \begin{bmatrix} 0 & 1 & 1 & 0.5 & 0 \\ 0 & 0 & 1 & 1.5 & 1 \end{bmatrix}$
- Suppose $s_x = 2$ and $s_y = 3$ $S = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$

$$P' = SP = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} P = \begin{bmatrix} 0 & 2 & 2 & 1 & 0 \\ 0 & 0 & 3 & 4.5 & 3 \end{bmatrix}$$

Rotation Transformation

Rotation Transformation

sin θ

 $\cos \theta$

• Rotation changes each basis vector in a certain way $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$ $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$

Final result is combination of both

$$\vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix} = v_x e_1 + v_y e_2 \to v_x \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} + v_y \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix} = \begin{bmatrix} v_x \cos \theta - v_y \sin \theta \\ v_x \sin \theta + v_y \cos \theta \end{bmatrix}$$

We can express this more succinctly as a matrix

$$\vec{v}' = R\vec{v}$$
 where $R = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$

Rotation Transformation

Shear Transformation

http://abcdefghigklmnopqrstuvwxyz.net/page/930/ https://www.amazon.co.uk/Sheep-Shearing-Humour-Greetings-Birthday/dp/B073G1DKLW

Shear Transformation

• Shear is a slant effect, where one dimension is augmented by a linear function of the other

X-Shear:
$$H_{\chi} = \begin{bmatrix} 1 & 0 \\ k_{\chi} & 1 \end{bmatrix}$$

 $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0.5 & 0 \\ 0 & 1 & 1.5 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1.5 & 0 \\ 0 & 1 & 2 & 2 & 1 \end{bmatrix}$
 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0.5 & 0 \\ 0 & 1 & 1.5 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & 1 & 1.5 & 1 \end{bmatrix}$

*Note: X-Shear plus rotation & scaling can simulate Y-Shear, and vice versa.

Questions

PAUSE NOW & ANSWER

Classify each of the transformations shown as one of the types below

Identity Reflection Shear Scaling Rotation A Rotation F Shear В Ε 0 0 С D 0 Reflection Identity Rotation Scaling

Translation Transformation

Translation Transformation

• Most natural formulation for translation is addition: $\vec{u} = T\vec{v} + \vec{b}$

 $\begin{bmatrix} 0 & 1 & 1 & 0.5 & 0 \\ 0 & 0 & 1 & 1.5 & 1 \end{bmatrix} + \begin{bmatrix} 3 & 3 & 3 & 3 & 3 \\ 2 & 2 & 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 4 & 4 & 3.5 & 3 \\ 2 & 2 & 3 & 3.5 & 3 \end{bmatrix}$

Translate all points by (3,2)

Need a different size translation matrix for each set of points

All other transformations are use multiplication

Can we reformulate translation as multiplication?

Translation Transformation

• Consider how matrix multiplication works

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix} = \begin{bmatrix} av_x + bv_y \\ cv_x + dv_y \end{bmatrix}$$
There's no way to
add a constant
$$\begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ 1 \end{bmatrix} = \begin{bmatrix} av_x + bv_y + t_x \\ cv_x + dv_y + t_y \\ 1 \end{bmatrix}$$
...unless we alter
the structure

- A standard trick in computer graphics:
 - Express 2D points using **three** coordinates
 - The last coordinate is always 1

"Homogeneous Coordinates"

Translation Transformation

New formulation for translation

Homogeneous Coordinates

What about all the other 2x2 transformation matrices?

 $\text{Modify them into 3x3 homogeneous matrices also} \\ \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \rightarrow \begin{bmatrix} m_{11} & m_{12} & 0 \\ m_{21} & m_{22} & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Note: if
$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix} = \begin{bmatrix} v_x' \\ v_y' \end{bmatrix}$$

then $\begin{bmatrix} m_{11} & m_{12} & 0 \\ m_{21} & m_{22} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_x \\ v_x \\ v_x \\ 1 \end{bmatrix} = \begin{bmatrix} v_x' \\ v_x' \\ v_x' \\ 1 \end{bmatrix}$ If you want to plot the points, use just the first two coordinates

2D Transformation Summary

ScalingTranslationRotation
$$S = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 $T = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$ $R = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$

X ShearY ReflectionIdentity $H = \begin{bmatrix} 1 & 0 & 0 \\ k_x & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $F = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Questions

PAUSE NOW & ANSWER

Classify each of the transformation matrices shown as one of the types below

 Identity 	A [1	0 11	B [1	1	1 C	[1	0	01
 Reflection 	0	1 0	1	1	1	0	1	0
 Scaling 	Translation	0 1	None 1	1	1 Identi	ty 0	0	1
 Rotation 	D [1	0 01	т ГЭ	0		F1	0	01
 Shear 			E 4	2			_1	0
Translation	Shear 🚺	0 1	Scaling 0	0	1 Reflectio	n	0	1
• Other/None		0 13	20		1.			
	G 0.6	-0.8	0] H [1	0	3] I	[1	0	0
	0.8	0.6	0	1	5	0	1	0
	Rotation 📘 🕕	0	1 None 0	0	0 Nor	ne 🚺	0	0

Composition

- Combining transformations is called composition
 - Apply multiple matrices in sequence $P' = T \cdot R \cdot P$
 - Using associativity, can combine all into single transformation matrix P' = (TR)PM = TR

Review

After watching this video, you should be able to...

- Define a transformation and describe why they are useful
- Describe 6 major transformation types qualitatively
- Express 6 major transformation types numerically as a matrix
- Convert a regular 2D vector into homogeneous coordinates
- Convert a 2x2 transformation matrix into a 3x3 homogenous equivalent
- Compose transformations by multiplying their matrices