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Transformations
What is a 2D transformation?

 Special categories of transformation:
 Rigid translation:  

preserves distance
 Affine transformation:  

preserves collinearity 
& distance ratios

 Linear transformation:
Expressed via matrix
& vector operations 𝑢𝑢 = 𝑇𝑇𝑣⃗𝑣 + 𝑏𝑏

Any 𝑇𝑇:ℝ2 → ℝ2

Key point here:  any 2x2 matrix 
represents a 2D transformation!



Transformations
Why does a house look different depending on where you stand?

 Object is the same; arrangement shifts with viewpoint
 Transformations allow the viewpoint to be treated separately from the object

 Define geometry once; change viewpoint via transformations

 Simplifies thinking and organizes mathematics

Images:  https://carlcolsonarchitect.com/adu-cottage-creating-the-design-drawings/





Questions
Which of the following could be the result of a spatial transformation?

PAUSE NOW & ANSWER

A

B

C D

E

F



Specific Transformations



Identity 
Transformation



Identity Transformation
 The identity transformation leaves points unchanged

𝐼𝐼 = 1 0
0 1

 Note: 𝑣𝑣𝑥𝑥 𝑣𝑣𝑦𝑦
1 0
0 1 = 𝑣𝑣𝑥𝑥 𝑣𝑣𝑦𝑦 and 1 0

0 1
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦 =

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦

 For any other matrix M, define its inverse M-1 such that
𝑀𝑀−1𝑀𝑀 = 𝐼𝐼 = 𝑀𝑀𝑀𝑀−1

 What is the inverse of I ?



Reflection Transformation

http://inkontheside.com/2014/01/20/why-programmers-are-secretly-vampires/



Reflection Transformation
 Consider the vector 1

1 .  What is its reflection across the y axis?
 Note 𝑣⃗𝑣 = 1𝑒𝑒1 + 1𝑒𝑒2
 Reflection 𝑣⃗𝑣′ = −1𝑒𝑒1 + 1𝑒𝑒2
 Only the x component is negated

 How about across the x axis?
𝑣⃗𝑣′ = −1𝑒𝑒1 + 1𝑒𝑒2

 A matrix can express the treatment of each component:

𝐹𝐹ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = −1 0
0 1 , 𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 1 0

0 −1

 What is the inverse of a reflection? 𝐹𝐹ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 � 𝐹𝐹ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = −1 0
0 1 � −1 0

0 1 = 1 0
0 1



Reflection Transformation
 Can apply transformation to a set of points

 𝑃𝑃 = 0 1
0 0

1 0.5 0
1 1.5 1

𝑃𝑃′ = 𝐹𝐹𝐹𝐹 = −1 0
0 1 𝑃𝑃 = 0 −1

0 0
−1 −0.5 0
1 1.5 1



Reflection Transformation
 What matrix gives a reflection across the y axis?

 What matrix gives a reflection across the x axis?

 What matrix gives a reflection across an arbitrary line?
Let’s revisit this question later…

𝑭𝑭𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 = 𝟏𝟏 𝟎𝟎
𝟎𝟎 −𝟏𝟏

𝑭𝑭𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 = −𝟏𝟏 𝟎𝟎
𝟎𝟎 𝟏𝟏



Scaling Transformation



Scaling Transformation
 Scaling grows or shrinks everything by a scalar multiple

 Can differ by axis

 Matrix:  𝑆𝑆 =
𝑠𝑠𝑥𝑥 0
0 𝑠𝑠𝑦𝑦

 Inverse:  𝑆𝑆−1 =
⁄1 𝑠𝑠𝑥𝑥 0
0 �1 𝑠𝑠𝑦𝑦



Scaling Transformation
 Applied to set of points:
𝑃𝑃 = 0 1

0 0
1 0.5 0
1 1.5 1

 Suppose 𝑠𝑠𝑥𝑥 = 2 and 𝑠𝑠𝑦𝑦 = 3

𝑆𝑆 = 2 0
0 3

𝑃𝑃′ = 𝑆𝑆𝑆𝑆 = 2 0
0 3 𝑃𝑃 = 0 2

0 0
2 1 0
3 4.5 3



Rotation 
Transformation



Rotation Transformation
 Rotation changes each basis vector in a certain way

𝑒𝑒1 = 1
0 → cos𝜃𝜃

sin𝜃𝜃
𝑒𝑒2 = 0

1 → −sin𝜃𝜃
cos𝜃𝜃

 Final result is combination of both

𝑣⃗𝑣 =
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦 = 𝑣𝑣𝑥𝑥𝑒𝑒1+𝑣𝑣𝑦𝑦𝑒𝑒2 → 𝑣𝑣𝑥𝑥

cos𝜃𝜃
sin𝜃𝜃 +𝑣𝑣𝑦𝑦

−sin𝜃𝜃
cos𝜃𝜃 =

𝑣𝑣𝑥𝑥 cos𝜃𝜃−𝑣𝑣𝑦𝑦sin𝜃𝜃
𝑣𝑣𝑥𝑥 sin𝜃𝜃 + 𝑣𝑣𝑦𝑦 cos𝜃𝜃

 We can express this more succinctly as a matrix

𝑣⃗𝑣′ = 𝑅𝑅𝑣⃗𝑣 where R = cos 𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos 𝜃𝜃

sin𝜃𝜃

cos𝜃𝜃
𝜃𝜃

sin𝜃𝜃
cos𝜃𝜃𝜃𝜃



Rotation Transformation
 What is the inverse of a rotation?
 Rotation in the opposite direction

 Example:  rotate by 60o

𝐑𝐑 = 𝐜𝐜𝒐𝒐𝒐𝒐𝜽𝜽 −𝒔𝒔𝒔𝒔𝒔𝒔𝜽𝜽
𝒔𝒔𝒔𝒔𝒔𝒔𝜽𝜽 𝒄𝒄𝒄𝒄𝒄𝒄𝜽𝜽

𝑹𝑹−𝟏𝟏 = 𝐜𝐜𝒐𝒐𝒐𝒐(−𝜽𝜽) −𝒔𝒔𝒔𝒔𝒔𝒔(−𝜽𝜽)
𝒔𝒔𝒔𝒔𝒔𝒔(−𝜽𝜽) 𝒄𝒄𝒄𝒄𝒄𝒄(−𝜽𝜽)

= 𝐜𝐜𝒐𝒐𝒐𝒐𝜽𝜽 𝒔𝒔𝒔𝒔𝒔𝒔𝜽𝜽
−𝒔𝒔𝒔𝒔𝒔𝒔𝜽𝜽 𝒄𝒄𝒄𝒄𝒄𝒄𝜽𝜽

𝑃𝑃′ = 𝑅𝑅𝑃𝑃 = 0.50 −0.87
0.87 0.50 𝑃𝑃

𝑃𝑃 = 0 1
0 0

1 0.5 0
1 1.5 1

𝑅𝑅 = cos 60° −sin 60°
sin 60° cos 60° = 0.50 −0.87

0.87 0.50

= 0 0.50
0 0.87

−0.37 −1.05 −0.87
1.37 1.18 0.50



Shear Transformation

http://abcdefghigklmnopqrstuvwxyz.net/page/930/
https://www.amazon.co.uk/Sheep-Shearing-Humour-Greetings-Birthday/dp/B073G1DKLW



Shear Transformation
 Shear is a slant effect, where one dimension is augmented by a linear 

function of the other

X-Shear:  𝐻𝐻𝑥𝑥 = 1 0
𝑘𝑘𝑥𝑥 1 Y-Shear:  𝐻𝐻𝑦𝑦 = 1 𝑘𝑘𝑦𝑦

0 1
1 1
0 1

0 1
0 0

1 0.5 0
1 1.5 1 = 0 1

0 0
2 2 1
1 1.5 1

1 0
1 1

0 1
0 0

1 0.5 0
1 1.5 1 = 0 1

0 1
1 1.5 0
2 2 1

*Note:  X-Shear plus rotation & scaling can simulate Y-Shear, and vice versa.



Questions
Classify each of the transformations shown as one of the types below
 Identity
 Reflection
 Scaling
 Rotation
 Shear

PAUSE NOW & ANSWER

A

B

C D

E

F

Shear

Reflection

Rotation
Scaling

Identity

Rotation



Translation 
Transformation



Translation Transformation
 Most natural formulation for translation is addition:  𝑢𝑢 = 𝑇𝑇𝑣⃗𝑣 + 𝑏𝑏

+ 3 3
2 2

3 3 3
2 2 2 = 3 4

2 2
4 3.5 3
3 3.5 3

Need a different size 
translation matrix for 
each set of points
All other transformations 
are use multiplication
Can we reformulate 
translation as multiplication?

0 1
0 0

1 0.5 0
1 1.5 1

Translate 
all points 
by (3,2)



Translation Transformation
 Consider how matrix multiplication works

 A standard trick in computer graphics:
 Express 2D points using three coordinates
 The last coordinate is always 1

𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦 =

𝑎𝑎𝑣𝑣𝑥𝑥 + 𝑏𝑏𝑣𝑣𝑦𝑦
𝑐𝑐𝑣𝑣𝑥𝑥 + 𝑑𝑑𝑣𝑣𝑦𝑦

There’s no way to 
add a constant

…unless we alter 
the structure

𝑎𝑎 𝑏𝑏 𝑡𝑡𝑥𝑥
𝑐𝑐 𝑑𝑑 𝑡𝑡𝑦𝑦
0 0 1

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
1

=
𝑎𝑎𝑣𝑣𝑥𝑥 + 𝑏𝑏𝑣𝑣𝑦𝑦 + 𝑡𝑡𝑥𝑥
𝑐𝑐𝑣𝑣𝑥𝑥 + 𝑑𝑑𝑣𝑣𝑦𝑦 + 𝑡𝑡𝑦𝑦

1



Translation Transformation
 New formulation for translation

1 0 3
0 1 2
0 0 1

=
3 4
2 2
1 1

4 3.5 3
3 3.5 3
1 1 1

0 1
0 0
1 1

1 0.5 0
1 1.5 1
1 1 1

General form:

𝑇𝑇 =
1 0 𝑡𝑡𝑥𝑥
0 1 𝑡𝑡𝑦𝑦
0 0 1

Inverse:

𝑇𝑇−1 =
1 0 −𝑡𝑡𝑥𝑥
0 1 −𝑡𝑡𝑦𝑦
0 0 1



Homogeneous Coordinates
What about all the other 2x2 transformation matrices?

 Modify them into 3x3 homogeneous matrices also
𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

→
𝑚𝑚11 𝑚𝑚12 0
𝑚𝑚21 𝑚𝑚22 0

0 0 1

Note:      if  
𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦 =

𝑣𝑣𝑥𝑥′
𝑣𝑣𝑦𝑦′

then  
𝑚𝑚11 𝑚𝑚12 0
𝑚𝑚21 𝑚𝑚22 0

0 0 1

𝑣𝑣𝑥𝑥
𝑣𝑣𝑥𝑥
1

=
𝑣𝑣𝑥𝑥′
𝑣𝑣𝑥𝑥′
1

If you want to plot the 
points, use just the 
first two coordinates



2D Transformation Summary

Identity

𝐼𝐼 =
1 0 0
0 1 0
0 0 1

Translation

𝑇𝑇 =
1 0 𝑡𝑡𝑥𝑥
0 1 𝑡𝑡𝑦𝑦
0 0 1

Rotation

𝑅𝑅 =
cos 𝜃𝜃 − sin𝜃𝜃 0
sin𝜃𝜃 cos 𝜃𝜃 0

0 0 1

Scaling

𝑆𝑆 =
𝑠𝑠𝑥𝑥 0 0
0 𝑠𝑠𝑦𝑦 0
0 0 1

Y Reflection

𝐹𝐹 =
−1 0 0
0 1 0
0 0 1

X Shear

𝐻𝐻 =
1 0 0
𝑘𝑘𝑥𝑥 1 0
0 0 1



Questions
Classify each of the transformation matrices shown as one of the types below
 Identity
 Reflection
 Scaling
 Rotation
 Shear
 Translation
 Other/None

PAUSE NOW & ANSWER

1 0 0
0 1 0
0 0 0

1 0 0
0 −1 0
0 0 1

1 0 0
0 1 0
0 0 1

1 1 1
1 1 1
1 1 1

1 0 1
0 1 0
0 0 1

2 0 0
0 2 0
0 0 1

1 0 0
1 1 0
0 0 1

1 0 3
0 1 5
0 0 0

0.6 −0.8 0
0.8 0.6 0
0 0 1

A

D

G

B C

E F

H I

Translation None

None

Shear Scaling Reflection

Rotation None

Identity



Composition
 Combining transformations is called composition
 Apply multiple matrices in sequence 𝑃𝑃′ = 𝑇𝑇 � 𝑅𝑅 � 𝑃𝑃
 Using associativity, can combine all into single transformation matrix 𝑃𝑃′= (𝑇𝑇𝑇𝑇)𝑃𝑃
𝑀𝑀 = 𝑇𝑇𝑇𝑇

 Order can matter a lot!

𝑃𝑃′= (𝑅𝑅𝑅𝑅)𝑃𝑃𝑃𝑃′= (𝑇𝑇𝑇𝑇)𝑃𝑃



Review
After watching this video, you should be able to…

 Define a transformation and describe why they are useful

 Describe 6 major transformation types qualitatively

 Express 6 major transformation types numerically as a matrix

 Convert a regular 2D vector into homogeneous coordinates

 Convert a 2x2 transformation matrix into a 3x3 homogenous equivalent

 Compose transformations by multiplying their matrices

Music: https://www.bensound.com

https://www.bensound.com/
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