
CSC 240 Computer Graphics
Lecture 2: Line Algorithms

Nick Howe
Smith College

Portions based on slides & content courtesy Sara Mathieson

Line Algorithm

Why Lines?
 Even 3D shapes are drawn

eventually in 2D

 3D shapes made of polygons

 Each polygon made of lines

 Compute endpoints & draw in 2D

 Given endpoints (x1,y1) and (x2,y2), what pixels should
be colored to draw the line segment connecting them?

Image: http://socialsharing.info/polygons-in-3d-modelling/polygon-modeling-practical-basics-ebal-studios-polygons-in-3d-modelling/

Math vs. Graphics
 In mathematics, a line is infinitely long and infinitely thin
 An infinitely thin line would be invisible!
 We’ll have to allow some thickness to see it
 We only want to draw one segment of a line

 Two points determine a line
 For a segment, we can use the endpoints
 Fill in (just) enough pixels to connect the endpoints

Drawing a Line
 What pixels should be colored for a line with endpoints p1 = (0,0) and p2 =

(4,3)?

p1 = (0,0)

p2 = (4,3)

* Remember that on
the screen, the y axis
is actually inverted!

x

y

Drawing a Line
 What pixels should be colored for a line with endpoints p1 = (0,0) and p2 =

(4,3)?

p1 = (0,0)

p2 = (4,3)

x

y

Too much: line barely
touches some pixels;

result is too thick

Drawing a Line
 What pixels should be colored for a line with endpoints p1 = (0,0) and p2 =

(4,3)?

p1 = (0,0)

p2 = (4,3)

x

y

Anti-aliased line:
more advanced topic

Drawing a Line
 What pixels should be colored for a line with endpoints p1 = (0,0) and p2 =

(4,3)?

p1 = (0,0)

p2 = (4,3)
Simple line:

minimally connected;
exactly one pixel
filled per column

x

y

What algorithm will
give this?

Simple Line Algorithm
 Loop over the columns:
 Compute the intersection of the line with the center of each column
 Fill in the pixel closest to each intersection point

p1 = (0,0)

p2 = (4,3)

x

y

Simple Line Algorithm
loop for x from x1 to x2

compute corresponding y using line equation
color pixel (floor(x),floor(y))

endloop

p1 = (0,0)

p2 = (4,3)

x

y

?

Math for Lines
 Slope intercept form: 𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑏𝑏

 General form: 𝐴𝐴𝑚𝑚 + 𝐵𝐵𝑦𝑦 + 𝐶𝐶 = 0
(Multiplying by any nonzero constant gives equivalent eqn.)

 Form given any two points (x1,y1) and (x2,y2):
𝑦𝑦1 − 𝑦𝑦2 𝑚𝑚 + 𝑚𝑚2 − 𝑚𝑚1 𝑦𝑦 + 𝑚𝑚1𝑦𝑦2 − 𝑚𝑚2𝑦𝑦1 = 0

 Converted back to slope-intercept, this gives:

𝑦𝑦 =
𝑦𝑦2 − 𝑦𝑦1
𝑚𝑚2 − 𝑚𝑚1

𝑚𝑚 +
𝑚𝑚2𝑦𝑦1 − 𝑚𝑚1𝑦𝑦2
𝑚𝑚2 − 𝑚𝑚1

Questions
 What is the slope of the line that passes through (0,0) and (4,3)?

𝑚𝑚 =
𝑦𝑦2 − 𝑦𝑦1
𝑚𝑚2 − 𝑚𝑚1

=
3 − 0
4 − 0 =

3
4

 Suppose you want to draw a line between (1.2,1.4) and (5.1,2.6). List the 𝑚𝑚
values of the column centers you would need to intersect with the line?

p1 = (1.2,1.4)

x

y

p2 = (5.1,2.6)

Not 5.5 because the line
stops at 5.1

1.5, 2.5, 3.5, 4.5

PAUSE NOW & ANSWER

Drawing a Line
 What pixels should be colored for a line with endpoints p1 = (0,0) and p2 =

(4,3)?

p1 = (0,0)

p2 = (4,3) Slope = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑟𝑟𝑟𝑟𝑟𝑟

= 𝑦𝑦1−𝑦𝑦2
𝑥𝑥1−𝑥𝑥2

= 3
4

x

y

x y ink
0.5 0.375 (0,0)
1.5 1.125 (1,1)
2.5 1.875 (2,1)
3.5 2.625 (3,2)

Note: inked
pixel is floor
of x and y.

Remember: we are using
corner-origin coordinates

𝑦𝑦1 − 𝑦𝑦2 𝑚𝑚 + 𝑚𝑚2 − 𝑚𝑚1 𝑦𝑦 + 𝑚𝑚1𝑦𝑦2 − 𝑚𝑚2𝑦𝑦1 = 0

−3𝑚𝑚 + 4𝑦𝑦 = 0

Another Line
 What pixels should be colored for a line with endpoints p1 = (0,0) and p2 =

(3,4)?

p1 = (0,0)

p2 = (3,4)
What’s the problem here?

x

y

How should we solve it?

By looping over columns, we only filled
in three pixels. But the endpoints are
more separated vertically, so we end
up with gaps.

If we loop over rows instead of
columns, then we will fill in four pixels
and the line will be connected.

The line’s slope determines whether
we should loop over rows or columns

Line Drawing Cases (Simple Algorithm)

Two zones depending on slope:

I. Slope between -1 and 1:
loop over columns (step in x)

II. Slope more than 1,
or less than -1:
loop over rows (step in y)

-∞ ≤ m < -1

-1 ≤ m ≤ 1

1 < m ≤ ∞

-∞ ≤ m < -11 < m ≤ ∞

-1 ≤ m ≤ 1
(𝑚𝑚1,𝑦𝑦1)

y

(𝑚𝑚2, 𝑦𝑦2)

(𝑚𝑚2, 𝑦𝑦2)

Questions
1. If we always looped over x regardless of slope, which lines would possibly

appear disconnected? (Describe their range of slopes)
Lines with slope greater than 1 or less than -1

2. What if we always looped over y?
Lines with slope between 1 and -1

3. Suppose we are looping over rows, and our line intersects with the current
row at the point (3.9,6.5). What pixel should we color in?

The pixel can be found by rounding down, so the answer is (3,6)

PAUSE NOW & ANSWER

Midpoint Algorithm
Consider cases for moderate slope, 0 ≤ 𝑚𝑚 ≤ 1.

For 𝑚𝑚 = 0 each pixel is to the right of previous

For 𝑚𝑚 = 1 each pixel is up and to the right of previous

 In between, next pixel is either up or to the right

Clever Trick: avoid computing line equation by
finding a rule to decide which way to move

Midpoint Algorithm
 Loop over columns, moving upwards as necessary to follow line

(pseudocode below assumes 0 ≤ 𝑚𝑚 ≤ 1; similar loop in other cases)

y y1

loop for x = x1 to x2 do
if (some_test) then

y y+1
ink(x,y)

endloop

When should we move?

 Test whether line is above
or below pixel boundary at

middle of next column

p1 = (0,0)

p2 = (4,3)

x

y

Math for Lines (2)
Recall that the equation of a line through two points 𝑚𝑚1,𝑦𝑦1 and 𝑚𝑚2,𝑦𝑦2 is:

𝑦𝑦1 − 𝑦𝑦2 𝑚𝑚 + 𝑚𝑚2 − 𝑚𝑚1 𝑦𝑦 + 𝑚𝑚1𝑦𝑦2 − 𝑚𝑚2𝑦𝑦1 = 0.

 Let’s call that left hand side F:
𝐹𝐹(𝑚𝑚,𝑦𝑦) = 𝑦𝑦1 − 𝑦𝑦2 𝑚𝑚 + 𝑚𝑚2 − 𝑚𝑚1 𝑦𝑦 + 𝑚𝑚1𝑦𝑦2 − 𝑚𝑚2𝑦𝑦1

 The line is all (𝑚𝑚,𝑦𝑦) for which 𝐹𝐹(𝑚𝑚,𝑦𝑦) evaluates to zero.

What about other points?
 Points above the line: 𝐹𝐹(𝑚𝑚,𝑦𝑦) > 0
 Points below the line: 𝐹𝐹(𝑚𝑚,𝑦𝑦) < 0

𝐹𝐹 𝑚𝑚,𝑦𝑦 < 0

𝐹𝐹 𝑚𝑚,𝑦𝑦 = 0

𝐹𝐹(𝑚𝑚,𝑦𝑦) > 0

(x,y)

Use 𝐹𝐹(𝑚𝑚,𝑦𝑦) to see if line is above or below boundary for next pixel

 If current pixel is (𝑚𝑚,𝑦𝑦) then next boundary is(𝑚𝑚 + 1.5,𝑦𝑦 + 1)

 If 𝐹𝐹 𝑚𝑚 + 1.5,𝑦𝑦 + 1 > 0 then boundary point is above line
 Need to keep 𝑦𝑦 the same

 If 𝐹𝐹 𝑚𝑚 + 1.5,𝑦𝑦 + 1 < 0 then boundary point is below line
 Need to increment 𝑦𝑦

After determining new 𝑦𝑦, increment 𝑚𝑚 and begin again for next column

Midpoint Algorithm

F(x,y) = 𝑦𝑦1 − 𝑦𝑦2 𝑚𝑚 + 𝑚𝑚2 − 𝑚𝑚1 𝑦𝑦 + 𝑚𝑚1𝑦𝑦2 − 𝑚𝑚2𝑦𝑦1

(x,y)

(x+1.5,y+1)?
?

Midpoint Algorithm
y 0
loop for x = 0 to 3 do

ink(x,y)
if F(x+1.5,y+1)<0 then

y y+1
endloop

p1 = (0,0)

p2 = (4,3)

x

y

F(x,y) = −3𝑚𝑚 + 4𝑦𝑦

x y F(x+1.5,y+1) Decision
0 0 -3(1.5)+4(1) = -0.5 y = y+1
1 1 -3(2.5)+4(2) = 0.5 y = y
2 1 -3(3.5)+4(2) = -2.5 y = y+1

Midpoint Algorithm
y 0
loop for x = 0 to 3 do

ink(x,y)
if F(x+1.5,y+1)<0 then

y y+1
endloop

We’re still doing as much work
as before, since this line

computes the full line equation

Not much changes between
adjacent points. Let’s use the

previously computed F to get the
new value!

Incremental Midpoint Algorithm*
y y1
d F(x1+1.5,y+1)
for x = x1 to x2 do

ink(x,y)
if d<0 then

y y+1
d d +(x2-x1) +(y1-y2)

else
d d+(y1-y2)

endfor

p1 = (0,0)

p2 = (4,3)

x

y

F(x,y) = 𝑦𝑦1 − 𝑦𝑦2 𝑚𝑚 + 𝑚𝑚2 − 𝑚𝑚1 𝑦𝑦 + 𝑚𝑚1𝑦𝑦2 − 𝑚𝑚2𝑦𝑦1

Keep track of running value of F(x,y)

Only x changes in this case, so add the x term to running total

Both x and y
change here, so we

add two terms

Instead of the
whole line

equation, we
do just one
addition per

column. Win!

* AKA Bresenham’s algorithm

Incremental Midpoint Algorithm
y 0
d F(1.5,1)
for x = 0 to 4 do

ink(x,y)
if d<0 then

y y+1
d d +4-3

else
d d-3

endfor

p1 = (0,0)

p2 = (4,3)

x

y

F(x,y) = −3𝑚𝑚 + 4𝑦𝑦

x y F(x+1.5,y+1) d Decisio
n

0 0 -3(1.5)+4(1) = -0.5 -0.5 y = y+1
1 1 -3(2.5)+4(2) = 0.5 -0.5+1 = 0.5 y = y
2 1 -3(3.5)+4(2) = -2.5 0.5-3 = -2.5 y = y+1

Note d holds the same value
as computed F before!

-∞ ≤ m < -1

x2 < x1

y2 < y1

1 < m ≤ ∞

0 ≤ m ≤ 1

-1 ≤ m ≤ 0

Incremental Line Drawing Cases
 Eight zones depending on

relative values of x1, x2, y1 & y2

 Can swap x1 ↔ x2, y1 ↔ y2 to
fold eight cases into four

I: step x, increment y
II: step x, decrement y
III: step y, increment x
IV: step y, decrement x

-1 ≤ m ≤ 0

-∞ < m < -1

y1 < y2

x1 < x2

0 ≤ m ≤ 1

-∞ ≤ m < -11 < m ≤ ∞

Swap (𝑚𝑚1,𝑦𝑦1) ↔ (𝑚𝑚2,𝑦𝑦2)

Questions
1. What are the effects of different pixel grid conventions on a line drawing

implementation?
Changes to the offsets

2. What are the advantages of the incremental line drawing algorithm?
Fewer arithmetic operations per pixel

3. What are the disadvantages of the incremental line drawing algorithm?
More complicated to program

PAUSE NOW & ANSWER

Antialiasing
The simple line algorithm and its relatives all suffer from aliasing

 Jaggedness/discontinuity due to pixel grid strictures

 Visually unappealing

Solution is a strategic, deliberate blurring!

 Known as antialiasing

 Idea: use variable shading
to create a smoother look

Weight shading based on path of line

Antialiased Line
 What pixels should be colored for a line with endpoints p1 = (0,0) and p2 =

(4,3)?

x

y
Xiaolin Wu’s algorithm:

Shade pixels according to
vertical distance from

pixel centers to the line

x y lower upper
0.5 0.375 0.125 0.875
1.5 1.125 0.375 0.625
2.5 1.875 0.625 0.375
3.5 2.625 0.875 0.125

p2 = (4,3)

p1 = (0,0)

Review
After this video, you should know how to:

 Give pseudocode for a simple line algorithm, and implement it if need be

 Given endpoints of a line, determine the proper loop for rendering it

 Carry out by hand the calculations for the simple line algorithm

 Give pseudocode for the midpoint line algorithm

 Explain the advantages of the midpoint algorithm over the simple one

 Define antialiasing and how it applies to drawing lines.

Music: https://www.bensound.com

https://www.bensound.com/

	CSC 240 Computer Graphics�Lecture 2: Line Algorithms
	Line Algorithm
	Why Lines?
	Math vs. Graphics
	Drawing a Line
	Drawing a Line
	Drawing a Line
	Drawing a Line
	Simple Line Algorithm
	Simple Line Algorithm
	Math for Lines
	Questions
	Drawing a Line
	Another Line
	Line Drawing Cases (Simple Algorithm)
	Questions
	Midpoint Algorithm
	Midpoint Algorithm
	Math for Lines (2)
	Midpoint Algorithm
	Midpoint Algorithm
	Midpoint Algorithm
	Incremental Midpoint Algorithm*
	Incremental Midpoint Algorithm
	Incremental Line Drawing Cases
	Questions
	Antialiasing
	Antialiased Line
	Review

