CSC 240 Computer Graphics
Video 17: Hidden Surface Removal
& Blender Basics

Nick Howe
Smith College

Some slides & content courtesy Sara Mathieson
Hidden Surface Removal

Given some scene geometry and camera viewpoint, in most cases many scene polygons will not be visible.

- Why?
 - Outside view frustum (behind camera, offscreen, far away)
 - Facing away from camera
 - Occluded by other objects

https://www.artstation.com/artwork/9Kx5R
Hidden Surface Removal

Occlusion culling = rough but drastic occlusion handling

- Rule out occluded objects; don’t even try rendering

https://docs.unity3d.com/560/Documentation/Manual/OcclusionCulling.html
Hidden Surface Removal

View frustum culling uses geometry to weed out polygons

- Too near or far: compare z value to clipping planes
 Q. Why have both near and far clipping planes?

- Top/bottom/left/right: compute projected coordinates, then run 2D clipping algorithm
Hidden Surface Removal

Backface culling skips polygons that face away from view

- How to quickly check?
 - Sign of dot product: surface normal with camera normal $\hat{p} \cdot \hat{c} < 0$
 - **Winding order**: points are counter-clockwise in projection
Hidden Surface Removal

Occlusion handling is critical to correct rendering

- Surfaces that are behind others should not be visible!

- Two simple ways to achieve:
 - **Painter’s Algorithm**
 Renders polygons by distance from camera (farthest first)
 - **Z-Buffering**
 Records z coordinate for all pixels; only overwrites if closer

Pros & cons?

- Faster
- Fine-grained

https://www.videoblocks.com/video/3d-wireframe-buildings-over-black-background-p9qls7t
Hidden Surface Removal

Z-Buffering uses an extra image plane holding z values

- Each pixel draw checks its z value against the buffer
 - Only draws if z is greater (closer to camera)
 - Updates buffer with new value during draw (in hardware)

"Z buffer" https://commons.wikimedia.org/wiki/
Hidden Surface Removal

What will be the rendered image and z-buffer?
(Assume orthographic projection of this 2D scene.)

- Render in this order: red, yellow, green, blue

Render: yellow, red, green, black
Z-buffer: -7, -3, -1, -1, -99
Z Fighting

Overlapping polygons at the same z value can interfere with each other.

- Z buffer cannot distinguish which is in front \(\rightarrow\) unpredictable result!

- Two possible causes:
 - Polygons actually at same position (solve via model change)
 - Polygons separated by less than Z buffer resolution

- Possible solutions:
 - Increase Z resolution – less separation between near and far clip
 - Post-projection offset

```javascript
var material = new THREE.MeshLambertMaterial({
  polygonOffset: true,
  polygonOffsetFactor: -1.0,
  polygonOffsetUnits: -4.0
});
```
Questions

1. Why is z-buffering generally preferred to the painter’s algorithm?
 It runs faster and handles partial overlap

2. Give the z-buffer at right, list the shapes from nearest to farthest.
 Pentagon, triangle, star, diamond, circle

3. Suppose that the camera is pointing in the –z direction. What has to be true of the normal vectors of polygons eliminated via backface culling?
 *They must have positive z components: \(\mathbf{\hat{c}} = (0,0,-1), \mathbf{\hat{p}} = (x, y, z) \Rightarrow \mathbf{\hat{p}} \cdot \mathbf{\hat{c}} = 0x + 0y - 1z = -z \)
 This is less than zero only if z is positive.
Why Blender?

Blender is a digital art tool, not a programming tool. So why study it in a computer science class?

- It offers a platform for experimenting with geometry, texture, ray tracing, and other topics we have studied.
- It facilitates the creation of 3D models for use in programmed environments.

Our use of Blender will focus mostly on these topics. We will not study many advanced features.

Consider taking an ARS digital art course to learn more!
Blender Orientation

Blender is a tool for developing high-quality 3D models.
Blender Basic Controls

Before you can interact with objects, you need to be able to view them.

Pan
- Translate the point of view
 - **Shift+Drag MMB / Shift-Alt-Drag**

Orbit
- Rotate the point of view around center of scene
 - **Drag MMB / Alt-Drag**

Zoom
- Move the point of view in and out
 - **Ctrl+Drag MMB / Ctrl-Alt-Drag**
Editing in Blender

Many details; some basic principles

- Many changes (scale, translate, rotate, etc.) controlled by mouse
- Type \(x \), \(y \), or \(z \) during edit operation to restrict to one axis
- Type \(X \), \(Y \), or \(Z \) during edit operation to restrict to two axes axis
- Type a number during edit operation to choose a precise value

- Other tricks we will learn during labs
Rendering in Blender

- Process of turning 3D scene into 2D image
- For animated films, it can take hours to render a single frame
- Important steps:
 - Camera placement
 - Lighting
 - Materials
 - Render with low quality settings, repeat above steps
 - Render with high quality settings

https://www.amazon.com/Disney-Pixar-Talking-Amazon-Exclusive/dp/B01B7OY2M4
Exporting from Blender

Objects and scenes built in Blender can be saved in a file for use elsewhere

- Many file formats out there
- Support growing for GLTF (*Graphics Language Transmission Format*)
- Online archives of free 3D models
Questions

1. Have you downloaded and installed Blender yet?
 If not, you should do so before Monday’s class.

2. Outline how you could scale an object in Blender to three times its size along the x and y axes, but hold it steady in z.
 Select the scale tool and begin a mouse drag. Type Z then 3.

3. Find the URL of an online source of free 3D models
 Examples include free3D.com, archive3D.net, artist-3d.com, etc.
 Some government agencies provide public domain 3D models related to their operations, including the [Smithsonian](https://www.smithsonian.gov), [NASA](https://www.nasa.gov), and more.
Review

After watching this video, you should be able to…

- List three major strategies for hidden surface removal
- Identify polygons outside the view or that face away from a camera
- Understand the z buffering algorithm and its limitations
- Apply offsets in Three.js to mitigate z fighting
- Perform basic operations in Blender
- Work with models from 3D archives

Music: https://www.bensound.com