
CSC 240 Computer Graphics
Video 16: More Mapping

Nick Howe
Smith College

Some slides & content courtesy Sara Mathieson

Perspective-Correct Texture Mapping
Simple interpolation of textures produces weird artifacts! Why?

 Perspective makes x & y shrink, but not z

 Solution: Need to adjust for z coordinate as we interpolate u,v

http://www.lysator.liu.se/~mikaelk/doc/perspectivetexture/https://en.wikipedia.org/wiki/Texture_mapping

Camera:
(0,0,0)

Viewport

x1

xo

1
z0

z1

po

p1

Perspective Correct Texture Mapping

Equally spaced texture
receding in space

When projected onto viewport,
texture should vary in size

This span is smaller

This span is bigger

If we interpolate in viewport
pixels, texture will look wrong!

Perspective Correct Texture Mapping
Values that are linear in screen coordinates: 1

𝑧𝑧
, 𝑢𝑢
𝑧𝑧
, 𝑣𝑣
𝑧𝑧

 Interpolate these, then use to compute u and v

𝑢𝑢∗ =
𝛼𝛼𝑢𝑢1𝑧𝑧1

+𝛽𝛽𝑢𝑢2𝑧𝑧2
+𝛾𝛾𝑢𝑢3𝑧𝑧3

𝛼𝛼 1
𝑧𝑧1
+𝛽𝛽 1

𝑧𝑧2
+𝛾𝛾 1

𝑧𝑧3

, 𝑣𝑣∗ =
𝛼𝛼𝑣𝑣1𝑧𝑧1

+𝛽𝛽𝑣𝑣2𝑧𝑧2
+𝛾𝛾𝑣𝑣3𝑧𝑧3

𝛼𝛼 1
𝑧𝑧1
+𝛽𝛽 1

𝑧𝑧2
+𝛾𝛾 1

𝑧𝑧3

 This gives perspective-correct values for 𝑢𝑢, 𝑣𝑣

 Automatic in modern graphics

 Similar form for scanline interpolation

Barycentric
interpolation of 𝑣𝑣

𝑧𝑧

Barycentric
interpolation of 1

𝑧𝑧

Questions
1. Suppose you have a graphics system with texture mapping that doesn’t

correct for perspective. Under what circumstances would it still produce
the correct result for a given polygon?

If all corners of the polygon have the same depth (𝑧𝑧 value).

2. Suppose that 𝛼𝛼 = 0.5,𝛽𝛽 = 0.5, 𝛾𝛾 = 0 for point 𝑝𝑝. Also 𝑢𝑢1 = 1, 𝑧𝑧1 = 1,
𝑢𝑢2 = 2, 𝑧𝑧2 = 2, 𝑢𝑢3 = 3, and 𝑧𝑧3 = 3. What is the uncorrected value of 𝑢𝑢𝑝𝑝?

𝑢𝑢𝑝𝑝 = 𝛼𝛼𝑢𝑢1 + 𝛽𝛽𝑢𝑢2 + 𝛾𝛾𝑢𝑢3 = 0.5 � 1 + 0.5 � 2 + 0 � 3 = 1.5

3. What is the corrected value?

𝑢𝑢∗ =
𝛼𝛼 𝑢𝑢1𝑧𝑧1

+ 𝛽𝛽 𝑢𝑢2𝑧𝑧2
+ 𝛾𝛾 𝑢𝑢3𝑧𝑧3

𝛼𝛼 1
𝑧𝑧1

+ 𝛽𝛽 1
𝑧𝑧2

+ 𝛾𝛾 1
𝑧𝑧3

=
0.5 1

1 + 0.5 2
2 + 0 3

3
0.5 1

1 + 0.5 1
2 + 0 1

3
=

1.0
0.75 = 1.33

PAUSE NOW & ANSWER

Normal Mapping
Texture (pixel color) isn’t the only thing we can interpolate.

 For realistic shading of rough surfaces, use a normal map
 Surface normal vectors are stored as RGB image
 Red component, 0-255 X coordinate, -1 to +1
 Green component, 0-255 Y coordinate, -1 to +1
 Blue component, 128-255 Z coordinate, 0 to +1

E.g.: (128,128,255) (0,0,1) - points towards viewer

 Combine normal vectors from map with
geometry to get light-dependent shading

 Derive map from high-poly render

wikipedia

Normal map

Rendered surfaceHigh-poly render

𝑥𝑥 =
𝑟𝑟

127.5 − 1

𝑦𝑦 =
𝑔𝑔

127.5 − 1

𝑧𝑧 =
𝑏𝑏

127.5 − 1

Bump Mapping
Bump map is an alternative to a normal map.

 Single value at each point: texture height (stored as grayscale image)

 Normal vectors can be inferred form height changes between pixels

 1/3 the storage of RGB normal map

 Somewhat less flexible

 Pick one or the other –
they do similar things

wikipedia

Normal Mapping Demo
Easy to add a texture map in Three.js:

cubeNormMaterial.map = loader.load("StoneWallTexture.png");
cubeNormMaterial.bumpMap = loader.load("StoneWallBump.png");
cubeNormMaterial.normalMap = loader.load("StoneWallNormals.png");
//…
bumpCube.material.bumpScale = 0.5;

Questions
1. Does using a bump map change the location where a pixel is drawn,

based on the height stored in the bump map?
No, the pixel is still drawn in the same place. Only the shading changes.

2. Which of the following can alter the shading of a pixel?
a. Changing the polygon vertex coordinates (geometry)
b. Changing the light position
c. Changing the normal map

3. What is the normal vector represented by the RGB triplet (174,66,230)?
174

127.5 − 1,
66

127.5 − 1,
230

127.5 − 1 = (0.36,−0.48,0.80)

PAUSE NOW & ANSWER

All of the above

Shadow Mapping

Shadow Mapping
How can we render shadows of objects on other objects?

 Tricky problem: interactions = (number of objects)2

 Reframe the problem: what surfaces are visible from a light source?

Shadow Mapping
Step one: Render scene as though light source is camera
 Only need depth – no lighting, texture
 (Use orthographic projection in case of directional light, perspective otherwise)

View from camera View from light

wikipedia

Shadow Mapping
Step two: Figure out shadow map
 Render from camera, computing world (𝑥𝑥,𝑦𝑦, 𝑧𝑧) for each visible point
 Convert (𝑥𝑥,𝑦𝑦, 𝑧𝑧) to light’s camera frame (transformation matrix)
 Compare depth of camera-visible point to light-visible point
 Roughly the same 𝑧𝑧: pixel is lit
 Significant difference: pixel is in shadow

wikipediaDepth map from light view Depth mismatch

White areas indicate
places where point seen
by camera is not visible

to light: shadows!

Shadow Mapping Example

(-2,2)

(1,5)

(-1,9)

(2,6) (2,2)

1. Render scene from light.

2. Record z at each point

3. Render scene from camera

4. Record (x,z) at each point

5. Convert (x,z) to light’s
frame of reference

6. Compare to stored z values

(-1,9)

No shadow!

Shadow!

2D example (XZ plane)
orthographic projection

Shadow Mapping
Final step is to render scene with shadow

 Can treat shadow as a texture!

 Older way: render whole image with & without light; choose by pixel

wikipedia

Base render Shadow pixels Final render

Shadow Mapping in Three.js
Shadows must be enabled in several places in three.js:

1. Renderer must be told to render shadows

2. Lights must be told to cast shadows

3. Objects must be told to cast & receive shadows

4. Object material must be compatible with shadows

renderer.shadowMap.enabled = true;
renderer.shadowMap.type = THREE.PCFSoftShadowMap;

obj.castShadow = true;
obj.receiveShadow = false;

light.castShadow = true;

var material = new THREE.MeshPhongMaterial({ map: myTexture });

Shadow mapping
Demo: https://threejs.org/examples/webgl_shadowmap.html

https://threejs.org/examples/webgl_shadowmap.html

Questions
1. Which sort of projection is necessary to compute shadows for the following

types of light source?
a. PointLight
b. AmbientLight
c. DirectionalLight

2. In my Three.js program, I have turned shadows on in the renderer, told my
objects to send and receive shadows, and used a shadow-compatible
material. Shadows still aren’t showing up. What did I forget?

The light must also be told to cast shadows.

PAUSE NOW & ANSWER

Perspective projection
None (ambient light casts no shadows)
Orthographic projection

Review
After watching this video you should be able to…

 Explain the need for perspective correction in texture mapping

 Compute perspective-corrected UV coordinates

 Understand the normal map and bump map formats

 Use normal maps and/or bump maps to produce textured shading effects

 Describe the shadow mapping algorithm

 Carry out shadow computations in a simple model

Music: https://www.bensound.com

https://www.bensound.com/

	CSC 240 Computer Graphics�Video 16: More Mapping
	Perspective-Correct Texture Mapping
	Perspective Correct Texture Mapping
	Perspective Correct Texture Mapping
	Questions
	Normal Mapping
	Bump Mapping
	Normal Mapping Demo
	Questions
	Shadow Mapping
	Shadow Mapping
	Shadow Mapping
	Shadow Mapping
	Shadow Mapping Example
	Shadow Mapping
	Shadow Mapping in Three.js
	Shadow mapping
	Questions
	Review

