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Due: Thursday, April 1 at 11:59 pm (on Moodle) 
 
 

• This is a take-home exam with unlimited time from when it is out to when it is due.  I 
don’t expect you to work on it the entire time; it should take you just a few hours. 

• It is open-notes, so you may use any course materials. If you use any online resources 
that haven't been part of this class, please cite them explicitly. 

• You may not communicate or consult about the exam with anyone in the class (or outside 
the class, including requesting help by posting questions on the internet). 

• You can post privately on Piazza if you need clarification on any question. If there is a 
clarification I think should be made to the entire class, I'll make the post public. 

• I will still have office hours as usual, but I might not say much about the exam! 
• Turn in your exam electronically on Moodle.  (You may scan handwritten work.) 
• If you are unable to make progress on any part of the exam, tell me what you tried: 

describe your thought process.  I may be able to grant partial credit. 
• When your exam is complete, before submitting it, please copy, sign, and date the 

statement below: 
“I certify that my work on this exam adheres to the Smith Honor Code and the 
instructions given above.  I have explicitly cited any resources used beyond my own notes 
and the materials available from the course web page.” 
 
 
 
 
 
Signed:         Date: 
 
 

  Name: 
Line drawing /18 
Fill algorithms /16 
Transformation matrices /20 
Animation /10 
Clipping /20 
Bézier splines /16 
Total /100 



Line Drawing (18 points) 

Below are close-up images of portions of a drawing canvas.  For each image, decide whether it could 
have been generated by using each of the algorithms listed below to draw just a single line. 

Algorithms:  (I.) simple midpoint algorithm, (II.) iterative midpoint algorithm, (III.) Wu’s antialiased line. 

 a: I, II, III.  b:  I, II, III.  c:  I, II, III.  d:  none.  e.  III only.  f.  I and II only. 

 Note that I and II produce similar results, at different speeds.  III can produce all black and white 
pixels if the line is perfectly aligned to the grid.  There is no straight line passing through the points of (d). 

 

Fill Algorithms (16 points) 

Your friend is excited to learn about fill algorithms, and proposes two new ones for your consideration. 

Algorithm A is a recursive algorithm.  Instead of using a fixed order for the recursive calls, it always 
makes eight calls in a clockwise order starting from the square it just came from.  So for example, when 
a recursive call is made to the north, the next calls will first try south, then southwest, then west, etc.  If 
a recursive call is made to the west, the next calls will try east, then southeast, etc.  The very first 
recursive call is always made to the north. 

Algorithm B is an iterative sweep algorithm.  When called, it will fill the current row by sweeping left 
then right just as we do in ordinary sweep fill.  Then it will loop from the leftmost extent to the 
rightmost just as in ordinary sweep fill, but instead of making recursive calls it will instead do an iterative 
vertical sweep, filling up and then down until it hits a boundary.  After each vertical sweep, it makes a 
recursive call to the left and the right at the very top, and again at the very bottom (but not at any pixels 
in the middle). 

Your friend wants to know what you think of these ideas.  Please answer for each algorithm: 

a.) Will it produce the same end result as the fill algorithms we have studied? 
Algorithm A will give the same end result as the usual recursive fill.  Algorithm B will sometimes 
fail to fill the entire shape. 



b.) If not, describe the case(s) where the outcome differs.  What sort of shapes give a different 
result? 
Shapes with indentations on the left or right sides will not fill completely with Algorithm B. 
 

c.) How many recursive calls would each algorithm make to fill a 100x100 square region? 
Algorithm A will make 8 calls per pixel filled, for a total of 80,000 but 70,000 return immediately. 
Algorithm B will end up making four per row, for a total of 400 but 300 return immediately. 

d.) Compare your answer above to the number of recursive calls made by the two algorithms we 
studied. 
Algorithm A will make the same number of recursive calls as the standard 8-connected recursive 
algorithm, or twice as many as the 4-connected algorithm.  Algorithm B will make fewer calls, 
since our standard sweep fill uses two per square filled (above and below each pixel). 

 

Transformation Matrices (20 points) 

Give the 2D transformation matrix that would accomplish each transformation shown below.  (Hint:  you 
can compose them out of the basic transformation types we studied.)  Use homogeneous coordinates.  
The grid squares shown are all 1x1, and the Y axis is normal (not inverted as in screen coordinates).  The 
black axis lines cross at the origin. 

 

a.) �
0.5 0 −3
0 0.5 −3
0 0 1

� b.) �
0 −1.5 3

0.25 0 −3
0 0 1

� 

 

c.) �
−0.5 −0.5 3
0.5 −0.5 3
0 0 1

� d.) �
−1 0 4
1 1 −4
0 0 1

� e.) �
2 0 −4
0 −2 4
0 0 1

� 



 

 

 

Animation (10 points) 

In words, describe how you could use transformation matrices in conjunction with the HTML5 canvas 
graphics we have studied, to create an animation of a ball rolling across the screen from left to right.  
Make sure you specify the initial setup, and what happens during the animation.  You don’t need to give 
numbers, but you should be as specific as possible about what types of transformations are used, the 
order they are applied, and any other relevant details. 

The ball will be rendered using a combination of translation and rotation.  We set an initial translation 
for the starting position of the ball, perhaps offscreen to the left.  The rotation matrix can begin as the 
identity.  At each step of the animation we update the translation matrix by applying a small rightward 
translation, and we update the rotation matrix by applying a small clockwise rotation.  We draw the ball 
by applying the translation first, then the rotation, before drawing.  Afterwards we undo both 
transformations so that the new time we draw the ball we are starting from scratch. 

Note that we cannot alternately apply translation and rotation increments because the ball would not 
then travel in a straight line. 

 

Clipping (20 points) 

The drawing canvas is 80 pixels tall by 120 pixels wide.   A triangle ABC is to be drawn with its corners at 
A = (-18,95), B = (32,-30), and C = (132,70).   

a.) Assuming that the clipping order is (top, bottom, right, left), draw the polygon after each stage 
of the Sutherland-Hodgman clipping algorithm.   

b.) Compute coordinates for all the corners of the polygon once it is clipped to fit the screen. 
Clockwise from bottom left corner:  (0,80), (0,50), (20,0), (62,0), (120,58), (120,72), (72,80) 

 

 

  



Bézier Splines (16 points) 

Consider the spline with control points (in sequential order): (0,1), (4,1), (1,4), (1,0). 

a.) Compute the (x,y) coordinates of three points on the curve, at t = 0.2, t = 0.5, 
and t = 0.8. 
(1.64, 1.28), (2, 2), and (1.28, 1.64) 
We use the equation 𝑝𝑝 = (1 − 𝑡𝑡)3𝑝⃗𝑝0 + 3𝑡𝑡(1 − 𝑡𝑡)2𝑝𝑝1 + 3𝑡𝑡2(1− 𝑡𝑡)𝑝𝑝2 + 𝑡𝑡3𝑝𝑝3 

b.) Draw a sketch of this curve.   See figure at right. 
c.) The curve section mentioned is parameterized from t = 0 to t = 1.  Suppose we want to 

extrapolate.  What are the coordinates of the point at t = -1?  At t = 2? 
(-43,20) and (20,-43) 
This also uses 𝑝𝑝 = (1 − 𝑡𝑡)3𝑝𝑝0 + 3𝑡𝑡(1 − 𝑡𝑡)2𝑝⃗𝑝1 + 3𝑡𝑡2(1− 𝑡𝑡)𝑝𝑝2 + 𝑡𝑡3𝑝𝑝3 

d.) You want to extend the spline by adding another section.  The new section should connect 
smoothly to the first at (1,0) and be a mirror image of it.  What are the control points (in 
sequential order) of the new section? 
(1,0), (1,-4), (4,-1), (0,-1) 
For smoothness, the new curve needs to start at (1,0) and have its second control point collinear 
with (1,4).  This gives (1,-4).  The remaining points are determined by symmetry. 


