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• This is a take-home exam with unlimited time from when it is out to when it is due. 
• It is open-notes, so you may use any course materials. If you use any online resources 

that haven't been part of this class, please cite them explicitly. 
• You may not communicate or consult about the exam with anyone in the class (or outside 

the class). However, you can email me if you need clarification. 
• If there is a clarification I think should be made to the entire class, I'll post it on Piazza. 
• I will still have office hours as usual, but I might not say much about the exam! 
• Turn in your exam by scanning it and submitting on Moodle. 
• If you are unable to make progress on any part of the exam, tell me what you tried: 

describe your thought process. 
• When your exam is complete, before submitting it, please copy, sign, and date the 

statement below: 
“I certify that my work on this exam adheres to the Smith Honor Code and the 
instructions given above.  I have explicitly cited any resources used beyond my own notes 
and the materials available from the course web page.” 
 
 
 
 
 
 
Signed:         Date: 
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Part 1:  Line Drawing (20 points) 
 
Suppose that we would like to adapt our basic line-drawing algorithm to draw circles.  
The equation of  circle is (𝑥𝑥 − 𝑥𝑥𝑐𝑐)2 + (𝑦𝑦 − 𝑦𝑦𝑐𝑐)2 = 𝑟𝑟2 where (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) is the center and 𝑟𝑟 
is the radius.  This can be solved for either 𝑥𝑥 or 𝑦𝑦 as necessary:  

𝑥𝑥 = 𝑥𝑥𝑐𝑐 ± �𝑟𝑟2 − (𝑦𝑦 − 𝑦𝑦𝑐𝑐)2 
𝑦𝑦 = 𝑦𝑦𝑐𝑐 ± �𝑟𝑟2 − (𝑥𝑥 − 𝑥𝑥𝑐𝑐)2 

 
a.) Explain how our basic line-drawing algorithm could be adapted to draw a circle by 

splitting it into four segments and using the equations above. 
b.) How exactly should the circle be split into segments?  Identify the endpoints, and 

explain why they make sense. 
 
 
Part 2:  Fill Algorithms (20 points) 
 
Consider the flood fill algorithm presented below, and answer the questions that follow. 
 
    function floodFill(x, y, oldColor) { 
        // note that this returns [R,G,B,A] 
        var pixColor = getPixel(x,y); 
        if (colorEqual(oldColor,pixColor)) { 
            fillPixel(x,y); 
            floodFill(x+1, y, oldColor); 
            floodFill(x-1, y, oldColor); 
            floodFill(x, y+1, oldColor); 
            floodFill(x, y-1, oldColor); 
        } 
    } 
 
a.) Number the pixels in the figure in the 

order they would be colored by this 
function, starting at the square indicated 
by the letter S.  Assume that the positive 
y axis points downwards. 
 
 

b.) Write a simple modification to the 
function so that it performs an 8-
connected fill. 
 

 
 
 

S 



 
 
 
 
 
 
 

Part 3:  Transforms (20 points) 
 
In Homework #3 we learned that some transformation types don’t commute.  For 
example, in general translation and rotation do not commute with each other; 𝑇𝑇𝑇𝑇 ≠ 𝑇𝑇𝑇𝑇.  
However, that does not mean that we cannot find some other translation to be performed 
after the rotation that will give us the same end result. 
 

a.) Let 𝑇𝑇 = �
0.8 −0.6 0
0.6 0.8 0
0 0 1

� and 𝑇𝑇 = �
1 0 −10
0 1 15
0 0 1

�.  Find a new translation matrix 𝑈𝑈 =

�
1 0 𝑢𝑢𝑥𝑥
0 1 𝑢𝑢𝑦𝑦
0 0 1

� such that 𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑈𝑈. 

b.) Suppose that 𝑇𝑇 = �
1 0 𝑡𝑡𝑥𝑥
0 1 𝑡𝑡𝑦𝑦
0 0 1

� and 𝑆𝑆 = �
𝑠𝑠𝑥𝑥 0 0
0 𝑠𝑠𝑦𝑦 0
0 0 1

�.  Find a new translation matrix 

𝑈𝑈 = �
1 0 𝑢𝑢𝑥𝑥
0 1 𝑢𝑢𝑦𝑦
0 0 1

� such that 𝑇𝑇𝑆𝑆 = 𝑆𝑆𝑈𝑈.  (Answer in terms of 𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦, 𝑠𝑠𝑥𝑥, and 𝑠𝑠𝑦𝑦.) 

, 
 
 
Part 4:  Line Clipping (20 points) 
 
Suppose that the Delta Display Corporation has just come out with a new product:  
triangular screens!  You have been asked to adapt the Cohen-Sutherland line clipping 
algorithm for their new Delta3 display.  It has the shape of 
an inverted isosceles triangle, 1000 pixels wide at the top 
and 1000 pixels tall.  The screen area is bounded by the 
lines 𝑦𝑦 = 0, 𝑦𝑦 = 2𝑥𝑥, and 𝑦𝑦 = 2000 − 2𝑥𝑥.  The positive y 
axis points downwards. 
 
a.) Propose a region-labeling technque similar to the 4-bit 

labels used by Cohen-Sutherland.  Give a specific list of 
steps used to determine whether a line segment needs to 
be clipped.  How does your method differ from Cohen-
Sutherland? 

b.) Demonstrate how your method would clip the line segment with endpoints (100,-200) 
and (800,1200).  Show both your work and your final answer. 

 



 
 
Part 5:  Bézier Curves and Splines (20 points) 
 
Identify any errors in computing the Bézier curve points as stated below.  If there are no 
errors, indicate that the sample is error-free.  (For each item, you may assume that all 
calls to subfunctions such as bezier1, bezier2, etc. return correct values.) 
 

a.)  // computes a linear Bezier point 
    function bezier1a(t, p0, p1) { 
        p = [(1-t)*p0[0]+t*p0[1], (1-t)*p1[0]+t*p1[1]];         
        return p; 
    } 
 
b.)  // computes a quadratic Bezier point 
    function bezier2b(t, p0, p1, p2) { 
        q1 = bezier1(t, p0, p1); 
        q2 = bezier1(t, q1, p2); 
        p = bezier1(t, p1, q2); 
        return p; 
    } 
 
c.)  // computes a quadratic Bezier point 
    function bezier2c(t, p0, p1, p2) { 
        q1 = bezier1(1-t, p1, p0); 
        q2 = bezier1(1-t, p2, p1); 
        p = bezier1(1-t, q2, q1); 
        return p; 
    } 
 
d.)  // computes a cubic Bezier point 
    function bezier3d(t, p0, p1, p2, p3) { 
        q1 = bezier2(t, p0, p1, p2); 
        q2 = bezier1(t, p1, p2); 
        q3 = bezier1(t, p2, p3); 
        q4 = bezier1(t, q2, q3); 
        p = bezier1(t, q1, q4); 
        return p; 
    } 

 
 
 

 


