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• This is a take-home exam with unlimited time from when it is out to when it is due. 
• It is open-notes, so you may use any course materials. If you use any online resources 

that haven't been part of this class, please cite them explicitly. 
• You may not communicate or consult about the exam with anyone in the class (or outside 

the class). However, you can email me if you need clarification. 
• If there is a clarification I think should be made to the entire class, I'll post it on Piazza. 
• I will still have office hours as usual, but I might not say much about the exam! 
• Turn in your exam by scanning it and submitting on Moodle. 
• If you are unable to make progress on any part of the exam, tell me what you tried: 

describe your thought process. 
• When your exam is complete, before submitting it, please copy, sign, and date the 

statement below: 
“I certify that my work on this exam adheres to the Smith Honor Code and the 
instructions given above.  I have explicitly cited any resources used beyond my own notes 
and the materials available from the course web page.” 
 
 
 
 
 
 
Signed:         Date: 
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Part 1:  Line Drawing (20 points) 
 
Suppose that we would like to adapt our basic line-drawing algorithm to draw circles.  
The equation of  circle is (𝑥𝑥 − 𝑥𝑥𝑐𝑐)2 + (𝑦𝑦 − 𝑦𝑦𝑐𝑐)2 = 𝑟𝑟2 where (𝑥𝑥𝑐𝑐,𝑦𝑦𝑐𝑐) is the center and 𝑟𝑟 
is the radius.  This can be solved for either 𝑥𝑥 or 𝑦𝑦 as necessary:  

𝑥𝑥 = 𝑥𝑥𝑐𝑐 ± �𝑟𝑟2 − (𝑦𝑦 − 𝑦𝑦𝑐𝑐)2 
𝑦𝑦 = 𝑦𝑦𝑐𝑐 ± �𝑟𝑟2 − (𝑥𝑥 − 𝑥𝑥𝑐𝑐)2 

 
a.) Explain how our basic line-drawing algorithm could be adapted to draw a circle by 

splitting it into four segments and using the equations above. 
The first equation gives you x in terms of y, so you could loop over the y values and 
compute the corresponding x.  The second gives you y in terms of x, so you could loop 
over the x values and compute y. 

b.) How exactly should the circle be split into segments?  Identify the endpoints. 
The circle should be split at the diagonal corners, (𝑥𝑥𝑐𝑐 ± √𝑟𝑟 ,𝑦𝑦𝑐𝑐 ± √𝑟𝑟) because these 
are the points where the slope changes from less than 1 to more than one.  The 
horizontal sections will be filled in by looping from 𝑥𝑥𝑐𝑐 − √𝑟𝑟 to 𝑥𝑥𝑐𝑐 + √𝑟𝑟 using the 
equation(s) for y in terms of x, and the vertical sections will be filled in by loopiong 
from 𝑦𝑦𝑐𝑐 − √𝑟𝑟 to 𝑦𝑦𝑐𝑐 + √𝑟𝑟 using the equation(s) for x in terms of y.  Note that the 
choice of ± as positive or negative corresponds to which part of the circle is drawn. 

 
Part 2:  Fill Algorithms (20 points) 
 
Consider the flood fill algorithm presented below, and answer the questions that follow. 
 
    function floodFill(x, y, oldColor) { 
        // note that this returns [R,G,B,A] 
        var pixColor = getPixel(x,y); 
        if (colorEqual(oldColor,pixColor)) { 
            fillPixel(x,y); 
            floodFill(x+1, y, oldColor); 
            floodFill(x-1, y, oldColor); 
            floodFill(x, y+1, oldColor); 
            floodFill(x, y-1, oldColor); 
        } 
    } 
 
 
a.) Number the pixels in the figure in the order they 

would be colored by this function, starting at the 
square indicated by the letter S. 
See diagram. 
 

b.) Write a simple modification to the function so that it 
performs an 8-connected fill. 

25 18 19 20 
24 16 17 21 22 

15 23 
14 13 12 8 
0 1 2 3 4 5 

11 10 9 7 6 



Add the following lines right after the four calls to floodFill: 
         floodFill(x+1, y+1, oldColor); 

            floodFill(x-1, y-1, oldColor); 
            floodFill(x-1, y+1, oldColor); 
            floodFill(x+1, y-1, oldColor); 

 
 

Part 3:  Transforms (20 points) 
 
In Homework #3 we learned that some transformation types don’t commute.  For 
example, in general translation and rotation do not commute with each other; 𝑇𝑇𝑇𝑇 ≠ 𝑅𝑅𝑅𝑅.  
However, that does not mean that there exists no combination of rotation followed by 
translation that will give us the same end result. 
 

a.) Let 𝑅𝑅 = �
0.8 −0.6 0
0.6 0.8 0
0 0 1

� and 𝑇𝑇 = �
1 0 −10
0 1 15
0 0 1

�.  Find a new translation matrix 𝑈𝑈 =

�
1 0 𝑢𝑢𝑥𝑥
0 1 𝑢𝑢𝑦𝑦
0 0 1

� such that 𝑇𝑇𝑇𝑇 = 𝑅𝑅𝑅𝑅. 

 
𝑢𝑢𝑥𝑥 = 1 and 𝑢𝑢𝑦𝑦 = 18 

b.) Suppose that 𝑇𝑇 = �
1 0 𝑡𝑡𝑥𝑥
0 1 𝑡𝑡𝑦𝑦
0 0 1

� and 𝑆𝑆 = �
𝑠𝑠𝑥𝑥 0 0
0 𝑠𝑠𝑦𝑦 0
0 0 1

�.  Find a new translation matrix 

𝑈𝑈 = �
1 0 𝑢𝑢𝑥𝑥
0 1 𝑢𝑢𝑦𝑦
0 0 1

� such that 𝑇𝑇𝑇𝑇 = 𝑆𝑆𝑆𝑆. 

 
𝑢𝑢𝑥𝑥 = 𝑡𝑡𝑥𝑥 𝑠𝑠𝑥𝑥⁄  and 𝑢𝑢𝑦𝑦 = 𝑡𝑡𝑦𝑦 𝑠𝑠𝑦𝑦⁄  
 

 
 
Part 4:  Line Clipping (20 points) 
 
Suppose that the Delta Display Corporation has just come out with a new product:  
triangular screens!  You have been asked to adapt the Cohen-Sutherland line clipping 
algorithm for their new Delta3 display.  It has the shape of 
an inverted isosceles triangle, 1000 pixels wide at the top 
and 1000 pixels tall.  The screen area is thus bounded by 
the lines 𝑦𝑦 = 0, 𝑦𝑦 = 2𝑥𝑥, and 𝑦𝑦 = 2000 − 2𝑥𝑥. 
 
a.) Propose a region-labeling technque similar to the 4-bit 

labels used by Cohen-Sutherland.  Give a specific list of 
steps used to determine whether a line segment needs to 
be clipped.  How does your method differ from Cohen-



Sutherland? 
We will need a three-bit code because there are three bounding lines on our screen.  
Let’s order them top, left, right.  The first bit will be 1 iff y<0.  The second bit will be 
1 iff y>2x.  The third bit will be 1 iff y>2000-2x.  As with Cohen-Sutherland, 
comparing the bit strings of the endpoints reveals whether the segment needs to be 
analyzed more closely. 

b.) Demonstrate how your method would clip the line segment with endpoints (100,-200) 
and (800,1200).  Show both your work and your final answer. 
Code for first is 100.  Code for second is 001.  Must perform intersections.  Equation 
of our line is 𝑦𝑦 + 200 =  1200−(−200)

800−100
(𝑥𝑥 − 100), or 𝑦𝑦 = 2𝑥𝑥 − 400. 

Intersection with 𝑦𝑦 = 0:  x = 200 
Intersection with 𝑦𝑦 = 2000 − 2𝑥𝑥:  x = 600, y = 800 
Cropped segment goes from (200,0) to (600,800) 
 

 
 
Part 5:  Bézier Curves and Splines (20 points) 
 
Identify any errors in computing the Bézier curve points as stated below.  If there are no 
errors, indicate that the sample is error-free.  (For each item, you may assume that all 
calls to subfunctions such as bezier1, bezier2, etc. return correct values.) 
 

a.)  // computes a linear Bezier point 
    function bezier1a(t, p0, p1) { 
        p = [(1-t)*p0[0]+t*p0[1], (1-t)*p1[0]+t*p1[1]];         
        return p; 
    } 
Incorrect combination of variable names and subscripts; should be  
p = [(1-t)*p0[0]+t*p1[0], (1-t)*p0[1]+t*p1[1]]; 
 
b.)  // computes a quadratic Bezier point 
    function bezier2b(t, p0, p1, p2) { 
        q1 = bezier1(t, p0, p1); 
        q2 = bezier1(t, q1, p2); 
        p = bezier1(t, p1, pq); 
        return p; 
    } 
Incorrect; q1 used in place of p1 and vice versa 
 
c.)  // computes a quadratic Bezier point 
    function bezier2c(t, p0, p1, p2) { 
        q1 = bezier1(1-t, p1, p0); 
        q2 = bezier1(1-t, p2, p1); 
        p = bezier1(1-t, q2, q1); 
        return p; 



    } 
Correct; inversion of point order compensates for use of 1-t. 
 
d.)  // computes a cubic Bezier point 
    function bezier3d(t, p0, p1, p2, p3) { 
        q1 = bezier2(t, p0, p1, p2); 
        q2 = bezier1(t, p1, p2); 
        q3 = bezier1(t, p2, p3); 
        q4 = bezier1(t, q2, q3); 
        p = bezier1(t, q1, q4); 
        return p; 
    } 
Correct; quadratic bezier can be computed directly or built according to its definition. 

 
 
 

 


