I. Find an **interleaving** of the steps for the two transactions below that will produce an incorrect result.

T1:	
1.1	READ(A,s)
1.2	s = s+1
1.3	WRITE(A,s)
1.4	READ(B,s)
1.5	s = s-1
1.6	WRITE(B,s)

T2:	
2.1	READ(A,t)
2.2	t = t*1.01
2.3	WRITE(A,t)
2.4	READ(B,t)
2.5	t = t*1.01
2.6	WRITE(B,t)

II. Draw precedence graphs for the schedules below. Then decide which are conflict-serializable. (Note: operations are read, write, and commite; subscripts identify the transaction.) From Michael Böhlen, https://files.ifi.uzh.ch/dbtg/dbs/FS17/ex12/sol12.pdf

A.
$$S_1 = r_3(A), r_2(B), w_2(B), r_1(B), w_3(C), c_3, r_2(D), c_2, r_1(D), c_1$$

B.
$$S_2 = w_3(D)$$
, $r_1(A)$, $w_2(D)$, $w_2(A)$, $w_3(A)$, c_3 , $w_1(C)$, $r_2(D)$, c_2 , c_1

C.
$$S_3 = r_1(X), w_2(X), r_2(x), W_3(x)$$

III. Locking. Is there an interleaving of these transactions that respects locking but isn't serializable?

T1:	
1.1	LOCK(A)
1.2	READ(A,s)
1.3	s = s+1
1.4	WRITE(A,s)
1.5	UNLOCK(A)
1.6	LOCK(B)
1.7	READ(B,s)
1.8	s = s-1
1.9	WRITE(B,s)
1.10	UNLOCK(B)

2.1 LOCK(A)	
2.2 READ(A,t)	
2.3 t = t*1.01	
2.4 WRITE(A,t)	
2.5 UNLOCK(A)	
2.6 LOCK(B)	
2.7 READ(B,t)	
2.8 t = t*1.01	
2.9 WRITE(B,t)	
2.10 UNLOCK(B)	

IV. Timestamps. What is the outcome of the following schedule? Keep track of the metadata.

TS(1	1)	TS(T ₂)	TS(T ₃)	RT(A)	WT(A)	C(A)	RT(B)	WT(B)	C(B)	RT(C)	WT(C)	C(C)

$$S = r_1(A), r_2(B), r_3(C), w_2(B), r_1(B), r_3(B), r_2(C), w_2(C), w_1(A), w_2(B), w_3(C), c_1, c_2, c_3$$