

FINAL EXAMINATION
MAY 2012

CSC 112 ♦ SECTION 01
INSTRUCTOR: NICHOLAS R. HOWE

YOU MAY USE TWO 8.5"x11" SHEETS OF NOTES ON THIS EXAM.
YOU MAY NOT USE THE TEXTBOOK, A COMPUTER, OR ANY OTHER INFORMATION

SOURCE BESIDES YOUR TWO PAGES OF NOTES.

All work should be written in the exam booklet. Partial credit will be granted where appropriate if
intermediate steps are shown. When you are done, please sign the statement below. Good luck!

1. Graph Traversal (12 points)

a.) Consider the directed graph at right. Simulate
Dijkstra’s shortest path algorithm starting at node H.
In your results, give (i) the order in which the nodes
are visited, (ii) all the cost labels computed for each
node as the algorithm runs, and (iii) the homeward
pointing edge associated with each of those costs.
(For example, for node X you might say that the initial
infinite cost was replaced with a cost of 12 via node Y,
then with a cost of 8 via node Z, and finally with a cost
of 7 via node W.)

b.) For which starting nodes could node E appear in
the fourth position of a breadth-first traversal? You
may break ties in any manner you please. For
example, BFAECGDFH is a valid breadth-first traversal
that starts at B and has E in the fourth position, so you
would list B as part of your answer.

2. Trees (12 points)

a.) Consider the tree at right. Draw the tree that would result from a
left-rotation of the root.

b.) List the order in which the tree nodes would be visited in a
postorder traversal (for the original tree).

c.) What changes would you need to make to the original tree, if any,
to make it a valid binary search tree (assuming the ordering relation
on nodes is alphabetical)?

3. Programming (8 points)

Rewrite the snippets of Java code below either to make them
more efficient or more in line with the style guidelines promoted
in this course. The effect should remain unchanged.

a.) b.)

c.)

d.)

4. Hash Tables (12 points)

Consider the hash table shown below, which uses the simple hash function h(k) = k mod 7 and handles
collisions via simple linear probing. Answer the questions that follow.

a.) List all the (key,value) pairs that are not
stored at their home position in the table.

b.) List all the (key,value) pairs which, if
removed, would cause other (key,value) pairs
to change their position.

c.) If the table was initially empty, and the
(key,value) pairs you see were added in some
sequence without any other intervening operations, what can you infer about their relative order of
insertion? List all sets of (key,value) for which you can determine that one must have been inserted
before the other, and give the ordering.

Key Value
49 Tango
13 Alpha

73 Charlie
24 Bravo

20 Foxtrot

5. Program Analysis (16 points)

Give the asymptotic runtime performance (“big-O notation”) of the following sets of operations, in
terms of the problem size n.

a.) All the elements in an unsorted list of length n are added one at a time to a rebalancing binary
search tree (such as a red-black tree).

b.) All the elements in a sorted array of length n are added to an ordinary binary search tree using a
recursive method that adds the middle element of the array at the root, and then recursively builds the
left and right subtrees using the left and right halves of the array.

c.) An unsorted array is converted to a heap in place. Next the heap is shrunk by popping the largest
element and moving it to the vacated point in the
array, as shown in the picture at right.

d.) Given an array of n different integers a0…an-1, a double nested loop examines each pair (ai,aj) to
determine whether they are relatively prime. (Assume for simplicity that testing relative primeness is a
constant-time operation.) The result is a boolean value, which is stored in a hash table using the pair of
numbers as the key.

6. Recursion (12 points)

Consider the recursive method in the box.

a.) What output would be generated by a
call to printRecursive(4)?

b.) How many times in total does
printRecursive get called in the course of executing printRecursive(4)?

c.) If the second recursive call (the last line of the method body) is commented out, what output would
be generated by a call to printRecursive(4)?

7. Abstract Data Types (8 points)

Give the abstract data type description for a list iterator: Describe the operations it must implement,
any data it must keep track of, the effects of the operations on the data, and the inputs and outputs for
the operations. You may omit the operations that modify the list.

8. Inheritance (8 points)

Consider the program at right. For each item
below, write a line of Java code that you
could place within the main() method to
accomplish the task described, or write “not
possible” if no such command exists. Use
casts only when necessary.

a.) Cause n1.toString() to return “Crow Hen”
when called from main().

b.) Cause n1.toString() to return “Robin Hen”
when called from main().

c.) Cause n1.toString() to return “Dove
Velociraptor” when called from main().

d.) Cause n2.toString() to return “Dove
Squirrel Auk Kiwi” when called from main().

e.) Cause n2.toString() to return “Dove Hen
Squirrel Kiwi” when called from main().

f.) Cause n2.toString() to return “Dove
VelociraptorAuk Kiwi” when called from
main().

g.) Cause n2.toString() to return “Dove Hen
Velociraptor Kiwi” when called from main().

h.) Cause n2.toString() to return “Dove Hen
Auk Squirrel” when called from main().

9. Sorting (12 points)

Write a short essay summarizing all the
sorting algorithms we have studied this
semester: their asymptotic runtime, a brief
description of how they work, and any
distinctive features (what kind of extra storage space they require, if any, and whether thay can perform
a stable sort, for example).

