MIDTERM EXAMINATION
CSC 212 ¢ Spring 2017

You may use one double-sided 8.5"x11" sheet of notes on this exam. You may not consult other sources of information. You will
have the entire period (110 minutes) to complete your work. All work should be written in the exam booklet. Partial credit will be
granted where appropriate if intermediate steps are shown.

Vocabulary (16 points)
Define the concepts below, clearly explaining how each element of the pair is related or has something
in common, as well as what is distinct or different.

a.) Declaration vs. assighment
Declaration introduces the name of a variable and specifies its type. Assignment gives a value to
the variable. They may be combined in a single line, e.g., int 1 = 0;

b.) Allocation vs. initialization

Allocation means reserving a block of memory for an object or array. Typically this is in the
context of creating a new object on the heap using new. Initialization means setting up a new
variable or object with its starting value. For an object this task is supposed to be carried out by the
constructor, which automatically gets called when new is invoked.

c.) while loop vs. for loop
Both types of loops can accomplish the same tasks. The for loop bundles together initialization,
continuation, and updates for the loop, whereas the whi le loop only specifies the continuation.

d.) accessor vs. manipulator
Both typically relate to the fields of a class. An accessor returns the value of a field. A
manipulator provides a mechanism to change the value.

e.) nested class vs. subclass

Both are classes somehow related to another class. A nested class is defined within an outer
class, and is used to represent a concept that best makes sense within the context of the outer class.
A subclass inherits fields and methods from its parent class, and is used to represent a refinement or
specialization of the parent class concept.

f.) listener vs. event handler

Both are concepts related to GUI development. A listener is a class that implements one or more
listener interfaces, and can be registered with a GUI element to be notified when events occur. An
event handler is a method within the listener class that gets called when a registered event occurs.

g.) Array vs. list.

Both store sequences of values, all of the same type. An array stores the values contiguously in
memory, while the list stores each element in an arbitrary location along with a link to the next
element.

h.) Abstract data type vs. data structure implementation.

An abstract data type is the description of a data structure that is independent of any
implementation; typically this includes the possible operations. An implementation is the realization
of the abstract data type in software.

CSC 212 Fall 2016 Midterm Page 1 of 4

Sorting (16 points)

Consider the following unsorted list of numbers: 10, 4, 13, 7, 8, 2,11, 7, 15, 9.

For each of the items below indicate which of the three main algorithms we studied might encounter
the configuration shown in the process of sorting the list. If a particular configuration would not be
produced by any of the three algorithms, write “none”. (The three algorithms are insertion sort,
selection sort, and merge sort.)

a.) 2,4,7,7,8,10,11, 13, 15,9 Insertion sort

b.) 2,7,8,11; 4,7,9,10, 13,15 Merge sort

c) 4,7,8,10,13,2,7,9,11, 15 None (this is from a backwards heap sort)
d) 2,4,7,10,13,8,11,7,15,9 Selection sort

Stacks (12 points)

Consider a program that uses a stack as its internal data structure. In addition to push() and pop(Q),
the system needs a capacity for undoPop() and redoPop(). That s, calling undoPop() after a pop()
will put the just-popped item back on the stack, but calling redoPop () will take it back off. When a
new item is pushed on the stack, all pop “history” is lost, and calling undoPop() will have no effect.
Explain in words and/or pseudo-code how you could write a implement the undo/redo functionality
using a single stack in addition to the main stack. Do not write Java code for this question.

Whenever an item is popped off of the main stack, it is immediately pushed onto the auxiliary stack.
Calling redoPop() will pop whatever is on the auxiliary stack (checking first to see that it is not empty)
and push it onto the main stack. Calling redoPop() will pop() an item from the main stack and push it
onto the auxiliary stack (after checking a flag that indicates that a pop() has taken place previously).
Calling push() on the main stack will empty the auxiliary stack.

CSC 212 Fall 2016 Midterm Page 2 of 4

Java Language (16 points)

Consider the code below. Simulate the execution of the program, and predict the output.

public class Refs {

public int[] p; Z
public int q; 7
public Refs() { Z
p = new int[1]; 6
p[0] = q = O; 4

6

public static void ml1(int[] p, int q) { g
Refs r = new Refs(); 4

r.p = p; 2
q=2; g
r.m2(r); 4

8

System.out.printin(r.p[0]);
System.out.printin(r.q);
System.out.printin(p[0]);
System.out_printin(q);

public void m2(Refs r) {
System.out.printin(r.p[0]);
System.out.printin(r.q);
System.out.printin(p[0]);
System.out.printin(q);

p[0] = 9;
r.qg = 6;
m3(r.p,q);

System.out.printin(r.p[0]);
System.out.printin(r.q);
System.out.printin(p[0]);
System.out._printin(q);

public void m3(int[] p, int q) {
Refs r = new Refs();
r.p[0] = p[O];
q=r-q;
5-

public static void main(String args[]) {
Refs r = new Refs();

int[] p = {7};
int g = 8;
r.p[0] = p[O];
r.qg =q;
ml(r.p,r-q);

System.out.printin(r.p[0]);
System._out._printin(r.q);
System.out.printin(p[0]);
System.out.printin(q);

CSC 212 Fall 2016 Midterm Page 3 of 4

Bowling (32 points)
Bowling is a sport where competitors attempt to knock down a set of pins by rolling heavy balls at them.

Matches are divided into "strings", where each string consists of ten "frames". For each frame, the
bowler rolls two (or three, depending on the version) balls in succession gets one point for each toppled
pin. They get a score (from 1 to 10) for each frame, and those scores a summed to get a total for the
string. The class below is used to tally scores in bowling. (For the bowlers among you, we are ignoring

"spares" and "strikes" for the time being.)

public class BowlingScore { public int getFrameScore(int idx) {
FrameScore fs = Ffirst;
for (int i=0; i<idx; i++) {

fs = fs.next;

FrameScore first;
FrameScore last;

public BowlingScore() { }
first = null; return fs.data;
last = null; }
}
public int total() {
public void addFrameScore(int score) { FrameScore fs = first;
FrameScore fs = new FrameScore(score); int tot = 0;
while (fs_.next = null) {
it (First == null) { tot += fs.data;
first = fs; fs = fs.next;
last = fs; }
} else { return tot;
last_next = fs; }
last = fs;
} private class FrameScore {
} int data;

FrameScore next;
public FrameScore(int data) {
this.data = data;

}
}

a.) Abowlerscores 6, 10, and 3 in her first three frames, and the following instructions are
executed. What gets printed to the screen?

BowlingScore bs = new BowlingScore();
bs.addFrameScore(6);
bs.addFrameScore(10);
bs.addFrameScore(3);
System.out.println(bs.getFrameScore(0));
System.out.println(bs.getFrameScore(l));
System.out.println(bs.total());

10
19

CSC 212 Fall 2016 Midterm Page 4 of 4

b.) Draw a diagram of the BowlingScore object along with associated FrameScore objects in the
manner we've done in class.

BowlingScore

first last
FrameScore FrameScore FrameScore
data next data next data next

(0] [| 5] []

c.) The next instruction, shown below, causes a Nul IPointerException to be thrown. Explain
why this happens, and identify the precise line of code where the exception occurs.

System.out.println(bs.getFrameScore(3));

The exception is thrown by the line "fs = fs.next;”. During the third iteration, the fs variable gets
set to null (since the previous FrameScore has a null pointer for next). When the next field of the
null is accessed, the exception is thrown.

d.) Explain how you could modify the code above to gracefully handle the call above (that is,
prevent the exception from being thrown).

There are several solutions:

- Checking to see if the current value of fs == last, and breaking out of the loop

- Surrounding the offending line in a try-catch block

- Storing the number of frames in a data field, or creating a method to count them, and
comparing with argument

e.) The getFrameScore() function has O(n), or linear, runtime complexity, where n is the number of
frames bowled. Explain why. How might you modify class Bowl ingScore and/or
getFrameScore() to runin O(1), or constant time?

Each call to total must iterate along the linked list of FrameScore objects, and there are n of
them. This could be avoided by keeping a running total in a data field, and adding to it when
addFrameScore() is called, and returning it with total().

f.) Imagine that we rewrote the Bowl ingScore class using an array of type int for internal
storage of scores. Think about (but do not write out) how you would implement the
constructor, plus the methods addFrameScore(), getFrameScore(), and total (). What
would be the performance differences between the two implementations for each method? (In
other words, would the running time change in terms of its big-O notation, and if so, how?)

addFrameScore(int score) - faster, runs in O(1)

CSC 212 Fall 2016 Midterm Page 5 of 4

g.)

h.)

getFrameScore(int idx) - faster, runs in O(1)
total() - same, runs in O(n)

A bowler gets three balls per frame in candlepin bowling. When a bowler knocks down all ten
pins with their first two balls, it is called a “spare”, and the score from the first ball of the next
frame gets added into the frame with the spare (it is double-counted). How would you modify
the code to accommodate this detail? Be specific.

Among other possibilities, one might modify addFrameScore() to accept three arguments, one
representing each roll. In the case of a spare, the third argument is null, and a data field called
“spare” is set to True. When addFrameScore() is next called, it first checks to see if the spare flag
is set, and if so, it adds the score from its first ball into the data field of the tail.

Write a method that takes an array of BowlingScore objects and concatenates them together.
Assume scores bs1 holding {2, 4, 6}, bs2 holding {10, 9, 8, 7}, and bs3 holding {1, 0}:

public BowlingScore concatScores(BowlingScore[] bsArr) {
// FILL IN HERE

}

BowlingScore[] bsArr = new BowlingScore[3];
bsArr[0] = bsl;

bsArr[1] = bs2;

bsArr[2] = bs3;

BowlingScore bsAll = concatScores(bsArr);
// above should produce object holding { 2, 4, 6, 10, 9, 8, 7, 1, 0 }

Destructive:
public static BowlingScore concatScores(BowlingScore[] bsArr) {
BowlingScore bsNew = new BowlingScore();
bsNew.first = bsArr[0]-.first;
bsNew. last = bsArr[0].last;
for (int i=1; i<bsArr.length; 1++) {
bsNew. last.next = bsArr[i].first;
bsNew.last = bsArr[i].last;
¥

return bsNew;

}

Non-destructive:
public static BowlingScore concatScores2(BowlingScore[] bsArr) {
BowlingScore bsNew = new BowlingScore();
for (int 1=0; i<bsArr.length; 1++) {
FrameScore fs = bsArr[i].first;
while (fs = null) {

CSC 212 Fall 2016 Midterm Page 6 of 4

bsNew.addFrameScore(fs.data);
fs = fs._.next;

}
}

return bsNew;

}

Graphical User Interfaces (8 points)

Describe in detail how user actions can trigger programmatic responses. What parts of the program are
involved? What preparation does the program need to make before the interface will be responsive?

User actions are detected first by the operating system, and communicated to the Java Virtual Machine
(JVM) which is the infrastructure responsible for running a Java program. Individual events may be
registered with program elements like window components and timers. These objects keep a list of
“listener” objects that must be notified whenever an appropriate event occurs. The listeners are
activated one at a time in turn by calling an event handler method that corresponds to the event which
has occurred. Although they originate with user actions causing an OS response, from the programmer’s
point of view, the objects that call event handlers may be thought of as generating the events for the rest
of the program to handle.

The programmer who wishes to write an interactive program must write one or more listener classes
(usually nested within the GUI manager class) that implement a listener interface and contain the
appropriate event handler methods. The listeners must be registered with the objects that generate the
events of interest. The event handlers in the listener classes must contain the code that responds to the
event. Typically these responses will interact with the other parts of the program, such as the data
models or views.

CSC 212 Fall 2016 Midterm Page 7 of 4

