Vocabulary (14 points)

FINAL EXAMINATION KEY
DECEMBER 2016
CSC 212 ¢ SECcTION 01
INSTRUCTOR: NICHOLAS R. HOWE

In the code example below, give the line number of at least one example of each of the following

terms, or say “not present” if none exists.

a. Qualifier: 4,13,17,20 import java.awt.Color;
. L /** A class for the exam */
b. Field declaration: 4 public class Vocab {
c. Assignment: private Color c;
6,10,18,22,24,26 Vocfb_()cjlor SLACK-
d. Allocation: 10,22 }) '
Initialization: /* constructor */
Vocab(Vocab v) {
6,22,24,26 this.c = new Color(v.c.getRGB());
f. Javadoc comment: 2 3}
g. Inline comment: 12,16 // accessor
h. Block .8 public Color getColor() {
. ock comment: return c:
i. Callsignature of a }
// manipulator
method: 13,17,20
. e public void setColor(Color c) {
j. Reference copy: 24 this.c = c:
k. Shallow copy: not }
public static void main(String[] args) {
present Vocab v1, v2, v3;
|. Deep copy: 26 vl = new Vocab();
m. Local variable: 21 vl.setColor(Color.RED);
v2 = vl;
n. Method argument: v2_.setColor(Color_.BLUE);
10,23,25,27 v3 = new Vocab(v2);
vl._setColor(v2.getColor());
by
}

Sorting (12 points)

© O ~NOOP~WNEPR

Assume that the letters shown below are stored in an array, show each successive step (after a
swap) for the indicated sorting algorithms. For example, in bubble sort the next configuration
would be CDHJAFIBEG.

.. o | ¢ [v | b | A | F | 1 | B | E | G

a.) Insertion Sort: CDHJAFIBEG, CDHAJFIBEG, CDAHJFIBEG, CADHJFIBEG, ACDHJFIBEG,
ACDHFJIBEG, ACDFHJIBEG, ACDFHIIBEG, ACDFHIBJEG, ACDFHBIJEG, ACDFBHIIEG,
ACDBFHIJEG, ACBDFHIJEG, ABCDFHIIEG, ABCDFHIEIG, ABCDFHEIIG, ABCDFEHIIG,
ABCDEFHIIG, ABCDEFHIGJ, ABCDEFHGIJ, ABCDEFGHIJ

b.) Selection Sort: ACHIDFIBEG, ABHJDFICEG, ABCIDFIHEG, ABCDJFIHEG, ABCDEFIHJG,
ABCDEFGHJI, ABCDEFGHIJ

c.) Heap Sort: HCDJAFIBEG, HIDCAFIBEG, JHDCAFIBEG, JHFCADIBEG, JHICADFBEG, JHIEADFBCG,
JHIEGDFBCA, AHIEGDFBCJ, IHAEGDFBCIJ, IHFEGDABCJ, CHFEGDABIJ, HCFEGDABIJ,
HGFECDABIJ, HGFECDABIJ, BGFECDAHIJ, GBFECDAHIJ, GEFBCDAHI, AEFBCDGHIJ,
FEABCDGHIJ, FEDBCAGHIJ, AEDBCFGHIJ, EADBCFGHIJ, ECDBAFGHIJ, ACDBEFGHII,
DCABEFGHIJ, BCADEFGHIJ, CBADEFGHIJ, ABCDEFGHIJ, BACDEFGHIJ, ABCDEFGHIJ

Recursion (12 points)

The method below unfortunately runs forever when called. Examine the method and answer the
guestions that follow.

private void drawDragon(int rank, Point pl, Point p2, Graphics g) {

if (rank == 0) {
g.drawLine(pl.x,pl.y,p2.-X,p2.Y);

} else {
int dx = (p2.x-pl.x)7/4;
int dy = (p2.y-pl.y)/4;
Point pa = new Point(pl.x-dy+dx,pl.y+dx+dy);
Point pb = new Point(p2.x+dy-dx,p2.y-dx-dy);
drawDragon(rank-2,pl,pa,qg);
drawDragon(rank,pa,pb,qg):
drawDragon(rank-2,pb,p2,9);

}
}
a.) Why does it run forever? What recursion guideline is being ignored?
The method does not make progress towards termination, since the rank does not decrease.
Also, the stop condition should be rank <= 0 since the rank decreases in some places by more
than one at a time.
b.) What simple change(s) to the code would ensure that the method always terminates?
Change rank to rank-1; change conditional test to rank <=0

Java Memory (16 points)

Consider the short Java program shown below. Draw a diagram showing the state of memory (call
stack and heap) at Checkpoint A and at Checkpoint B.

public class JavaMemory {

static class Item {
String data;
ltem left;
Item right;
Item(String data, Item left, Item right) {
this.data = data;
this.left = left;
this.right = right;
}
}

public static void main(String[] args) {
Item begin = new ltem('C”,null,new Item('D"”,null,null));
begin.right.left = begin;
begin.right.right = new Item(*E",begin.right,null);
begin.left = new Item("'B",new ltem("A",null,null),begin);
begin.left.left.right = begin.left;
begin = begin.left.left;

begin /q /1 /q
E/—‘ left data right left data right left data right left data right /‘ left data right

DR | REH| | BEF |(HEH |HED
K./ o4 x__/ A

// Checkpoint A

begin = begin.right_right._right;
begin.left = begin.left.left;
begin_left_right_right = null;
begin.left.right.left = null;
begin_left_left_.right = null;
begin.right.left = null;

// Checkpoint B
begin
E/- left data right

left data right left data right
left data right left data right
[[a] L] [[e] L]

}

Trees (16 points)

Consider the symbol frequency table shown at right. Draw an optimal Huffman coding tree based
upon these frequencies, assuming that there are no symbols that must be encoded other than the
ones shown. Then answer the questions below.

Symbol: Tt 6 A

al)

=
(@p)
-

<

Frequency: 48 6 5 4 20 14 2 1

a.) [Draw the tree] See figure at right.

b.) Based upon this tree, what is the variable-length bitcode for p?
Fort? 10and 111110

c.) How many bits would be required to represent a message
containing 5xm, 2x 6,3 xA, and 4 xy? 54 bits

d.) If we used a fixed-length code to represent these 8 symbols
instead of variable-length codes, how many bits would be
required per character? log.8 =3

Graph Traversal (12 points)

Consider the graph shown below. In what order would the nodes be visited for each of the
following algorithms? In case of ties when deciding where to go next, choose the node whose label
is closest to the start of the alphabet.

a.) Depth-first traversal from Z: ZDQEPJVWX
b.) Breadth-first traversal from P: PEJQVZDXW
c.) Dijkstra’s shortest path algorithm starting from Q: QZPDVWJXE

Programming Style (10 points)

Describe the guidelines for good programming style that apply to methods that perform a boolean
test and return a boolean value. Discuss as many relevant aspects as you can identify, comparing
and contrasting different options for achieving the same effect using specific examples of good or
bad style. You may hypothesize different scenarios as necessary within this broad description.

Ideally, the method should be given as a single boolean expression that is returned, and can usually
consist of just a single line. Eschew use of a conditional (if statement) to generate the values to be
returned, particularly if it involves asymmetric handling of the true and false cases or multiple return
statements.

Hash Tables (8 points)

Please indicate whether the statements below are true or false. Assume that h(k) is a hash function
mapping keys to table rows.

a.) Collision handling allows two different values to be stored in a hash table under the same
key at the same time. false

b.) Collision handling allows two different keys with the same h(k) to be stored in a hash table
at the same time. true

c.) If a hash table uses open addressing, the actual location of a key/value pair will always be
greater than or equal to h(k). false

d.) A good choice for h(k) will distribute keys evenly across the table rows. true

e.) A hash table will not perform well if it is more than 10% full. false

f.) If h(k) is the identity function h(k) = k, then the hash table is actually a lookup table. true

g.) If the table is overly full, lookup may require more than a constant time operation. true

h.) If you store just 10,000 items in a table with 1 million rows, there will most likely be no
collisions. false

