Write the type of each of the following OCaml expressions in the first blank provided, or dll-typed if
the expression does not type check. Then, after the = symbol, write the most simplified value of the
expression, or leave it blank if it's ill-typed. We have done the first one for you as an example.

(a) let a : int =3 +4 = 7
(b) let b : =a=28 =
(c) let c : =5/ 4 =
(d) let d : = "hello " + "world" =
(e) let e : = if a > 0 then "positive" =
(f) let £ : = if a > 0 then "positive"
p

else "negative" =
(g) let g : = if a > 0 then 42 else 41.5 =
h) let h : = let g =3 <> 4 in

q
(not q) && (a = 7) =

Locate each binding in the code below. Then determine the scope of each identifier. (Give the range of lines.) If
the binding is shadowed by a later one, indicate that as well. The first two are done as an example.

1 let profit_500 : int = Bound: profit 500, lines 7-30
2 let price = 500 in Bound: price, lines 3-6
3 let attendees = 120 in

4 let revenue = price * attendees in

5 let cost = 18000 + 4 * attendees in
6 revenue - cost

7

8 let attendees (ticket_price : int) : int =

9 (-15 * ticket_price)/10 + 870

10

11 let test () : bool =

12 (attendees 500) = 120

13 ;5 run_test "attendees at $5.00" test

14

15 let test () : bool =

16 (attendees 480) = 150

17 ;5 run_test "attendees at $4.80" test

18

19 let cost (ticket_price : int) : int =

20 18000 + (attendees ticket_price) * 4

21

22 let revenue (ticket_price : int) =

23 (attendees ticket_price) * ticket_price

24

25 let profit (ticket_price : int) : int =

26 (revenue ticket_price) - (cost ticket_price)
27

28 let test () : bool =

29 (profit 500) = profit_500

30 ;5 run_test "profit at $5.00" test

