Write the type of each of the following OCaml expressions in the first blank provided, or il/-typed if the
expression does not type check. Then, after the = symbol, write the most simplified value of the expression, or
leave it blank if it’s ill-typed.

(a)
(b)
(c)
(d)
(e)
(H
(2
(h)

let a : = [3::[]] =
let b : = [(1::2)::[]] =
let c : = [1::[2;3;4]] =
let d : = [[1::2]::[3::4]] =
let e : = [[1;2;3;4]::[1] =
let f : = [(L::[1)::[2]::0354]::[1] =
let g : = [(5,12,7);(2,5)] =
let h : = [[5512;7];[2;5]] =

Simplify the complex expression below, using step by step substitution. What is the value computed for ‘answer’
in the following program? (Note: the @ operator glues two lists of the same type together.)

let answer : int list =
let list = [4;5] in
let f (num : int) : int list = num :: list in
let list = [6;7] in
(f 3) @ 1list

Which of the following pieces of code are well-formed OCaml expressions? Refer to the production rules on the
back of this sheet. For expressions that do not follow the syntax rules, write il/-formed. For those that do, add
parentheses and/or underline subexpressions to clarify the boundaries of each expression. The first one had been
done for you as an example.

(a)

(b)
(©)
(d)
()
()
(2

if (x > 1) then if (y > 2) then @ else 1 else if (z > 3) then 2 else 3

if (x > 1) then (if (v > 2) then @ else 1) else (if (z > 3) then 2 else 3)

let x = 5 in if (x = r) then 7 else x

if (a = @) then 9 else if (a = 1) then 8 else if (a = 2) then 7

if (a = @) then 9 else if (a = 1) then 8 else if (a = 2) then 7 else 6

if (a = @) then 9 else if (a = 1) then 8 else 7 else 6
if (x < y) then let z = y-x in z*z else let z = x-y in z*z

let b = if (c = 6) then d else e in if (f = b) then g else h

Some OCaml expression rules for building programs (not exhaustive):
<top-expr> := <let-fun-expr> | <let-expr>

<expr> := <let-in-expr> | <let-fun-expr> | <if-expr> | <match-expr> | <value>

<let-fun-expr> := let <arg-decl>* : <type> = <expr>
<arg-decl> := (<identifier> : <type>)
<let-expr> := let <binding>
<binding> := <identifier> = <expr>
<let-in-expr> := let <binding> in <expr>
<if-expr> := if <bool-expr> then <expr> else <expr>
<match-expr> := begin match <identifier> with <match-line>* end

<match-line> := | <pattern> -> <expr>

