
Write the type of each of the following OCaml expressions in the first blank provided, or ill-typed if the
expression does not type check. Then, after the ⇒ symbol, write the most simplified value of the expression, or
leave it blank if it’s ill-typed.

(a) let a : int list list = [3::[]] ⇒ [[3]]
(b) let b : ill-typed = [(1::2)::[]] ⇒
(c) let c : int list list = [1::[2;3;4]] ⇒ [[1;2;3;4]]
(d) let d : ill-typed = [[1::2]::[3::4]] ⇒
(e) let e : int list list = [[1;2;3;4]::[]] ⇒ [[1;2;3;4]]
(f) let f : int list list list = [(1::[])::[2]::[3;4]::[]] ⇒ [[[1];[2];[3;4]]]
(g) let g : ill-typed = [(5,12,7);(2,5)] ⇒
(h) let h : int list list = [[5;12;7];[2;5]] ⇒ [[5;12;7];[2;5]]

Simplify the complex expression below, using step by step substitution. What is the value computed for ‘answer’
in the following program? (Note: the @ operator glues two lists of the same type together.)

let answer : int list =
 let list = [4;5] in
 let f (num : int) : int list = num :: list in
 let list = [6;7] in
 (f 3) @ list

↦

let answer : int list =
 let f (num : int) : int list = num :: [4;5] in
 let list = [6;7] in
 (f 3) @ list

↦

let answer : int list =
 let list = [6;7] in
 (3 :: [4;5]) @ list

↦

let answer : int list =
 (3 :: [4;5]) @ [6;7]

↦

let answer : int list =
 [3;4;5] @ [6;7]

↦

let answer : int list =
 [3;4;5;6;7]

Which of the following pieces of code are well-formed OCaml expressions? Refer to the production rules on the
back of this sheet. For expressions that do not follow the syntax rules, write ill-formed. For those that do, add
parentheses and/or underline subexpressions to clarify the boundaries of each expression. The first one had been
done for you as an example.

(a) if (x > 1) then if (y > 2) then 0 else 1 else if (z > 3) then 2 else 3

if (x > 1) then (if (y > 2) then 0 else 1) else (if (z > 3) then 2 else 3)

(b) let x = 5 in (if (x = r) then 7 else x)

(c) if (a = 0) then 9 else if (a = 1) then 8 else if (a = 2) then 7
Ill-formed (missing else)

(d) if (a = 0) then 9 else (if (a = 1) then 8 else (if (a = 2) then 7 else 6))

(e) if (a = 0) then 9 else if (a = 1) then 8 else 7 else 6
Ill-formed (too many else)

(f) if (x < y) then (let z = y-x in z*z) else (let z = x-y in z*z)

(g) let b = (if (c = 6) then d else e) in (if (f = b) then g else h)

