
CSC 151 INTRODUCTION TO PROGRAMMING LANGUAGES

SPRING 2020 FINAL WRITTEN ASSESSMENT

Instructions:

This is an open-book assessment. You may use the textbook, class notes, and any resources linked from
the course home page in answering the questions. You have three options to choose from.

Option A. Take the exam on your own, without any assistance from others. Under this option, the
exam is due on May 8 at midnight. (All deadlines for this assignment are EDT.)

Option B. Participate in a group exam process. Under this option, you must turn in your individual
effort on the exam by Monday, May 4 at midnight. You will then be assigned to a group, and groups will
have until Wednesday, May 6 at midnight to submit a single revised solution. Finally, the entire set of
individuals who have chosen Option B will collaborate to produce their best combined solution by
Friday, May 8 at midnight. Aim to spend 2-4 hours on each stage. Group work may be conducted via
Zoom or by document sharing. For grading, I will randomly choose two questions (consistent across the
class) to grade for each phase.

Option C. Waive the exam. I will count this as a C in computing your final grade. (Remember that like
all others, this class is S/U for spring 2020. For those who choose options A or B, the lowest possible
grade you will receive on this assessment is also a C.)

I. Vocabulary

Categorize each of the four main languages we have worked with (Python, OCaml, C, and Java)
according to the following distinctions.

a.) Statically typed vs. dynamically typed
b.) Object-oriented vs. non-object-oriented
c.) Active memory management vs. passive management
d.) Primarily imperative vs. primarily functional

II. Type Inference

For each OCaml value below, fill in the blank for the type annotation or else write “ill typed” if there is a
type error on that line. Your answer should be the most generic type for the value—i.e. if int list and
bool list are both possible types of an expression, you should write 'a list.

The first one is done for you.

let z : _________ 'a list list ________ = [[]]

let a : _______________________________ = true::false

let b : _______________________________ = [] :: [] :: []

let c : _______________________________ = begin match [] with
| [] -> "foo"
| h::t -> h+3

end

let d : _______________________________ = transform (fun x -> x>2)

let e : _______________________________ = fold (fun x y -> x::y)

let f : _______________________________ = (fun x -> fun y -> x) 42

let g : _______________________________ = let f x = [x] in f (f 5)

let h : _______________________________ = let sum x y = x+y in
transform (transform sum)

(Note: in the above, recall our definitions of transform and fold as shown below.)

let rec transform (f : 'a -> 'b) (ls : 'a list) : 'b list =
 begin match ls with
 | [] -> []
 | h::t -> (f h) :: (transform f t)
 end

let rec fold (combine: 'a -> 'b -> 'b) (base: 'b) (l: 'a list): 'b =
 begin match l with
 | [] -> base
 | h :: t -> combine h (fold combine base t)
 end

III. Conditional Expressions

Consider the Java code below. Underline the calls to getVal() that will actually be executed when the
following code runs.

public class Cond {
 private int value;
 public Cond(int v) {
 value = v;
 }
 public int getVal() {
 return value;
 }
 public static void main(String[] args) {
 Cond c = new Cond(7);
 if ((c.getVal()<8)&&(c.getVal()>6)) {
 System.out.println(c.getVal());
 }
 c = new Cond(5);
 if ((c.getVal()<8)||(c.getVal()>6)) {
 System.out.println(c.getVal());
 }
 c = new Cond(3);

 if ((c.getVal()>8)&&(c.getVal()<6)) {
 System.out.println(c.getVal());
 }
 c = new Cond(6);
 if ((c.getVal()>8)||(c.getVal()<6)) {
 System.out.println(c.getVal());
 }
 c = new Cond(2);
 if (((c.getVal()>8)||(c.getVal()<6))&&((c.getVal()<5)||(c.getVal()<9))) {
 System.out.println(c.getVal());
 }
 c = new Cond(8);
 if (((c.getVal()>2)&&(c.getVal()<6))||(c.getVal()>4)||(c.getVal()<3)) {
 System.out.println(c.getVal());
 }
 }
}

IV. Iteration

Consider the pseudocode below in answering the questions that follow. Assume that the value of n has been set
previously. It may have any integer value.

i = 0
print i
while i < n do
 i = i+1
 print i
end

a.) Rewrite to get the same behavior using repeat…until
b.) Rewrite to get the same behavior using do…while
c.) Rewrite to get the same behavior using a Python-style range loop
d.) Rewrite to get the same behavior using a while true do… loop with a mid-loop break to exit.

V. Subtypes

Consider the code below in answering the questions.

a.) What are the subtypes of Alpha?
b.) What are the subtypes of Beta?
c.) What are the subtypes of Gamma?
d.) What are the subtypes of Delta?
e.) What are the supertypes of Theta?
f.) What are the supertypes of Lambda?

class Alpha {
 // details omitted
}

class Beta {
 // details omitted
}

interface Gamma {
 // details omitted
}

interface Delta {
 // details omitted
}

class Epsilon extends Alpha {
 // details omitted
}

class Zeta extends Beta implements Gamma {
 // details omitted
}

class Eta implements Delta {
 // details omitted
}

class Theta extends Zeta implements Delta {
 // details omitted
}

class Iota extends Beta implements Delta {
 // details omitted
}

class Kappa extends Iota {
 // details omitted
}

class Lambda extends Epsilon implements Gamma, Delta {
 // details omitted
}

The code:

let x = 5

(* A function to calculate factorial *)
let rec factTR (n: int) (a: int) :int =
 if (n == 0) then a else factTR (n-1) (n*a)

(* A wrapper over factTR *)
let fact(n: int) :int =
 factTR n 1

;; print_endline (string_of_int (fact x))

VI. Computational Models

a.) The diagram below shows one state of the abstract stack machine during execution of some OCaml
code. Circle all the bindings that are accessible in the current scope.

b.) If the compiler emplys a tail recursion optimization, the stack would look different. Draw the state
of the stack under this assumption.

c.) The diagram below shows one state of the abstract stack machine during execution of some C code.
The current line is underlined. Circle all the bindings that are accessible in the current scope.

VII. Certification

When you have finished your exam, please sign the following statement:

In compliance with the Smith College Honor Code, I have completed this assessment without any
assistance or consultation, with the exception of group work explicitly permitted in the instructions.
