
CSC 151 INTRODUCTION TO PROGRAMMING LANGUAGES

KEY - SPRING 2020 FINAL WRITTEN ASSESSMENT - KEY

Vocabulary

Categorize each of the four main languages we have worked with (Python, OC aml, C, and Java)
according to the following dis tinctions.

a.) Statically typed vs. dynamically typed
Static: OCaml, C, Java. Dynamic: Python

b.) Object-oriented vs. non-object-oriented
Object-oriented: Python, OCaml, Java. Non-object-oriented: C

c.) Active memory management vs. passive management
Active: C. Passive: Python, OCaml, Java

d.) Primarily imperative vs. primarily functional
Imperative: Python, C, Java. Functional: OCaml

Type Inference

For each OC aml value below, fill in the blank for the type annotation or else write “ill typed” if there is a
type error on that line. Your answer should be the most generic type for the value—i.e. if int list and
bool list are both possible types of an expression, you should write 'a list.

The firs t one is done for you.

let z : _________ 'a list list ________ = [[]]

let a : __________ill-typed____________ = true::false

let b : __________'a list list_________ = [] :: [] :: []

let c : __________ill-typed____________ = begin match [] with

| [] -> "foo"

| h::t -> h+3

end

let d : ______int list -> bool list____ = transform (fun x -> x>2)

let e : _'a list -> 'a list -> 'a list_ = fold (fun x y -> x::y)

let f : ________'a -> int______________ = (fun x -> fun y -> x) 42

let g : _____int list list_____________ = let f x = [x] in f (f 5)

let h : _int list list -> (int -> int) list list_ = let sum x y = x+y in

transform (transform sum)

Note: in the above, recall our definitions of transform and fold:

let rec transform (f : 'a -> 'b) (ls : 'a list) : 'b list =
 begin match ls with
 | [] -> []
 | h::t -> (f h) :: (transform f t)
 end

let rec fold (combine: 'a -> 'b -> 'b) (base: 'b) (l: 'a list): 'b =
 begin match l with
 | [] -> base
 | h :: t -> combine h (fold combine base t)
 end

Conditional Expressions

Consider the Java code below. Underline the calls to getVal() that will actually be executed when the
following code runs.

public class Cond {
 private int value;
 public Cond(int v) {
 value = v;
 }
 public int getVal() {
 return value;
 }
 public static void main(String[] args) {
 Cond c = new Cond(7);
 if ((c.getVal()<8)&&(c.getVal()>6)) {
 System.out.println(c.getVal());
 }
 c = new Cond(5);
 if ((c.getVal()<8)||(c.getVal()>6)) {
 System.out.println(c.getVal());
 }
 c = new Cond(3);
 if ((c.getVal()>8)&&(c.getVal()<6)) {
 System.out.println(c.getVal());
 }
 c = new Cond(6);
 if ((c.getVal()>8)||(c.getVal()<6)) {
 System.out.println(c.getVal());
 }
 c = new Cond(2);
 if (((c.getVal()>8)||(c.getVal()<6))&&((c.getVal()<5)||(c.getVal()<9))) {
 System.out.println(c.getVal());
 }
 c = new Cond(8);
 if (((c.getVal()>2)&&(c.getVal()<6))||(c.getVal()>4)||(c.getVal()<3)) {
 System.out.println(c.getVal());
 }
 }
}

Iteration

Consider the pseudocode below in answering the questions that follow. Assume that the value of n has been set
previously. It may have any integer value.

i = 0
print i
while i < n do
 i = i+1
 print i
end

a.) Rewrite to get the same behavior using repeat…until

i = 0
repeat
 print i
 i = i+1
until i >= n

b.) Rewrite to get the same behavior using do…while

i = 0
do
 print i
 i = i+1
while i < n

c.) Rewrite to get the same behavior using a Python-style range loop

for i in range(0,6):
 print i

d.) Rewrite to get the same behavior using a while true do… loop with a mid-loop break to exit.

i = 0
while true do
 print i
 if i >= n then break
 i = i+1
end

This turned out to be the most
difficult question on the exam. Most
people correctly figured out the
ending condition, making sure that
their loops printed numbers up to and
including n. However, you also need
to pay attention to the beginning of
the loop. The code given will print
only 0 when n = 0. Many of the
responses to this question had two
print statements before the first
continuation test, meaning that they
would always print at least two
numbers regardless of the value of n.

Subtypes

Consider the code on the following page in answering the questions below.

a.) What are the subtypes of Alpha? Epsilon, Lambda
b.) What are the subtypes of Beta? Zeta, Iota, Theta, Kappa
c.) What are the subtypes of Gamma? Zeta, Theta, Lambda
d.) What are the subtypes of Delta? Eta, Iota, Theta, Lambda, Kappa
e.) What are the supertypes of Theta? Beta, Gamma, Delta, Zeta
f.) What are the supertypes of Lambda? Alpha, Gamma, Delta, Epsilon

class Alpha {
 // details omitted
}

class Beta {
 // details omitted
}

interface Gamma {
 // details omitted
}

interface Delta {
 // details omitted
}

class Epsilon extends Alpha {
 // details omitted
}

class Zeta extends Beta implements Gamma {
 // details omitted
}

class Eta implements Delta {
 // details omitted
}

class Theta extends Zeta implements Delta {
 // details omitted
}

class Iota extends Beta implements Delta {
 // details omitted
}

class Kappa extends Iota {
 // details omitted
}

class Lambda extends Epsilon implements Gamma, Delta {
 // details omitted
}

The code:

let x = 5

(* A function to calculate factorial *)
let rec factTR (n: int) (a: int) :int =
 if (n == 0) then a else factTR (n-1) (n*a)

(* A wrapper over factTR *)
let fact(n: int) :int =
 factTR n 1

;; print_endline (string_of_int (fact x))

Computational Models

a.) The diagram below shows one state of the abstract s tack machine during execution of some OC aml
code. C ircle all the bindings that are accessible in the current scope.

b.) If the compiler emplys a tail recursion optimization, the stack would look different. Draw the state
of the stack under this assumption.

In OCaml, all bindings in the stack are
accessible as long as they are not
shadowed by a more recent binding
of the same name. Only the most
recent bindings for n and a (at the
bottom) are accessible.

Under tail recursion, the stack frames
for recursive calls are reused. Thus
instead of three frames for factTR we
have just one, the most recently called.

c.) The diagram below shows one state of the abstract s tack machine during execution of some C code.
The current line is underlined. C ircle all the bindings that are accessible in the current scope.

In C, only the current function is in
scope. Any previous bindings are
inaccessible (this it the intended
meaning of the thick black bar).

