
FINAL EXAMINATION KEY – MAY 2008
CSC 112

NICHOLAS R. HOWE

This is a closed-book exam. You may use two double-sided 8.5x11 sheets of notes.

All answers to this exam should be written in your exam booklet(s). Start with the questions that
you know how to do, and try not to spend too long on any one question. Partial credit will be
granted where appropriate. You will have two hours and twenty minutes. Good luck!

1.) Graph Traversal (12 points)

At right is a diagram of a graph, with weights
shown on each edge. Simulate a run of
Dijkstra’s shortest path algorithm starting
from node A. In what order are the nodes
visited? Show all distance values that are
assigned over the course of the algorithm,
crossing out old values as they are updated.
Indicate the backpointers by an arrow.

Node A D G B E C F
Distance 0 ∞, 1 ∞, 2 ∞, 9, 3 ∞, 6, 4 ∞, 8, 6, 5 ∞, 9, 7
Back - A D A, G A, D A, B, E E, C

2.) Sorting (8 points)

Consider the array of numbers below, which are to be sorted in increasing order from left to
right. Simulate the array version of the algorithms specified, and show the state of the array after
each swap performed.

 3, 1, 6, 5, 2, 4

a.) Selection sort, array implementation, growing the sorted region from left to right.
 3, 1, 6, 5, 2, 4
 1, 3, 6, 5, 2, 4
 1, 2, 6, 5, 3, 4
 1, 2, 3, 5, 6, 4
 1, 2, 3, 4, 6, 5
 1, 2, 3, 4, 5, 6

b.) Insertion sort, array implementation, growing the sorted region from left to right.
 3, 1, 6, 5, 2, 4
 1, 3, 6, 5, 2, 4
 1, 3, 5, 6, 2, 4
 1, 3, 5, 2, 6, 4

A F G

D E

B C

1

9

4

1

1

3

8

6

3

1

5

2

 1, 3, 2, 5, 6, 4
 1, 2, 3, 5, 6, 4
 1, 2, 3, 5, 4, 6
 1, 2, 3, 4, 5, 6

3.) Recursion (14 points)

Describe the development process we have used in class for a recursive algorithm, explaining the
purpose of each of the steps. How can we be sure a particular recursive algorithm will
terminate? Finally, draw connections between the parts of a recursive routine and the parts of a
formally developed iterative loop (again using the methodology presented in class).

State the problem. Identify the stop condition and the simplification (recursive) step. Ensure
that each step makes the problem closer to the stop condition.

The loop continuation criterion is like the stop condition (or its opposite). The update step is like
simplification. The loop condition is like the problem statement.

4.) Trees (12 points)

Draw the arithmetic expression trees corresponding to the following prefix expressions. Then
write corresponding expressions using infix and postfix notation, employing parentheses only
where necessary.

a.) + 3 2
3+2
3 2 +

b.) + / 8 2 * 3 5
(8/2)+(3*5)
8 2 / 3 5 * +

c.) - + - + 1 1 1 1 1
1+1-1+1-1
1 1 + 1 – 1 + 1 -

5.) Hash Tables (12 points)

Suppose that you create a hash table with five entries, and use k mod 5 as your hash function.
Your table will use open adressing with linear probing, and relocation of keys to fill gaps on
deletion. Draw the state of the table after each of the following operations, assuming it begins
empty:

a.) Insert Computer Science I under key 111.

111 Computer Science I

b.) Insert Microprocessors and Assembly under key 231.

111 Computer Science I
231 Microprocessors and Assembly

c.) Insert Computer Science II under key 112.

111 Computer Science I
231 Microprocessors and Assembly
112 Computer Science II

+ +

3 2
/

8 2

*

3 5

+

1 1

-

1

+

1

-

1

d.) Delete key 111.

231 Microprocessors and Assembly
112 Computer Science II

e.) Insert Computational Geometry under key 274.

231 Microprocessors and Assembly
112 Computer Science II

274 Computational Geometry

f.) Insert Computer Networks under key 249.

249 Computer Networks
231 Microprocessors and Assembly
112 Computer Science II

274 Computational Geometry

6.) Data Structures (16 points)

For each of the following data structures and operations, fill in the table with the time complexity
of the operation, or that the specified operation is not possible with the specified data structure.
You may choose from the following values: O(1), O (log n), O (n), O (n log n), O (n2), and not
possible.

In hindsight this was a tricky question because the problem did not always specify enough

information. Additional clues are added below, and alternate answers appear in some cases.

Array

Linked
List

Binary
Search
Tree

Hash
Table

Insert a new element
after an arbitrary
element. (Assume the
element location or
index is given to you.)

O (n) O (1) O (1) with pointer to
location

or O (log n) if location
must be found

O (1)

Delete an arbitrary
element. (Assume the
element location or
index is given to you.)

O (n) O (1) O (1) with pointer to
location

or O (log n) if location
must be found

O (1)

Find the location of an
arbitrary element.

O (1) given index,
or O (n) given value
O (log n) if sorted

O (n) O (log n) O (1)
if table not

too full
Produce a sorted
listing of all elements

O (n log n) O (n log n) O (n) Not possible

7.) Graphs (8 points)

The Graph data structure shown at
right follows the conventions
discussed in class, but it has lost a
number of references that should
be present. Assuming that all of
the structure shown is correct,
draw any additional arrows
representing references that should
be present in a complete structure.

nodes edges

Graph

edges data

Node

data head tail

Edge

Node

Node

Node

data head tail

Edge

data head tail

Edge

data head tail

Edge

data head tail

Edge

edges data

edges data

edges data

8.) Classes & Object-Oriented Programming (18 points)

Define each of the following terms, specifying its role in a program and how/where it would
normally be created or defined in a well-structured program.

a.) Constructor
A special method whose job is to initialize the fields of the object, defined inside the class
definition.

b.) Field
Data storage for an object, defined inside the class definition.

c.) Method
An action for the object, defined inside the class definition.

d.) Instance
A single representation of a class, created in memory during execution.

e.) Accessor
A method whose job is to return the value of one of the fields. Created inside the class definition.

f.) Static method
A method that does not need an instance of the class to run, defined inside the class definition..

