FINAL EXAMINATION ANSWER KEY —DECEMBER, 2001

1. (10 points) Select the most appropriate data structure to help solve the following
problems. Be as specific as possible; if you can supply a more specific name than a
general data structure (“arithmetic expression tree” vs. “tree”), then you should do so.

a. An engineer wants to simulate train switching algorithms on atrack with a
singlesiding. Assume that cars may be added to and removed from the siding at
only one end.

The key is part is the adding/removing at one end. Thisis modeled by a stack.

b. A UFO enthusiast wants to create a program to store information on UFO
sightings by latitude and longitude. The program (which isto be made available
over the world wide web) should alow anyone to quickly look up a particul ar
latitude and longitude to see whether any sightings have occurred there. The
locations are to be stored with great precision: any location, down to the arc
minute, may be queried. However, only afew hundred sightings will actually be
stored.

A hash table will allow for quick lookup without wasting too much space.

c. The state of Massachusetts wants to organizeits jury duty records. State
officials seek aprogram that will provide them with names of citizens eligible for
jury duty. After serving on ajury, acitizen’s name will be returned to the system,
but should not come up on the eligibility list again until everybody €else has taken
aturn.

This behavior is best modeled by a queue.

d. Quack, Inc. iswriting a physician’s assistant program to help doctors diagnose
their patients. It asks a series of questions in an attempt to diagnose a patient.
The sequence of questions asked will depend upon the answers to previous
guestions. Thefirst question asked is aways the same (“ Are you feeling well?"),
and the next question depends on whether the answer givenis yes or no. What
data structure can be used to efficiently hold the set of potential questions?

A binary tree can hold the set of questions. The branch taken depends upon the
answer given.

e. Anonline casino wantsto be able to keep track of their customers by their
socia security numbers (SSN). At any moment, they want a program that can
print out alist of current players sorted by SSN. In order to do this, the program
should maintain a data structure keeping track of who is currently playing.
Players should be able to join or leave at any moment.

A BST will allow playes to be added and removed quickly, and can produce a

sorted |

2. (10 points)
the starting poi

ist.

Draw apicture of the memory after the following operations, assuming
nt is as pictured.

a. Stack. Operation: push(* C)

head
Al

LC » D B A

b. Queue. Operation: out (). What valueisreturned? D

3. (10 points)

front back

_H

B A

Complete the code for the following method. (Hint: Remember to

account for the case where you add to an empty queue.)

tenpl ate <class T>
voi d Queue<T>::in(T new datum {

}

Queuel tenxT>* item = new Queuel t enxkT>(new_dat un);
if (back == NULL) {

front = back = item
} else {

back- >set Next (i ten);

back = item

Y ou may assume that the following declarations have already been made, and that the

other methods

have been defined € sewhere:

tenpl ate <class T>
cl ass Queue {

publi c:

private:

}s

Queue<T>();

Queue<T>(const Queue<T> &);
~Queue<T>();

void in(T d);

T out ();

bool isEmpty();

bool isFull();

Queuel tenkT> *front;
Queuel t enxkT> *back;

tenpl ate <class T>
cl ass Queueltem {

publi c:

Queuel tenxT>(T d, QueueltenxT> *pn = NULL);
Queuel t enkT>(const Queuel tenxkT> &);

~Queuel tenxT>();

T getData();

void setData(T d);

Queuel t enkT> *get Next ();

voi d set Next (Queuel t enkT> *pn);
private:

T dat a;

Queuel t enxT> *next;

1

4. (12 points) Which of the following represent valid binary search trees? Fix those that
are not valid (making as few changes as possible). Assume that null leaves are not
shown. Only bisvalid. Fixestoaand c shownin underlined italics.

5o OF

5. (15 points) Print out the string that would be created by traversing this treein the
following orders:

a Preorder: PAERFCWTHBNY

b. Inorder: EARCFPTBHNWY ° @
c. Postorder: ECFRABNHTYWP e G e “

With parentheses and placeholders:
P(AE(R_(FC)))(W(T_(HBN))Y) 0
(EACR(CF))P(CT(BHN)WY)
(EC(C_PRAN(LBNHTHYWP G 0

6. (10 points) Fill in codeto print out a binary tree in postorder. Assume that the
methodsi sLeaf (), get Dat a(), get Lef t Chi | d(), and get Ri ght Chi | d() have already been
defined.

Bt ree<T>:: postorder () {
if (lisLeaf()) {
get Lef t Chi | d- >post order () ;
get Ri ght Chi | d- >post or der () ;
}

cout << getData() << " "

}

7. (10 points) The Shorter Line Bus Company has three buses, that run on the routes
described below. Draw adirected graph that represents this route structure.

Bus1: Greenvilleto Haywood
to Ipswich, then back to
Greenville.

Bus 2: Ipswich to Jonesville

Greenville = Haywood

N/

and back.

Bus 3: Greenvilleto Klondike
to Jonesville, then back to
Klondike and then Greenville.

~._

Jonesville

8. (8 points) Using the directed graph at right, identify the following:

a. Neighborsof F. C,D, H

b. All cyclesin the graph.
A-E; B-D-I-H-G-C

c. Degreeof G. One

d. Verticesreachable from A.
All except F.

\@

9. (15 points) Predict the output of the following program.

Hel | o Spot.

Hel | o Spi ke.

Spi ke is a big dog.
Hello Fifi.

Fifi is alittle dog.
Spot is a dog.

Spi ke is a dog.

Fifi is a dog.

Arfl Arf!
Whof! Woof !
Yip! Yip!

The bark is worse than the bite.
The bark is worse than the bite.
The bark is worse than the bite.

Goodbye Spot.

The bigger they are, the harder they fall.

Goodbye Spi ke.
Little dogs live |longer.
Goodbye Fifi.

#i ncl ude<i ostream h>
#i ncl ude <string. h>

class Dog {
publi c:

Dog(const char *n = "Rover") {

strcpy(nane, n);
cout << "Hello "

}s

<< nanme << "."

<< endl ;

Dog(const Dog &orig) {
strcpy(nane, ori g. nane) ;

}
virtual ~Dog() {
cout << "Goodbye " << nane << "." << endl;
i
voi d describe() {
cout << nanme << " is a dog." << endl;

virtual void bark() {
cout << "Arf! Arf!" << endl;
}s
void bite() {
cout << "The bark is worse than the bite." << endl;
}s

protected:

b

char nane[10];

class LittleDog : public Dog {

publi c:

Littl eDog(const char *n = "Fifi"):
Dog(n)

cout << name << " is a little dog." << endl;

}

Littl eDog(const LittleDog &orig):
Dog(orig), lapsitter(orig.lapsitter)
{

b
~Littl eDog() {
cout << "Little dogs live longer." << endl;

virtual void describe() {
cout << name << "is a dog who ";
if (lapsitter) {
cout << "sits on laps." << endl;
} else {
cout << "acts like a cat." << endl;
}

}
void bark() {
cout << "Yip! Yip!" << endl;

}
void bite() {

cout << "This dog doesn't bite." << endl;
h

private:

1

bool lapsitter;

class BigDog : public Dog {

publi c:

Bi gDog(const char *n = "Spi ke"):
Dog(n)

cout << name << " is a big dog." << endl;
}
Bi gDog(const Bi gDog &ori g):
Dog(orig), catfriend(orig.catfriend)
{

b
~Bi gDog() {

cout << "The bhigger they are, the harder they fall."

virtual void describe() {
cout << name << "is a dog who ";
if (catfriend) {
cout << "likes cats." << endl;
} else {
cout << "hates cats." << endl;

<< endl ;

}

}
voi d bark() {
cout << "Whof! Whof!" << endl;
}
void bite() {
cout << "Quch!" << endl;
b

private:
bool catfriend;
}s

void main() {
Dog* dogs[3];

dogs[0] = new Dog("Spot");
dogs[1] = new Bi gDog;
dogs[2] = new Littl eDog;

dogs[0] - >descri be();
dogs|[1] - >descri be();
dogs|[2] - >descri be();
dogs[0] - >bar k() ;
dogs[1] - >bar k() ;
dogs|[2] - >bar k() ;
dogs[0] ->bite();
dogs[1] ->bite();
dogs[2] ->bite();

for (int i =0; i <3; i++) {
del ete dogs[i];
}

