
FINAL EXAMINATION ANSWER KEY – DECEMBER, 2001

1. (10 points) Select the most appropriate data structure to help solve the following
problems. Be as specific as possible; if you can supply a more specific name than a
general data structure (“arithmetic expression tree” vs. “ tree”), then you should do so.

a. An engineer wants to simulate train switching algorithms on a track with a
single siding. Assume that cars may be added to and removed from the siding at
only one end.

The key is part is the adding/removing at one end. This is modeled by a stack.

b. A UFO enthusiast wants to create a program to store information on UFO
sightings by latitude and longitude. The program (which is to be made available
over the world wide web) should allow anyone to quickly look up a particular
latitude and longitude to see whether any sightings have occurred there. The
locations are to be stored with great precision: any location, down to the arc
minute, may be queried. However, only a few hundred sightings will actually be
stored.

A hash table will allow for quick lookup without wasting too much space.

c. The state of Massachusetts wants to organize its jury duty records. State
officials seek a program that will provide them with names of citizens eligible for
jury duty. After serving on a jury, a citizen’s name will be returned to the system,
but should not come up on the eligibility list again until everybody else has taken
a turn.

This behavior is best modeled by a queue.

d. Quack, Inc. is writing a physician’s assistant program to help doctors diagnose
their patients. It asks a series of questions in an attempt to diagnose a patient.
The sequence of questions asked will depend upon the answers to previous
questions. The first question asked is always the same (“Are you feeling well?”),
and the next question depends on whether the answer given is yes or no. What
data structure can be used to efficiently hold the set of potential questions?

A binary tree can hold the set of questions. The branch taken depends upon the
answer given.

e. An online casino wants to be able to keep track of their customers by their
social security numbers (SSN). At any moment, they want a program that can
print out a list of current players sorted by SSN. In order to do this, the program
should maintain a data structure keeping track of who is currently playing.
Players should be able to join or leave at any moment.

A BST will allow playes to be added and removed quickly, and can produce a
sorted list.

2. (10 points) Draw a picture of the memory after the following operations, assuming
the starting point is as pictured.

a. Stack. Operation: push(‘ C’)

b. Queue. Operation: out () . What value is returned? D

3. (10 points) Complete the code for the following method. (Hint: Remember to
account for the case where you add to an empty queue.)

t empl at e <cl ass T>
voi d Queue<T>: : i n(T new_dat um) {
 QueueI t em<T>* i t em = new QueueI t em<T>(new_dat um) ;
 i f (back == NULL) {
 f r ont = back = i t em;
 } el se {
 back- >set Next (i t em) ;
 back = i t em;
 }
}

You may assume that the following declarations have already been made, and that the
other methods have been defined elsewhere:

t empl at e <cl ass T>
cl ass Queue {
publ i c:
 Queue<T>() ;
 Queue<T>(const Queue<T> &) ;
 ~Queue<T>() ;
 voi d i n(T d) ;
 T out () ;
 bool i sEmpt y() ;
 bool i sFul l () ;
pr i vat e:
 QueueI t em<T> * f r ont ;
 QueueI t em<T> * back;
} ;

t empl at e <cl ass T>
cl ass QueueI t em {
publ i c:
 QueueI t em<T>(T d, QueueI t em<T> * pn = NULL) ;
 QueueI t em<T>(const QueueI t em<T> &) ;
 ~QueueI t em<T>() ;
 T get Dat a() ;

head

C D B

back f r ont

B A

A

 voi d set Dat a(T d) ;
 QueueI t em<T> * get Next () ;
 voi d set Next (QueueI t em<T> * pn) ;
pr i vat e:
 T dat a;
 QueueI t em<T> * next ;
} ;

4. (12 points) Which of the following represent valid binary search trees? Fix those that
are not valid (making as few changes as possible). Assume that null leaves are not
shown. Only b is valid. Fixes to a and c shown in underlined italics.

a. b.

c.

5. (15 points) Print out the string that would be created by traversing this tree in the
following orders:

a. Preorder: PAERFCWTHBNY

b. Inorder: EARCFPTBHNWY

c. Postorder: ECFRABNHTYWP

With parentheses and placeholders:
 P(AE(R_(FC_)))(W(T_(HBN))Y)
 (EA(_R(CF_)))P((_T(BHN))WY)
 (E(_(C_F)R)A)((_(BNH)T)YW)P

6. (10 points) Fill in code to print out a binary tree in postorder. Assume that the
methods i sLeaf () , get Dat a() , get Lef t Chi l d() , and get Ri ght Chi l d() have already been
defined.

Bt r ee<T>: : post or der () {
 i f (! i sLeaf ()) {
 get Lef t Chi l d- >post or der () ;
 get Ri ght Chi l d- >post or der () ;
 }
 cout << get Dat a() << " " ;
}

7. (10 points) The Shorter Line Bus Company has three buses, that run on the routes
described below. Draw a directed graph that represents this route structure.

9

5

2 7

23

11 50

44

40 47

94

90 97

50

25

12 37

75

62 87

98

22

16

8 17

96

95 97

F

C

H

B N

P

A

E R

W

T Y

Bus 1: Greenville to Haywood
to Ipswich, then back to
Greenville.
Bus 2: Ipswich to Jonesville
and back.
Bus 3: Greenville to Klondike
to Jonesville, then back to
Klondike and then Greenville.

8. (8 points) Using the directed graph at right, identify the following:

a. Neighbors of F: C, D, H

b. All cycles in the graph.
 A-E; B-D-I-H-G-C

c. Degree of G. One

d. Vertices reachable from A.
 All except F.

9. (15 points) Predict the output of the following program.

Hello Spot.
Hello Spike.
Spike is a big dog.
Hello Fifi.
Fifi is a little dog.
Spot is a dog.
Spike is a dog.
Fifi is a dog.
Arf! Arf!
Woof! Woof!
Yip! Yip!
The bark is worse than the bite.
The bark is worse than the bite.
The bark is worse than the bite.
Goodbye Spot.
The bigger they are, the harder they fall.
Goodbye Spike.
Little dogs live longer.
Goodbye Fifi.

#i ncl ude<i ost r eam. h>
#i ncl ude <st r i ng. h>

c l ass Dog {
publ i c:
 Dog(const char * n = " Rover ") {
 st r cpy(name, n) ;
 cout << " Hel l o " << name << " . " << endl ;
 } ;

C

B

D

F

A

I
G

H

E

Greenville Haywood

Ipswich

Jonesville

Klondike

 Dog(const Dog &or i g) {
 st r cpy(name, or i g. name) ;
 } ;
 v i r t ual ~Dog() {
 cout << " Goodbye " << name << " . " << endl ;
 } ;
 voi d descr i be() {
 cout << name << " i s a dog. " << endl ;
 }
 v i r t ual voi d bar k() {
 cout << " Ar f ! Ar f ! " << endl ;
 } ;
 voi d bi t e() {
 cout << " The bar k i s wor se t han t he bi t e. " << endl ;
 } ;
pr ot ect ed:
 char name[10] ;
} ;

c l ass Li t t l eDog : publ i c Dog {
publ i c:
 Li t t l eDog(const char * n = " Fi f i ") :
 Dog(n)
 {
 cout << name << " i s a l i t t l e dog. " << endl ;
 }
 Li t t l eDog(const Li t t l eDog &or i g) :
 Dog(or i g) , l apsi t t er (or i g. l apsi t t er)
 {
 } ;
 ~Li t t l eDog() {
 cout << " Li t t l e dogs l i ve l onger . " << endl ;
 }
 v i r t ual voi d descr i be() {
 cout << name << " i s a dog who " ;
 i f (l apsi t t er) {
 cout << " si t s on l aps. " << endl ;
 } el se {
 cout << " act s l i ke a cat . " << endl ;
 }
 }
 voi d bar k() {
 cout << " Yi p! Yi p! " << endl ;
 } ;
 voi d bi t e() {
 cout << " Thi s dog doesn' t bi t e. " << endl ;
 } ;
pr i vat e:
 bool l apsi t t er ;
} ;

c l ass Bi gDog : publ i c Dog {
publ i c:
 Bi gDog(const char * n = " Spi ke") :
 Dog(n)
 {
 cout << name << " i s a bi g dog. " << endl ;
 }
 Bi gDog(const Bi gDog &or i g) :
 Dog(or i g) , cat f r i end(or i g. cat f r i end)
 {
 } ;
 ~Bi gDog() {
 cout << " The bi gger t hey ar e, t he har der t hey f al l . " << endl ;
 }
 v i r t ual voi d descr i be() {
 cout << name << " i s a dog who " ;
 i f (cat f r i end) {
 cout << " l i kes cat s. " << endl ;
 } el se {
 cout << " hat es cat s. " << endl ;

 }
 }
 voi d bar k() {
 cout << " Woof ! Woof ! " << endl ;
 } ;
 voi d bi t e() {
 cout << " Ouch! " << endl ;
 } ;
pr i vat e:
 bool cat f r i end;
} ;

voi d mai n() {
 Dog* dogs[3] ;
 dogs[0] = new Dog(" Spot ") ;
 dogs[1] = new Bi gDog;
 dogs[2] = new Li t t l eDog;

 dogs[0] - >descr i be() ;
 dogs[1] - >descr i be() ;
 dogs[2] - >descr i be() ;
 dogs[0] - >bar k() ;
 dogs[1] - >bar k() ;
 dogs[2] - >bar k() ;
 dogs[0] - >bi t e() ;
 dogs[1] - >bi t e() ;
 dogs[2] - >bi t e() ;

 f or (i nt i = 0; i < 3; i ++) {
 del et e dogs[i] ;
 }
}

