Analysis and Representation for Automatic Comparison and Retrieval of Digital Images

> Nicholas R. Howe May 7, 2001

Why Image Retrieval?

- Many applications: – World Wide Web.
 - Video libraries.
 - Digital photography.
- Appealing research:
 - Image segmentation.
 - Object recognition.
 - Image understanding.

Road Map

- Motivation
 - Pushing the abstraction barrier
- Vector method (Stairs)
 - Representation & comparison
 - Evaluation
- Partial-image (object) queries
- Conclusion

Image Retrieval Framework

User supplies a query image.

System ranks images – Returns most similar images from collection.

Diverse collection of images.

Levels of Similarity

• Similarity can occur at different levels of abstraction:

Motivation & Approach

- Image Similarity \Rightarrow Retrieval.
- Area Matching Approach:

• Compare regions in terms of color, crude texture, and location.

A Region-Based Representation

- Begin with segmentation. (Provides locality.)
- Describe each patch using multiple features.
 - Color
 - Texture
 - Location
- Combine such that each piece is preserved.

Stairs: Parts Describe the Whole

- Discretize the range of each feature. (Color, texture, and location)
- Count patches in image described by each combination of features.
 - Blue-Smooth-TopLeft: 5,
 Blue-Smooth-TopMiddle: 1,

. . .

Green-Smooth-TopLeft: 0, etc.

Discretization

- Color: 28 bins
- Texture: 3 bins (smooth, textured, rough)
- Location: 25 bins

• Total: $28 \times 3 \times 25$ = 2100 combinations

Vector Representation (Stairs)

• Final representation of image is a vector with 2100 dimensions.

$$\mathbf{v} = \left\langle v_{c_1 t_1 l_1}, v_{c_1 t_1 l_2}, \dots, v_{c_1 t_1 l_{25}}, v_{c_1 t_2 l_1}, \dots, v_{c_{28} t_3 l_{25}} \right\rangle$$

- Each dimension records how much of a particular type of material is present.
 - e.g., how much smooth blue in the top left corner?

Comparison

- Vectors are points in space.
- Images with similar composition will have similar (normalized) vectors.
- Angle between similar vectors will be small.

Comparison (2)

• Compare two images using a cosine metric:

$$D(\mathbf{v}_1, \mathbf{v}_2) = \cos^{-1} \left(\frac{\mathbf{v}_1^{\mathrm{T}} \mathbf{S} \mathbf{v}_2}{\sqrt{(\mathbf{v}_1^{\mathrm{T}} \mathbf{S} \mathbf{v}_1)(\mathbf{v}_2^{\mathrm{T}} \mathbf{S} \mathbf{v}_2)}} \right)$$

- Note generalization using **S** matrix:
 - -S = I is standard cosine metric.
 - Other values of **S** allow adjustments to metric.

Comparison: Match Coefficients

• Discretization of features loses some similarity information.

– e.g., *Blue* is closer to *Green* than to *Orange*.

 Such partial matches may be encoded in off-diagonal terms of S.

Evaluating the Vector Method

- Evaluations should test realistic conditions.
- Traditional method: Classification set.
 - -12 & 16 categories of ~100 images each.

• New method: Altered-image queries.

Comparison Methods

- Statistical methods in common use:
 - Color Histograms

(Swain & Ballard 1991)

– Banded Autocorrelogram

(Huang et. al. 1997)

Sample Categories

Airshows

Caves

Elephants

Polar Bears

Skiers

Stained Glass

Classification Results

Artificial Queries

• Image \rightarrow Altered Image

• Goal: Locate original in library, using altered image as query.

Altered-Image Results

- Most images retrieved at low rank. (Good!)
- Minority of images retrieved at high rank.

Nicholas R. Howe

Object Queries

Something we've wanted to do all along:
 Search for objects, not whole images.

Object Queries, Method I (Feature-Space Division)

$$S(i,j) = \begin{cases} S_{object}(i,j) \\ S_{background}(i,j) \\ 0 \end{cases}$$

if i and j appear in the target object. if neither i nor j appear in the target. otherwise.

Object Queries, Method II (Vector Components)

- Image vector includes components from both object & background.
- Idea: search for other vectors with similar object components.

Object Queries, Method III (Explicit Area Matching)

• We can explicitly match the regions in the query area, using minimum-cost flow.

Supply & Demand \propto Area Cost \propto Quality of Match

Testing Object Queries

200 images of cars

Visual context is irrelevant.
Classes are colors of car.

Object Query Results

Object Queries in Large Libraries

- Three sets of wolf images
- One set used as query for others.
- Method III vs. other techniques:

Snow Wolves

Green Wolves

Other Wolves

Boosting & Stairs

• Conic separators used as base learner:

Work Accomplished

- Identified need for object-conscious image representation.
- Developed Stairs representation & related algorithms.
- Assessed in comparison with existing techniques: mostly competitive.
- Flexible use of regions allows search for objects & arbitrary figures of interest.

Work Awaiting

- Region descriptions are impoverished.
 - Shape matters.
 - Texture is subtle.
 - Relative positions are important.

• Low-level reliability must improve.

Related Work

• Vector Representation

– Howe & Huttenlocher, 2000; Howe, 2000; Howe 1998

- Earth Mover's Distance
 - Cohen, 1999
- Blobworld (UC Berkeley)
 - Carson et. al., 1999; Belongie et. al., 1997
- Netra (UCSB)

– Deng & Manjunath 1999; Ma & Manjunath, 1997

Segmentation

• Segmenting an image means dividing it into regions that "belong together."

Q. What's a sensible way to segment any given picture?

Characterizing Regions

• When humans segment an image, they can explain why each region hangs together.

 \Rightarrow Models motivate the grouping into regions.

Mathematical Models of Regions

• Model regions as smooth functions + noise:

• 2D example:

Models of Regions (2)

- Each model tries to predict the image.
- Successful models are rare.

Outline of Segmentation Process

 Start with small local regions. (Felzenszwalb & Huttenlocher 1998)

- 2. Create a pool of potential models.
- 3. Measure fit between all models & local regions.
- 4. Select a small number of models that fit many local regions well.

(Details on the next slide)

Goal:

Segmentation Details

• Best segmentation found via energy minimization:

$$E(R) = \sum_{r \in R} Fit(r, M_r) + \sum_{r_1 \in R} \sum_{r_2 \in R} \Delta(r_1, r_2)$$

"The energy of a segmentation into regions R is equal to the fit of each region with its model plus a penalty to discourage excess regions."

• Minimum energy is difficult to compute in general.

Graph Formulation

• Minimum energy = minimum graph cut (compare with Boykov, et. al., 1998)

Graph Formulation (2)

• Minimum graph cut = best segmentation

- Running time bound: quadratic in # of nodes
- Quality bound: Energy found is $\leq 2 \times \text{optimal}$.

Examples

Related Work

- Stereo Vision & Energy Minimization (Boykov, Vexler & Zabih, 1998)
- Normalized Cuts (Shi & Malik, 1997)
- JSEG

(Deng, Manjunath, & Shin, 1999)

The Future

- Moving away from absolutism "OK, we can find red cars. Can we find *cars*?"
 - Relational encodings:
 - White fur <u>next to</u> red velvet
 - A piece of <u>all the same</u> color

- Interplay between segmentation, similarity, and compression/coding
 - e.g., Color & texture from segment model

Challenges

• Assumption: parts that belong together should look alike...

...not always true!

• More sophisticated region models may help.

Generating the S Matrix

• S assembled from matrices S_i for each feature

(Color and Location)

- Smaller matrices are determined by the similarity of the feature values.
 - e.g., *Blue-Green* vs. *Blue -Orange*.

Alternate View of S Matrix

- Cholesky factorization of S: $S = T^T T$
- Cosine metric of modified vectors:

$$D(\mathbf{v}_1, \mathbf{v}_2) = \cos^{-1} \left(\frac{(\mathbf{T}\mathbf{v}_1)^{\mathrm{T}} (\mathbf{T}\mathbf{v}_2)}{((\mathbf{T}\mathbf{v}_1)^{\mathrm{T}} (\mathbf{T}\mathbf{v}_1))((\mathbf{T}\mathbf{v}_2)^{\mathrm{T}} (\mathbf{T}\mathbf{v}_2))} \right)$$

Optimizations

• Similarity computation is linear in sparse vector **v**.

Search Pruning

• Nearest neighbor search can be pruned by projection onto lower-dimensional spaces.

- β is lower bound on α .
- Images with β greater than some cutoff need not be considered.

Dividing the Color Space

- Color seeds are dispersed evenly in HSV color cone.
- Divided into Voronoi regions.
- Ensures perceptual uniformity.

Color Histograms

- Simple & reliable.
- Limited extensibility.

Color Histograms In Action

Successes...

...and Failures:

- Some related images have very different histograms.
- Some unrelated images have nearly the same histogram.

Color Correlograms

• Correlograms consist of a table of probabilities.

$$C(x, y) = P(color(b) = x | (color(a) = x) \land (||a - b|| = y))$$

	Red	Orange	Yellow	etc
1 pixel	0.32	0.0	0.06	0.14
3 pixels	0.16	0.0	0.04	0.0
5 pixels	0.08	0.0	0.03	0.0

"Given a pixel of color *x*, the probability that a pixel chosen distance *y* away is also color *x*"

• Correlograms can be compared like vectors.