
Boosted Decision Trees for Word Recognition in
Handwritten Document Retrieval

Nicholas R. Howe
Dept. of Computer Science

Smith College
Northampton, MA-01063

nhowe@email.smith.edu

Toni M. Rath
∗

Dept. of Computer Science
University of Massachusetts

Amherst, MA-01003

trath@cs.umass.edu

R. Manmatha
∗

Dept. of Computer Science
University of Massachusetts

Amherst, MA-01003

manmatha@cs.umass.edu

ABSTRACT
Recognition and retrieval of historical handwritten material
is an unsolved problem. We propose a novel approach to
recognizing and retrieving handwritten manuscripts, based
upon word image classification as a key step. Decision trees
with normalized pixels as features form the basis of a highly
accurate AdaBoost classifier, trained on a corpus of word im-
ages that have been resized and sampled at a pyramid of res-
olutions. To stem problems from the highly skewed distribu-
tion of class frequencies, word classes with very few training
samples are augmented with stochastically altered versions
of the originals. This increases recognition performance sub-
stantially. On a standard corpus of 20 pages of handwritten
material from the George Washington collection the recog-
nition performance shows a substantial improvement in per-
formance over previous published results (75% vs 65%). Fol-
lowing word recognition, retrieval is done using a language
model over the recognized words. Retrieval performance
also shows substantially improved results over previously
published results on this database. Recognition/retrieval
results on a more challenging database of 100 pages from
the George Washington collection are also presented.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
Models; I.7.5 [Document and Text Processing]: Doc-
ument CaptureOptical character recognition (OCR)

General Terms
Algorithms, Measurement, Experimentation

∗This work was supported in part by the Center for Intel-
ligent Information Retrieval and in part by the National
Science Foundation under grant number IIS-9909073. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are the author(s) and do not neces-
sarily reflect those of the sponsor.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’05, August 15–19, 2005, Salvador, Brazil.
Copyright 2005 ACM 1-59593-034-5/05/0008 ...$5.00.

Keywords
Handwriting retrieval, historical manuscripts, adaboost, de-
cision theory

1. INTRODUCTION
One of the great challenges of the 21st century is to make

all the information in the world accessible. Google and
other search engines have tried to do this for the web and
more recently are attempting to do this for printed books.
However, providing access to the large archives of historical
handwritten material is a challenge - the recognition and re-
trieval of offline handwritten material has still not been ad-
equately addressed. Many such archives exist ranging from
the Presidential papers of George Washington at the Library
of Congress to Isaac Newton’s manuscripts at the Univer-
sity of Cambrige Library [23]. Such collections may often be
large - for example George Washington’s collections at the
Library of Congress exceed 140,000 pages.

Current handwriting recognition technology works in con-
strained domains like postal address recognition/bank check
recognition but recognition rates for large vocabulary ma-
terial are much lower. While this is true for modern doc-
uments, the challenge is even greater for historical hand-
written manuscripts where the pages can suffer from many
problems like ink bleeding and dirt on the paper or in the
scanned images.

Rath et. al. [23] recently proposed the first known au-
tomatic handwriting retrieval system. Their approach used
relevance models. This paper proposes an alternative so-
lution using handwriting recognition followed by retrieval
using language modeling. The recognition scheme proposed
here involves a number of novel ideas for handwriting recog-
nition/retrieval. These include the use of pixels in nor-
malized word images at multiple scales (image pyramids)
as features and the use of a powerful combination of ma-
chine learning techniques - specifically decision trees and
AdaBoost. An innovative approach to creating additional
training data for improving performance is also proposed.
Results on the publicly available dataset used in Lavrenko
et. al. [12] show that a substantial increase in recognition
performance (75% vs 65%) is obtained using the approaches
described here. Substantial improvements in retrieval per-
formance over those presented by Rath et. al. [21] are also
obtained. Further results are presented on a larger and more
challenging database of 100 pages of George Washington’s
manuscripts.

Pixels in image pyramids of normalized word images form
the features. This is unlike many word recognition schemes
[18, 10, 15, 12] which need to compute a number of dif-
ferent kinds of features before recognition. Eliminating the
need to extract and compute features removes one potential
source of error, but can also make the recognition problem
itself harder. As a special case, consider systems that at-
tempt to recognize individual letters and build words out
of them [18]. With this approach, segmenting the letters
into recognizable units becomes the limiting step. By con-
trast, segmentation of individual word images is easier [14]
(though not trivial), and the primary challenge becomes an
image classification problem. Fortunately, focusing on clas-
sification of word images in relatively untouched form means
that powerful machine learning techniques may be brought
to bear: boosted decision trees, in this case.

Boosting is a so-called ensemble classification technique,
meaning that it determines its prediction via the weighted
vote of a diverse set of base classifiers, each of which has
been trained on a different weighting of the training data.
The experiments use AdaBoost [7] because it is one of the
oldest and best understood boosting algorithms. AdaBoost
trains successive versions of its base classifier on differently
weighted combinations of the training data, progressively
focusing as it goes on the harder-to-classify examples. The
weighted vote of the full set of classifiers developed typically
exhibits predictive accuracy much greater than any indi-
vidual classifier in the ensemble. Although AdaBoost can
use “simple” base classifers, in practice a relatively power-
ful base classifier such as a decision tree usually generates
correspondingly stronger results.

One of the challenges in modeling handwritten material is
the skewed distribution of class frequencies (the words follow
a Zipfian distribution) and the consequent paucity of train-
ing data for most word classes. We show how the training
data can be augmented using stochastically distorted copies
of the original data to substantially improve performance.

The rest of the paper is structured as follows. Related
work is discussed in Section 2. The word classification al-
gorithms are discussed in Section 3. Section 4 presents the
experimental results for recognition. The retrieval approach
and the retrieval results are presented in Section 5. Section
6 concludes the paper.

2. RELATED WORK
While recognition rates for printed material in standard

fonts are high, the problem of off-line handwriting recogni-
tion is still a difficult one. (The on-line handwriting problem
is easier because of access to information about pen veloc-
ity and position.) The difficulty arises from the fact that
print is very consistent while there is much more variation
in handwriting. For domains where either the vocabular-
ies are limited (check processing) or there are constraints
(postal address sorting), handwriting recognition has been
well researched and recognition rates are fairly high [18].

Large vocabulary recognition for both modern and histor-
ical documents is, however, a challenging problem. Even for
modern high-quality document images created specifically
for recognition experiments, current state-of-the-art recog-
nizers often have word error rates in excess of 50% [15, 26].
Historical manuscripts are even more challenging because
of the many problems that occur including ink fading, ink
bleeding, shine through and blotches; consequently there is

little work in this area. The 20 page set used in one of these
experiments is a publicly available dataset. The authors in-
troducing that dataset [12] used word level HMMs to get
an average word error rate of about 60% without bigrams
and up to about 40% using bigrams from external corpora.
Similarly high error rates for historical documents have been
reported by others [25].

There have been two other approaches to indexing and re-
trieving historical handwritten manuscripts. One approach
called word spotting involves creating an index analogous to
the index at the back of a book by using word matching tech-
niques [13, 22]. A number of different matching techniques
for this problem were investigated in [22], including dynamic
time warping of 1D features and shape context matching.
While reasonable matching can be achieved, the techniques
are very computationally expensive and it is currently im-
possible to build a system for even a small number of pages
within a reasonable amount of time.

A second approach [23] involves using relevance-based lan-
guage models to annotate word images with probabilities
and then using a language model approach to retrieve page
images. This approach has produced mean average preci-
sion values ranging from 53% for one word queries to about
84% for four word queries [21] on the same dataset.

Previous recognition and retrieval approaches have usu-
ally created different kinds of features to characterize a word
image which are then used for recognition [12] or retrieval
[23]. Our approach here is significantly different in that no
features are explicitly computed. Instead, the recognition
process uses values sampled directly from the word image
at varying resolutions.

The combination of boosting with decision trees has been
used previously in machine learning research [5], but has
not to our knowledge been applied before for handwritten
word recognition. Indeed, even boosting has only recently
begun to see widespread use in image processing. Notable
applications are to content-based retrieval of photographic
images [24, 9] and for object detection [27, 4].

3. CLASSIFICATION ALGORITHM
The boosted word classification algorithm works directly

with the pixel representation of the word image rather than
higher-level features that must be extracted. Handwrit-
ten words belonging to a single class have similar but not
identical ink distributions. In particular, the relative po-
sitions of individual features within the word (letters and
letter segments) will shift from example to example, making
straightforward use of the pixel representation ineffective.
Nevertheless, the pixel representation contains information
about word identity that can be amplified by boosting. Fig-
ure 1 shows a composite image of 21 examples of the word
Instructions. Blurring indicates areas of inconsistency, yet
some features can also be clearly distinguished. If each pixel
in the image is taken as a potential feature for classifica-
tion, then the clearer areas will contain more reliable fea-
tures. Heuristics such as information gain can help to iden-
tify which features are reliable, and boosting can amplify
their effectiveness.

3.1 A Common Framework
In order for pixels to serve as features for word image clas-

sification, each word image must be mapped onto a common
pixel grid. For simplicity, assume that all word images are

Figure 1: A composite image created from 21 su-
perimposed versions of the word Instructions.

Standard Φ0 Φ1

Figure 2: A standard image, and grids Φ0 and Φ1.

initially scaled and translated in such a manner that their
horizontal midline (computed as described below) spans the
interval from the origin to (1, 0) on the Cartesian plane.
(Call this the standard image.) Resampling from each stan-
dard image at some uniform grid of points will produce a
common pixel representation, as required. The composite
image in Figure 1 was produced by taking the average of 21
resampled standard images.

Variations in word length and aspect ratio present some
difficulty in choosing the resolution and extent of this grid.
Long words require high resolution to capture all their de-
tails, but tend not to extend far in the vertical direction.
Short words do not require high resolution but do cover
greater vertical extent. Unfortunately, accommodating both
extremes at once requires a grid of both high resolution and
large vertical extent, resulting in astronomical data sizes.

A pyramid approach provides the answer. We define a
family of standard grids, beginning with a base grid Φ0 cov-
ering the square region ([0, 1], [−0.5, 0.5]) and broken into
32 × 32 pixels.1 Successively refined grids cover the same
square region with double the linear resolution, e.g., Φ1 has
64 × 64 pixels. Figure 2 shows an example. The grid pixels
themselves can be thought of as being organized in a tree-
like structure, where each grid point in Φk has four children
in Φk+1.

The pyramid of grids can be represented efficiently in two
ways. First, the standard image usually will not cover the
full vertical extent of the grid. Portions above and below
the edges of the standard image may be represented using a
single default value (e.g., white). Second, data need only be
stored for Φk with resolution up to that of the reference im-
age. If k̂ denotes the index of the highest resolution stored,
then values of Φk(i, j) for k > k̂ may be computed according

to Equation 1 below. The value of k̂ will vary for each stan-
dard word image, but range in the experiments from one to
six with a median at four.

1Although a few words have aspect ratios taller than they
are wide, this square area captures all the detail of interest
for most words.

Φk(i, j) = Φ
k̂

(⌈

i

2(k−k̂)

⌉

,

⌈

j

2(k−k̂)

⌉)

, for k > k̂ (1)

3.2 Boosting and Decision Trees
Before going further, a brief review of AdaBoost is in

order, with specifics about its application to word images.
Boosting requires a base classifier capable of learning to clas-
sify arbitrarily weighted training data with an accuracy of
at least 50%. (“Arbitrarily weighted” means that the con-
tribution of each training example to the overall accuracy
can vary relative to the others, as dictated by the needs of
the boosting algorithm.) In two-class problems almost any
classifier will do, but situations with many potential classes
(e.g., word image recognition) present more limited choices
because there are more ways to be wrong. Decision trees
present themselves as the foremost option because they are
well understood and can achieve arbitrary accuracy on the
training data in practice. (At each node of the decision tree,
the training examples are split into two smaller subgroups
by comparing the value of a chosen pixel location in each to
a chosen threshold. The subnodes can further split the data
until each leaf contains exactly one training example, which
can then be assigned the correct label.)

Of course, a tree trained to 100% accuracy overfits the
data and generalizes poorly to new examples. Decision tree
algorithms typically include steps to prune overfitted trees
by removing branches statistically unlikely to generalize well.
Less precisely, one can simply terminate growth of the deci-
sion tree early, before 100% accuracy is reached. In exper-
iments, the latter approach has proved more efficient and
may actually produce slightly better results. Accordingly,
we stop the growth of a tree branch when the subset of
training examples it contains is dominated by a majority
class (thus ensuring that the training set error will be less
than 50%).

C4.5 [20] provides the algorithm for building the decision
tree, with some modifications designed to support the grid
pyramid data structure described above. When building
each node of the decision tree, a feature (i.e., pixel location)
and threshold value must be chosen as the split criterion.
Examples are split at the node depending on whether their
value for the chosen feature is less than the threshold or not.
C4.5 exhaustively examines all possible features and split
points to determine the best criterion. With the grid pyra-
mid, fully exhaustive search is not feasible. Instead, only Φ0

is examined exhaustively, and the location and threshold of-
fering the greatest information gain is retained. The search
then proceeds selectively to its children in Φ1, from there to
the children of the best of those locations, and so on until
the maximum resolution available has been reached. At the
end, the grid level, location, and threshold with the high-
est information gain becomes the decision criterion for the
node. For both generalization accuracy and speed, only a
set number of thresholds are considered as possible decision
criteria (7 in the experiments below).

As the experiments below make clear, single trees do not
generalize well for handwritten word images, even with prun-
ing. The boosting stage raises generalization accuracy con-
siderably. AdaBoost proceeds in a series of rounds. Initially,
a base classifier is generated normally from the training data.
If not overtrained, it will classify some of the training ex-
amples correctly, and misclassify others. AdaBoost adjusts

Original Warped Overlay

Figure 3: A word image, a resampled version, and
an overlay of the two (for comparison).

the succeeding rounds of boosting by raising the weights
of the misclassified items and lowering the weights of the
correctly classified ones. This has the effect of forcing the
base classifier to work harder to get a correct result for the
items that were previously misclassified. After many rounds
of boosting, a weighted vote of the classifiers from all the
rounds classifies the training set perfectly and shows good
generalization to unseen examples.

The number of rounds of boosting may be set via cross-
validation on subsets of the training data. In practice, be-
yond a certain point the results are not very sensitive to the
number of rounds [8]. Therefore, the experiments in this
paper train consistently for 200 rounds, which appears more
than adequate in cross-validation tests.

3.3 Supplementary Training Examples
Among other factors, the paucity of training examples

for many classes makes generalization difficult. Zipf’s law
[28] implies that most of the words in any natural training
set will make only a few appearances. For example, in the
GW20 data set described in the next section, 681 of the
1187 (57%) word labels appear only once, and another 183
appear twice. Only 179 appear more than five times, but
the most common word (“the”) appears 238 times.

The skewed distribution of training examples can work
against accurate classification in two ways. Many algorithms
for machine learning implicitly assume that class frequencies
are roughly comparable. Even when they do not, it is very
difficult to learn a class from a single exemplar, because no
information on variance can be directly obtained. A body
of work on one-shot learning [6] has attempted to address
this shortfall by applying variance models learned from the
high-frequency classes. Although this paper does not use a
variance model learned from the training data, the experi-
ments in the next section do generate new training examples
for low-frequency classes via stochastical distortions of the
available examples. While this approach may not capture
all the variance that would be present in actual data, it does
help to improve the overall word classification accuracy.

To generate a distorted word image, one can sample from
the original using a grid of points whose positions have
been perturbed from a uniform lattice. For greater real-
ism, nearby points should be perturbed by similar amounts.
Starting with the uniform lattice, initial random perturba-
tions along each coordinate axis are smoothed to yield the
desired spatial coherence at a chosen scale. Further global
adjustments ensure that the borders of the warped grid are
rectangular. Sampling from the resultant warped grid yields
a new word image that is a distorted version of the old, as
shown in Figure 3.

The experiments described in the next section use this
process to generate additional training examples that vary
slightly from the originals. The number of times each train-
ing example must be duplicated depends upon the number

of other examples of its class present in the training set.
The number of duplicates is chosen so that in the end there
are at least eight examples of each class. So for example, a
single example of a class is duplicated seven times, a pair of
examples three times each, a triplet twice each, and so on.
Word classes with eight or more examples in the training set
require no duplication at all.

4. CLASSIFICATION EXPERIMENTS
Tests of the word classification system use pages of hand-

written text from the letters of George Washington at the
Library of Congress. 20 pages from this source are publicly
available and form the GW20 set. GW20 was previously
used for handwriting recognition [12] and for line retrieval
[21]. An additional 100 pages not overlapping with GW20
form the GW100 test set. Both sets include words writ-
ten by multiple hands because Washington employed secre-
taries. Each page in the data sets was manually segmented
to extract images of individual words (4856 in GW20 and
21324 in GW100). All of the word images were labeled by
an annotator with their ASCII equivalent. The labeling is
used as the ground truth for our recognition and retrieval
experiments.

The GW20 data form the basis for a set of experiments on
word classification rates. Each experiment adopts a cross-
validation framework, with each fold using nineteen pages
for training and a single page for testing. As a control,
the first experiment employs a single decision tree for word
recognition. (Unlike the trees used for boosting, these are
standard C4.5 trees, grown to completion and then pruned.
However, the majority-trees used elsewhere produce simi-
lar results.) Following that, the second experiment uses
AdaBoost with decision trees as the base learner. Exper-
iment three augments the original training data with ad-
ditional modified training examples, as described in Sec-
tion 3.3. (Note that there is no experiment using AdaBoost
with a base classifier simpler than decision trees, because
the threshold of 50% accuracy required for the base classi-
fier cannot be achieved by simple means.)

Table 1 shows the results of these experiments. The first
column of numbers gives the percentage of correct classifi-
cations for each experiment (mean and standard deviation
taken over all the folds) using all available test words. The
second column gives the classification rate excluding out-of-
vocabulary OOV words. OOV words are those for which
no training example is available in a particular fold, and
which consequently cannot be classified correctly by super-
vised learning algorithms.

As expected, AdaBoost substantially improves classifica-
tion accuracy as compared to the base classifier (a decision
tree). More interestingly, the addition of artificially gener-
ated examples to the training set yields significant further
improvement. Despite the fact that the new examples added
are merely modified versions of ones already present in the
training set, their inclusion appears to promote better gen-
eralization in the final boosted classifier. The performance
on the final experiment exceeds previously published results
on the same data [12].

Following the results above, a boosted decision tree clas-
sifier is trained on the full GW20 data set, with artificial
training examples added in the sparsely represented classes.
In tests on the larger GW100 set, this classifier achieves 44%
accuracy over all words, or 59% when OOV terms are ex-

Table 1: Results (accuracy) of word image classifi-
cation experiments on the GW20 data set compared
with the previous best results in [12] Note that our
technique does not exploit bigram statistics.

Experiment All words Excluding OOV
I. Decision tree 31.1 ± 4.6 % 36.8 ± 4.6 %
II. Boosted trees 51.1 ± 5.2 % 61.6 ± 4.6 %
III. Added examples 63.6 ± 5.3 % 75.2 ± 4.1 %
IV. Previous best 55.1 ± 7.0% 65.1 ± 6.0%
with bigrams
V. Previous best 49.7 ± 7.0% 58.6 ± 6.0%
without bigrams

cluded. (Decreased image quality and a greater prevalence
of OOV words explain the lower performance on GW100 as
compared to GW20.) The predictions of this classifier may
then be used for retrieval purposes on the GW100 set.

5. RETRIEVAL
This work adopts the language modeling approach to re-

trieval [19, 11, 23]. In particular the retrieval experiments
use the query likelihood formulation, where the documents
are ranked according to the probability of the query given
the document i.e. P (Q|D). AdaBoost provides classifica-
tion decisions rather than probabilities, meaning that only
the most likely label for each word image is preserved. (Al-
though the AdaBoost algorithm generates a score for each
potential word label to be used for classification, these scores
provide low correlation with class probabilities [16].) Given
these strictures, we use two approaches for retrieval and es-
timation of the probabilities of different words.

The first approach simply assumes that a text document
contains all the recognized outputs (i.e., no classification
errors occurred). Invoking maximum likelihood, the proba-
bilities of different words are estimated to be equal to their
frequencies in each recognized document. (Smoothing with
the collection frequency is not observed to change the re-
sults much, so is omitted.) Obviously, this approach ignores
the fact that some of the words may have been misclassified
and hence the frequency estimates may be incorrect. The
problem becomes more pronounced as the word error rate
increases, spawning a need to better assess the uncertainty
in the AdaBoost classification. Because the scores computed
by AdaBoost are not completely reliable for use as proba-
bilities, we turn for the second approach to a regularization
scheme based upon classification rank information.

Researchers in both text [2, 3] and image retrieval [17]
have noted that rank information may be more useful than
actual probabilities. The key insight is that a few top terms
are most important, some are moderately important and
the rest are irrelevant. By fitting a Zipfian distribution to
the retrieval terms they obtain a set of probabilities that
yield good results. In a similar vein, we infer a probability
distribution from the rank ordered output of the AdaBoost
classification algorithm. In other words, AdaBoost assigns
a given word image a score for each possible class in the
lexicon. Normally, the word image is then assigned to the
class with the highest score (as in the first approach). For

the second approach, we instead rank the top n classes ac-
cording to the scores. The scores are discarded and the rank
order is preserved. The probabilities for these classes are de-
termined by fitting it to a Zipfian distribution by assigning
probabilities

P (r) = Z
1

r

to the annotation term at rank r, where Z is a normalization
constant to ensure P is a probability distribution. Instead of
the document having one possible word at each image posi-
tion, the document now contains a probability distribution
at each position. These distributions are used to estimate
the actual term probabilities. That is, the document mod-
els are now the average of all per-word-image annotation
distributions. The experiments show improved performance
using this approach on GW100, where the overall word error
rate is higher.

The AdaBoost classification outputs on the GW20 and
GW100 sets were used as input to the Lemur toolkit [1], a
software package which implements various retrieval meth-
ods that are mostly in the language modeling spirit. We
evaluated the retrieval performance on our automatically
classified test collections with the query-likelihood ranking
method. The experiments performed include 20 cross-validation
runs using 19/1 train/test splits of the GW20 set, plus two
experiments which use GW20 for training with retrieval
evaluation on GW100.

Because of the limited size of GW20 (4856 images), we
perform line retrieval. GW20 consists of 657 lines, which
are randomly split into 10 disjoint parts, as in previous work
[21]. Each cross-validation run uses one part as the testing
set, with the remainder forming the training set. For evalu-
ation purposes, a line is considered relevant to a query if it
contains all of the query terms. (Page retrieval also makes
use of this principle in later experiments.) The experiment
includes all 1- to 4-word queries consisting of terms with
training data available, and for which at least one relevant
item exists in the testing set. Stop words are removed, ex-
cept from the 1-word queries, for consistency with the query
selection technique used in previous work [21].

The GW100 dataset is large (21324 word images) and al-
lows for tests of full page retrieval using GW20 as the train-
ing set. Again, we extract all 1- to 4-word queries which
occur in the testing set, but also in the training set (always
excluding stop words). However, because of the very large
number of queries, the longer query sets are limited to some-
what less than 2000 members by choosing only the queries
with the most relevant items in the test set.

Table 2 shows the mean average precision results obtained
on the two data sets. GW20-ta and GW100-ta use only the
top-ranked annotation for each word image, essentially per-
forming retrieval on top of an automatic transcription. The
results for GW20 are averaged over 10 cross-validation runs.
Retrieval on GW20 performs very well, substantially better
than previously reported results on the same data set [21] ,
which were 54%, 63%, 78% and 89% for 1- to 4-word queries
respectively. It should be pointed out, however, that the re-
sults in [21] were obtained with automatically segmented
pages, so slightly worse performance is to be expected.

The results of the GW100-ta run are significantly lower
(also see recall precision graph in Figure 4), because the task
is much harder. Numerous factors combine to make lower
recognition/retrieval rates likely, even expected. The ink in

Table 2: Retrieval results (average precision in per-
cent) on the GW20 and GW100 data sets, and num-
ber of queries run on each set. For the GW20 pre-
vious best results are those reported in [21]. For
GW100, retrieval was performed using only the top
annotation term for each word image (GW100-ta)
and using the top 20 annotations with probabilities
(GW100-pa).

Test run 1 word 2 words 3 words 4 words

GW20-ta 79.53% 80.17% 86.48% 90.04%
Queries 1869 1348 708 210

Previous best 54% 63% 78% 89%
GW20

GW100-ta 12.59% 27.98% 37.71% 39.57%
GW100-pa 20.33% 30.67% 37.24% 38.40%
Queries 544 1874 1777 1557

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

1-word queries
2-word queries
3-word queries
4-word queries

Figure 4: Recall-precision graph for the GW100
data set. Only the top-ranked annotation of each
word image was used.

the word images is much more uneven, with fading evident
in many words. The training/test split of 1/5 is far more
challenging than the 19/1 split for the GW20 collection. An-
other factor may be the larger vocabulary size of the GW100
set when compared to GW20, making classification more
error-prone. More than a quarter (25.7%) of the vocabulary
in GW100 does not appear in GW20. Other reasons include
the larger number of retrieval units (100 pages in GW100
vs. roughly 66 lines in GW20) and the inclusion of greater
handwriting variation in GW100. (GW100 is less temporally
coherent than GW20, and handwriting varies over time.)
Given all of these factors, the lower GW100 results are not
surprising, especially considering that the performance of
the best text retrieval engines on text databases does not
exceed an average precision of 50%.

With the higher word error rate on this test set, the hard
categorization done by AdaBoost becomes an impediment
to retrieval. To improve performance we now use the sec-
ond approach for estimating term probabilities using ranks
described above. In particular we estimate the probabilities
for the GW100 collection for the top 20 ranks for each word
image.

This procedure achieves significantly higher performance
for 1-word and 2-word queries, but about the same or slightly
worse for 3- and 4-word queries (see run GW100-pa in Ta-
ble 2). Three and four word queries already benefit from the
redundancy provided in the longer queries which probably
explains why their performance does not increase. This re-
sult shows clearly how retrieval of automatically recognized
objects can benefit from probabilistic annotation. The key
is to avoid hard (and potentially wrong) classification deci-
sions and to retain information about alternative categories
when the class predictions are of dubious quality.

6. CONCLUSION
Although this work uses standard machine learning tech-

niques to tackle the word recognition problem, several points
deserve notice because they highlight special features of the
word recognition domain. First, most learning algorithms
are not designed to deal with training data that exhibits
the highly skewed distribution of class frequencies seen here.
The technique used to mitigate this situation (synthetic vari-
ation on existing data) does not always work because the
synthetic training examples are not truly independent of the
originals. Yet the technique appears highly effective for word
images. Second, most applications eschew point samples as
features because individual pixels in most images do not
correlate well with semantic classes. The success of point
features in this case may be attributed to careful alignment
of the word images, consistency of handwriting style, and
the ability of boosting to act as a feature selector.

While the recognition/retrieval rates obtained for the GW20
collection are very good, it is clear that the problem be-
comes more challenging when the datasets are larger, more
noisy and the training/test splits are changed to use small
amounts of training as in the GW100 collection. Using
soft classification decisions can improve the performance for
queries of smaller length.

Many of the problems with the GW100 collection may
simply be due to the more challenging image processing re-
quired. We believe that the approaches described here can
be modified to substantially improve the performance on
this dataset along with improvements in image processing.

Machine learning and information retrieval techniques will
play an important part in this endeavour (as here). This
will take us closer to the day when all the world’s material
can be indexed.

7. ACKNOWLEDGMENTS
We would like to thank the Library of Congress for pro-

viding the digitized manuscript images that were used in
this work.

8. REFERENCES
[1] The lemur toolkit for language modeling and

information retrieval, 2005. available at
http://www-2.cs.cmu.edu/~lemur/.

[2] V. N. Anh and A. Moffat. Robust and web retrieval
with document-centric integral impacts. In Proc. 2003
Text Retrieval Conference, November 2003.

[3] V. N. Anh and A. Moffat. Collection-independent
document-centric impacts. In Proc. Australasian
Document Computing Symposium, pages 25–32, 2004.

[4] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios.
Boostmap: A method for efficient approximate
similarity rankings. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 268–275, 2004.

[5] L. Breiman. Arcing classifiers. The Annals of
Statistics, 26(3):801–849, 1998.

[6] L. Fei-Fei, R. Fergus, and P. Perona. A bayesian
approach to unsupervised one-shot learning of object
categories. In International Conference on Computer
Vision, pages 1134–1141, 2003.

[7] Y. Freund and R. E. Schapire. Experiments with a
new boosting algorithm. In Proceedings of the
Thirteenth International Conference on Machine
Learning, pages 148–156, 1996.

[8] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: a statistical view of boosting. The
Annals of Statistics, 28(2):337–407, 2000.

[9] N. R. Howe. A closer look at boosted image retrieval.
In International Conference on Image and Video
Retrieval, pages 61–70, 2003.

[10] G. Kim, V. Govindaraju, and S. N. Srihari.
Architecture for handwritten text recognition systems.
In S.-W. Lee, editor, Advances in Handwriting
Recognition, pages 163–172. World Scientific, 1999.

[11] J. Lafferty and C. Zhai. Document language models,
query models, and risk minimization for information
retrieva. In the 24th annual international ACM SIGIR
conference, pages 111–119, 2001.

[12] V. Lavrenko, T. Rath, and R. Manmatha. Holistic
word recognition for handwritten historical
documents. In Proc. of the IEEE Workshop on
Document and Image Analysis for Libraries DIAL’04,
pages 278–287, 2004.

[13] R. Manmatha and W. B. Croft. Word spotting:
Indexing handwritten manuscripts. In M. Maybury,
editor, Intelligent Multi-media Information Retrieval,
pages 43–64. AAAI/MIT Press, 1997.

[14] R. Manmatha and N. Srimal. Scale space technique
for word segmentation in handwritten manuscripts. In
In the Proc. of the Second International Conference
on Scale-Space Theories in Computer Vision
(Scale-Space’99), pages 22–33, Sep. 1999.

[15] U.-V. Marti and H. Bunke. Using a statistical
language model to improve the performance of an
hmm-based cursive handwriting recognition system.
Int’l Journal of Pattern Recognition and Artifical
Intelligence, 15(1):65–90, 2001.

[16] D. Mease, A. J. Wyner, and A. Buja. Boosted
classification trees and class probability/quantile
estimation. Technical report, submitted to Journal of
Machine Learning Research, 2004.

[17] D. Metzler and R. Manmatha. An inference network
approach to image retrieval. In Proc. International
Conference on Image and Video Retrieval
(CIVR-2004), pages 42–50, July 2004.

[18] R. Plamondon and S. N. Srihari. On-line and off-line
handwriting recognition: A comprehensive survey.
IEEE Trans. on Pattern Analysis and Machine
Intelligence, 22(1):63–84, 2000.

[19] J. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In the 21st annual
international ACM SIGIR conference, pages 275–281,
1998.

[20] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann, 1993.

[21] T. Rath, V. Lavrenko, and R. Manmatha. A statistical
approach to retrieving historical manuscripts without
recognition. Technical report, Center for Intelligent
Information Retrieval technical report MM-42, 2003.

[22] T. Rath and R. Manmatha. Word image matching
using dynamic time warping. In Proceedings of
CVPR’03, volume 2, pages 521–527, 2003.

[23] T. Rath, R. Manmatha, and V. Lavrenko. A search
engine for historical manuscript images. In The 27th
Annual international ACM SIGIR Conference, pages
369–376, 2004.

[24] K. Tieu and P. Viola. Boosting image retrieval. In
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume I, pages
228–235, 2000.

[25] V.Govindaraju and H. Xue. Fast handwriting
recognition for indexing historical documents. In
Proc. of the Int’l Workshop on Document Image
Analysis for Libraries (DIAL), pages 314–320, 2004.

[26] A. Vinciarelli, S. Bengio, and H. Bunke. Offline
recognition of unconstrained handwritten texts using
hmms and statistical language models. IEEE
Transactions PAMI, 26(6):709–720, 2004.

[27] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In IEEE
Conference on Computer Vision and Pattern
Recognition, pages 511–518, 2001.

[28] G. Zipf. Human Behaviour and the Principle of
Least-Effort. Addison-Wesley, Cambridge, MA, 1949.

