
Segmentation free spotting of Cuneiform using part structured models

Bartosz Bogacz
Interdisciplinary Center
for Scientific Computing,

Heidelberg University, Germany
bartosz.bogacz@iwr.uni-heidelberg.de

Nicholas Howe
Smith College

Northampton, MA, USA
nhowe@cs.smith.edu

Hubert Mara
Interdisciplinary Center
for Scientific Computing,

Heidelberg University, Germany
hubert.mara@iwr.uni-heidelberg.de

Abstract—Cuneiform scripts constitute an immense source
of information about ancient history, dating back almost four
thousand years. Documents were written by imprinting wedge-
shaped impressions into wet clay tablets, and current scholarly
practice typically transcribes the resulting markings by hand
with ink on paper. This work develops algorithmic methods for
cuneiform script, combining feature extraction for cuneiform
wedges with prior work on segmentation-free word spotting
using part-structured models. We adapt the inkball model used
for word spotting to treat wedge features as individual parts ar-
ranged in a tree structure. The geometric relationship between
query and target is measured by the energy necessary to deform
the tree structure. We also introduce an optimizing method for
wedge feature extraction based on optimally assigning tablet
structuring elements to hypothesized wedge models. Finally,
we evaluate the method on a real-world dataset, and show
that it outperforms the state of the art in cuneiform character
spotting.

Keywords-Cuneiform script, Word spotting, Symbol spotting,
Spatial pattern recognition, Part structured models, Optimal
assignment, Feature extraction, Gaussian mixture models, Hid-
den Markov models

I. INTRODUCTION

For more than three millenia in the ancient Middle East,
scribes wrote documents using cuneiform script [1]. Char-
acters were typically written on clay tablets by imprinting
a rectangular stylus and leaving a wedge (cuneus in Latin)
shaped trace, i.e., triangular markings. As clay was always
cheaply and easily available, those capable of writing could
produce a multitude of documents. Therefore, the content
of cuneiform tablets ranges from mundane shopping lists to
treaties between empires. Figure 1 shows an excerpt from
one of our cuneiform tablets used in our source data.

The Cuneiform Digital Library Initiative [2] incorporates
a number of projects aimed at cataloging cuneiform doc-
uments and making them available online as tracing, 2D
image and sometimes as transliteration. However, the library
cannot be searched using cuneiform characters as queries.
Only the transliterations can be searched using Latin query
words.

Our main contributions in this work are the optimal
extraction of wedge features given a wedge model, the
introduction of two new wedge feature representations and
the adaptation of part structured models by Howe [3]. We

Figure 1. Excerpt of our source data. A SVG providing a born-digital
cuneiform tablet.

combine these approaches to propose a new method for
segmentation-free spotting of cuneiform characters.

Previous Work

In previous work we presented methods homogenizing
various sources of cuneiform tablets [4], [5], such as pho-
tographs, 3D scans [6] of original tablets and transcriptions
created with a vector graphics editor. We transformed each
representation into a 12 dimensional feature vector of key-
points of a wedge-shaped impression. We evaluated different
methods for comparing cuneiform characters and introduced
a comparison method based on linear assignment [7], [8].

Previous work on part structured models [3] by Howe
introduced a method for segmentation free word spotting
in handwritten documents that models query words using
overlapping balls of ink, with a representation of their 2D
spatial layout based upon neighbor offsets. The same spatial
representation can be used with many components besides
inkballs; here we apply the method to our representation of
cuneiform wedges to achieve an algorithm for segmentation
free spotting of cuneiform characters. The representation,
which we describe as a structured wedge model, allows
computation of an approximation to the optimal one-to-one
wedge assignment that is possible for segmented characters,
except that the algorithm described in Section IV efficiently
computes the optimal approximate match over an entire
tablet at once.

Related work

Rothacker et. al [9] employ their word-spotting framework
based on bag-of-features Hidden Markov Models (HMM)



[10] for segmentation-free character spotting of cuneiform.
A 3D scan of a cuneiform tablet is transformed into a
2D representation using the curvature of the tablet surface.
Then, the authors learn a HMM on a single example query
word and spot cuneiform characters by decoding the learned
HMM on a grid of possible positions on the cuneiform tablet.

HMMs are usually used for segmentation-free word-
spotting [11]. They model the query word as sequence of
vertical, sometimes overlapping, slices and a state machine
with transition probabilities between the slices that are
learned given the example query.

Another approach to matching words, also in historical
context, is the work of Leydier et. al [12] that uses features
with an elastic matching method. They use a concept of
zones of interest, like vertical stem lines in latin script, to
extract differential features, a histogram of oriented gradi-
ents, that are then matched using cohesive elastic matching.

Other work on word-spotting is not applicable since the
very varied geometric position of the wedges induces a lot
of vertical complexity. Word-spotting methods commonly
assume that discriminative features are primarily encoded
on the horizontal axis [13].

II. EXTRACTION OF KEYPOINTS

In this work we derive our dataset from SVG files [5]
providing born-digital cuneiform tablet transcriptions. This
saves us the task of detecting the strokes used to draw
wedges, these are directly enumerable from the source data,
but we still have to identify which set of strokes denotes a
cuneiform character.

Our input data is a set of spline paths that we call strokes.
Wedges consist of up to six strokes, three for the triangular
wedge-head and three for the wedge-arms. We detect wedge-
heads by finding three pairwise intersecting strokes. Wedge-
arms are any additional strokes that intersect any stroke
of the wedge-head. This description of wedges is general
enough to match all wedges on a born-digital cuneiform
tablet. It also matches many more structures which are
not proper wedges as seen in Figure 2. One difficulty is
that cuneiform script is written very densely. Strokes from
different wedges may intersect and create false positive
wedge-heads or false positive wedge arms.

We approach this challenge by assuming that most strokes
have been drawn to indicate proper wedges. We assign
strokes to detected candidate wedges. Strokes cannot fill
two roles at once. Either, i) a stroke is assigned to be one
of the three sides of a wedge-head or ii) it is assigned to
be one of the three wedge-arms. Strokes can also be left
unused if drawn by error on a transcription. This task can
be expressed as an optimal assignment problem, facilitating
a computationally efficient solution.

Let s1 . . . sn be the set of strokes, w1 . . . wm the set
of candidate wedges by finding walks of three pairwise
intersecting strokes. Each stroke also has endpoints, s =

Figure 2. A simplified visual representation of the score matrix used for
optimally assigning strokes to wedges. False positive candidate wedges are
gray triangles. True positive candidate wedges are orange and blue. The
green check mark signifies a match with high score, the orange triangle a
match with low score and the red cross a match that is not allowed.

{vs,1, vs,2}, these are two points that are most distant
from each other lying on the boundary that describes the
spline of the stroke. Each wedge-head has three points
w = {vw,1, vw,2, vw,3}, the centers of the intersection
areas of the strokes describing this wedge, and a center
vcw = (vw,1 + vw,2 + vw,3)/3.

Let A be a set of allowed assignments (s, w) ∈ A of
strokes s to wedges w. An assignment is allowed if a stroke
s touches one of the three pairwise intersecting strokes of
a wedge-head w. For the two roles a stroke can fill, we
define two score functions. The score function ch computes
the score of assigning a stroke to a candidate wedge-head
as one of the three pairwise intersection strokes.

chsw =

{
area(w) ∗ γ, if (s, w) ∈ A,
−1, else

(1)

We preferentially assign strokes to wedge-heads. Different
weighting parameters were tested γ = (0.1, 5, 10, 20) with
γ = 10 giving the best results.

When weighting the assignment of strokes as wedge-arms,
we want to minimize the angle between the direction an edge
of the wedge-head is pointing to, ~vw, and the direction of
the stroke, ~vs. This is described by the score function ca.
Wedges typically have obtuse-angled wedge-arms, therefore,
we penalize acute angles and disallow angles smaller than
45◦.

casw =

{
α = max ~vs · ~vw, if (s, w) ∈ A ∧ α < 45◦

−1, else
(2)

We arrange the costs in a m × (n + m) matrix for
optimization. The matrix has n rows for each of the strokes



Figure 3. a) The original wedge as present on the cuneiform tablet. b)
Keypoints model, each red cross marks one of the six extracted keypoints.
c) Gaussian mixture model, contour lines for two Gaussian mixtures for
one keypoint are shown. d) Template model, each red dot indicates a bit
in the feature vector. The count of set bits varies depending on the shape
of each character.

to be uniquely assigned and m ∗ 6 columns for m wedges
with 6 possible positions and orientations each. Additionally,
there are m columns for strokes that have not been assigned
to any candidate wedge. Figure 2 shows a simplified and
illustrative version of this matrix.

C =

w1 . . . wm s1 . . . sn


ch . . . ca . . . ch . . . ca 1 . . . 0 s1
ch . . . ca . . . ch . . . ca 0 . . . 0 s2
ch . . . ca . . . ch . . . ca 0 . . . 0 s3

...
. . .

...
. . .

...
ch . . . ca . . . ch . . . ca 0 . . . 1 sn

(3)

Finding an optimal assignment using the Hungarian
method [14] returns a subset of viable wedges, where each
candidate wedge has been assigned at least three strokes in
wedge-head roles.

III. WEDGE MODELS

From the extracted subset of viable wedges, see Section II,
we compute and evaluate the three following wedge models.
Each of the models assumes a prototypical shape of a wedge.
Due to the manner in which wedge-shaped impression are
created, that is, by impressing a rectangular stylus in wet
clay, all wedges share the shape of a triangle, the cut of a
rectangle’s edge.

Additionally, only few orientations and shapes of wedges
were used for writing. Therefore, we aim to keep our models
very simple and describe only the most necessary features
of a wedge-shaped impression to discern its meaning.

A. Key-point Model

The key-point model derives directly from the way
wedges are drawn in transcriptions. It models wedges using
six two-dimensional points as shown in Figure 3. The first
three points are the vertices of the three pairwise intersecting
strokes forming the wedge-head. The last three points are
endpoints of the wedge-arms attached to the respective
wedge vertices. This model is described in detail in [8].

Let fk be the feature vector of a wedge in the key-point
model and x1, y1 . . . x6, y6 the respective key-points.

fk = (

Wedge-head︷ ︸︸ ︷
x1y1 x2y2 x3y3

Wedge-arms︷ ︸︸ ︷
x4y4 x5y5 x6y6) (4)

Wedges in the key-point model are compared using the
Euclidean distance. The 12-dimensional features are not
being normalized as the sizes and lengths carry meaning.

B. Binary Templates Model

While the key-point model accurately describes the shape
of a wedge, it can be simplified since the exact angle of
the wedge-arms and their exact length do not change the
meaning of a wedge. The binary templates model is a
compromise between an exact visual representation and a
purely semantic representation of wedges. The wedge-head
and the wedge-arms are matched against a set of templates
and successful matches are recorded in the binary feature
vector. This approach is similar to standardized cuneiform
wedges used for writing in Assyriology and encoded in
Unicode [15].

The templates are sets of vectors extending from the
center of the wedge-head. These vectors point in eight
different directions and have three different lengths to ac-
commodate different scales of wedge-heads and wedge-
arms. This arrangement is shown in Figure 3

Let tk be a vector in the set of template vectors. The
templates are enumerated by the set of angles {α = 45◦n |
0 ≤ n < 8∧n ∈ N} and template sizes {t̂ ∈ 1, 5, 10}. Using
this discretization our binary vectors are 24-dimensional.

tk =

{(
sinα
cosα

)
t̂ | α, t̂

}
(5)



Then, the feature vector f b is a binary vector defined as
follows, where the notation [i = j] indicates the Kronecker
delta.

f bk = [argmaxk tk · fkl = k] (6)

The resulting binary feature vectors are compared using
the Euclidean distance. Testing with the cosine distance
yielded worse results.

C. Gaussian Mixtures Model

We can imagine written wedges are imperfect manifes-
tations of a small set of prototype wedges. We model this
assumption by learning and expressing the feature vector
of the keypoint model using a mixture of high-dimensional
Gaussian distributions. Therefore, wedge feature-vectors in
the Gaussian mixture model express the probabilities of
being one of these prototype wedges. Figure 3 shows the
modeling of wedges using Gaussian distributions.

Let µ be randomly initialized prior means and σ2 prior
variances of our data for K Gaussian mixtures. We model
the prior distribution of the parameters θ as follows.

θi=1...K = {µi=1...K , σ
2
i=1...K} (7)

Then, the posterior distribution p(θ | x) given the feature
vectors x is estimated using the expectation maximization
method [16].

p(θ | x) =

K∑
i=1

φiN (µi,Σi) (8)

Each component of the feature representing wedges in this
model is the mean of one of the Gaussian distributions.

fgi = µi (9)

This feature vector of a wedge instance models the
probability that this wedge belongs to one of the learned
wedge classes. The feature vectors are compared using the
Euclidean distance. In future work we will investigate the
influence of other distance metrics.

IV. PART STRUCTURED SPOTTING

Because the identity of cuneiform symbols lie in the
precise arrangements of their wedge components, part-
structured models offer a very natural framework for rep-
resentation. Models of this sort were developed for photo-
graphic object recognition before being applied to handwrit-
ten word spotting [17]. The inkball representation by Howe
uses simple parts arranged in a geometric pattern to form
characters and words. In this work we use individual wedges
as the parts in the model, and represent their expected
geometric relationship as default offsets in a tree structure.

Let Q = {q1, ..., qn} represent a set of wedges that
form some character or an other unit of interest, and let

Figure 4. Tree model for a five-wedge query, with root at the center.

{v1, ..., vn} represent their positions, taken as the mean of
the three wedge head vertices. We assemble the parts into
a tree structure by greedily forming pairwise links between
disconnected units. Without loss of generality let q1 be the
wedge closest to the group’s center of mass; this wedge
becomes the root of the tree. Letting qi↑ indicate the parent
of qi in the tree structure, we define the default offset mi

for each child node. Note that m1 and q1↑ are undefined,
since q1 has no parent. Figure 4 shows the model induced
for one example query.

mi = vi − vi↑ (10)

Having identified the model’s tree structure and default
offsets, we define a deformation energy Eξ for any proposed
configuration of the model, Z = {z1, ..., zn}. This energy is
a quadratic function of the difference between the observed
offsets and the model default, and is invariant under rigid
translations.

Eξ(Z) =

n∑
2

‖(zi − zi↑)−mi‖2 (11)

Given a cuneiform document, word spotting attempts to
identify locations that are likely matches to the query model.
More precisely, if T = {t1, ..., tN} is the set of wedges in
the target, with positions U = {u1, ..., uN}, then we seek
locations x where the following energy function reaches a
minimum and lies below some target threshold.

E(x) = min
Z|z1=x

[Eξ(Z) + Eω(Z,Q, T, U)] (12)

The second term in this expression measures the prox-
imity of model wedges to suitable target wedges under the
proposed configuration. A parameter α trades off between
spatial proximity and wedge match quality D, as computed
using one of the methods from the previous section.

Eω(Z,Q, T, U) =

n∑
i=1

Eω(zi, qi, T, U) (13)

Eω(zi, qi, T, U) =
N

min
j=1

[
‖zi − uj‖2 + αD(qi, tj)

]
(14)

The energy function in Equation 12 can be minimized
via an efficient dynamic programming algorithm, as in prior



work on part-structured models [18]. We first write an
expression for the minimum energy of arbitrary subtrees of
the model, where Zi↓ represents the positions of wedge qi
and all its descendants.

Ei(x) = min
Zi↓|zi=x

[Eξ(Zi↓) + Eω(Zi↓, Qi↓, T, U)] (15)

This in turn can be rewritten recursively as the wedge
match at the root plus the minimum energy over all possible
child configurations, as adjusted by the model offsets.

Ei(x) = Eω(x, qi, T, U) + min
Zi↓|zi=x

E↓i(x) (16)

min
Zi↓|zi=x

E↓i(x) =
∑
j|j↑=i

Γ (Ej(x−mj)) (17)

Here Γ denotes the generalized distance transform (GDT)
[17], which performs the minimization over the deforma-
tion term. At the leaves of the model, the child energy
contribution E↓i is zero and the energy function Ei can be
computed simply via a GDT, with the function values with
respect to x represented on a discrete grid. Moving up the
tree, parent node energies Ei can be computed using the
results at the leaves, translated by the offset mj and passed
through another generalized distance transform before being
added up. This process eventually yields the energy of
the entire model over the grid of possible root positions.
Strong local minima on this grid are the locations where
the model matches well. We place bounding boxes around
these minima and perform a non-minimum suppression of
the results.

V. EVALUATION

We evaluate our methods on a dataset of two cuneiform
tablets line traced by professional Assyriologists using a
graphics editor. These tablets contain around 500 identifiable
cuneiform characters. The tablets are only incompletely
manually labeled and segmented. This precludes a precise
evaluation of the performance of the presented methods on
the given dataset and offers us no possibility to exactly
analyze the methods on their recall performance.

However, our evaluation scheme makes the relative dif-
ferences in retrieval performance still valid and allows for a
comparison of the methods. We perform retrieval queries by
example using the set of segmented cuneiform characters.
Given the size of our dataset, we assume that each character
class has in average 30 instances. Perfect recall is achieved
when 30 instances are retrieved. An expert then decides for
each returned result whether it belongs to the class of the
query and tags it with either true positive or false positive.

We evaluate our method against the work of Rothacker
et al. on word-spotting on Latin script [10]. Since we use
vectorized transcriptions of cuneiform tablets as data, we

Figure 5. Precision recall graph of the four evaluated methods.

cannot employ their work on word-spotting on cuneiform
tablets for comparison [9]. We have no 3D data or curvature
data available for our dataset.

To make our data available to their bag-of-features word
spotting framework, we first rasterize the vectorized dataset
to raster images. The size of the raster images is chosen so
that their choice of slice parameters and sliding windows
advancement is optimal for our data. That is, we chose
40 pixel sized structuring elements for the dense SIFT
[19] transformation with a 5 pixel wide regular grid. The
query examples are taken from the incompletely segmented
document and sliced with 5 pixel wide horizontal slices
advancing 2 pixels. We use the same HMM topology as
presented in their work.

VI. RESULTS

Figure 6 shows the score and energy distribution for the
respective method for an exemplary query. The results of
our evaluation are shown in Figure 5. The Gaussian mixture
model yielded the least satisfactory results. Closer inspection
of the inferred classes showed that they did not represent the
space of different wedges well. We are currently investigat-
ing better clustering approaches for wedges.

Binary template vectors offer more flexibility, nonetheless,
they do not perform as well as the keypoint model. We
attribute this to the rigidity of the defined templates. If many
semantically different wedges fall into the same template,
they no longer can be differentiated. A more flexible tem-
plate model, more angles and more sizes, would lead to
high-dimensional feature vectors that are hard to compare.

The keypoint model performs best and outperforms the
approach presented by Rothacker et. al. The keypoints model
uses a advantageous description of wedges when used in
combination with the adapted part structured spotting. It too
models two dimensional points that are compared using the
Euclidean distance.



Figure 6. Result scores of both methods overlaid on the excerpt from
Figure 1 of one of our source documents. (a) Decoding scores for the
method of Rothacker et al. (b) Energy distribution of our approach using
the keypoint model.

Summary & Outlook

In this work we presented a novel method of
segmentation-free spotting of cuneiform characters. We in-
troduced three different feature representations of wedges
for evaluation. Spotting is performed using a part structured
approach where characters are modeled by a tree structure of
connected wedges, an adaptation and generalization of our
previous work. Compared to the recent approach presented
by Rothacker et al. [9] our best performing approach requires
no learning, no prior examples from the dataset and works
with only one parameter.

Currently, our optimizing extraction of wedge key-points
uses an a-priori model of wedges for scoring assignments
and modeling wedges. In future work, we want to build
upon our Gaussian mixture model wedge features to provide
a learned wedge model for scoring competing candidate
wedges features for extraction. Additionally, we aim to
extract wedges from the transcriptions available in the
Cuneiform Digital Library Initiative database to provide a
large scale search function for cuneiform characters.

REFERENCES

[1] W. von Soden, The ancient Orient: an introduction to the
study of the ancient Near East. Wm. B. Eerdmans Publishing
Co., 1994.

[2] J. Kantel, P. Damerow, S. Köhler, and C. Tsouparopoulou,
“3D-Scans von Keilschrifttafeln - ein Werkstattbericht,” in
26. DV-Treffen der Max-Planck-Institute. Ges. für wiss.
Datenver., 2010.

[3] N. Howe, “Part-structured inkball models for one-shot hand-
written word spotting,” in Int. Conf. on Doc. Analysis and
Rec., 2013.

[4] B. Bogacz, J. Massa, and H. Mara, “Homogenization of 2d
& 3d document formats for cuneiform script analysis,” in
Workshop on Hist. Doc. Imaging and Processing, 2015.

[5] J. Massa, B. Bogacz, S. Krömker, and H. Mara, “Cuneiform
detection in vectorized raster images,” in Comp. Vis. Winter
Workshop, 2016.

[6] H. Mara and S. Krömker, “Vectorization of 3d-characters
by integral invariant filtering of high-resolution triangular
meshes,” in Int. Conf. on Doc. Analysis and Rec., 2013.

[7] B. Bogacz, M. Gertz, and H. Mara, “Cuneiform character
similarity using graph representations,” in Comp. Vis. Winter
Workshop, 2015.

[8] ——, “Character retrieval of vectorized cuneiform script,” in
Int. Conf. on Doc. Analysis and Rec., 2015.

[9] L. Rothacker, D. Fisseler, G. G. W. Müller, F. Weichert,
and G. A. Fink, “Retrieving cuneiform structures in a
segmentation-free word spotting framework,” in Workshop on
Hist. Doc. Imaging and Processing, 2015.

[10] L. Rothacker, M. Rusinol, and G. A. Fink, “Bag-of-features
HMMs for segmentation-free word spotting in handwritten
documents,” in Int. Conf. on Doc. Analysis and Rec., 2013.

[11] J. A. Rodrı́guez-Serrano and F. Perronnin, “Handwritten
word-spotting using hidden markov models and universal
vocabularies,” Pat. Rec., 2009.

[12] Y. Leydier, F. Lebourgeois, and H. Emptoz, “Text search for
medieval manuscript images,” Pat. Rec., 2007.

[13] T. M. Rath and R. Manmatha, “Word spotting for historical
documents,” in Int. Conf. on Doc. Analysis and Rec., 2007.

[14] J. Munkres, “Algorithms for the assignment and transportation
problems,” Soc. for Ind. and App. Math., 1957.

[15] Unicode Consortium, The Unicode Standard, Version 5.0.
Addison-Wesley, 2006.

[16] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the em algorithm,” Jour.
of the Royal Stat. Soc., 1977.

[17] P. Felzenszwalb and D. Huttenlocher, “Pictorial structures for
object recognition,” Int. Journal on Comp. Vis., 2005.

[18] N. Howe, “Inkball models for character localization and out-
of-vocabulary word spotting,” in Int. Conf. on Doc. Analysis
and Rec., 2015.

[19] M. Bicego, A. Lagorio, E. Grosso, and M. Tistarelli, “On the
use of sift features for face authentication,” in Comp. Vis. and
Pat. Rec. Workshops, 2006.


